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Abstract
The Uniaxial Compressive Strength (UCS) is an essential parameter in various fields (e.g., civil engineering, geotechnical 
engineering, mechanical engineering, and material sciences). Indeed, the determination of UCS in carbonate rocks allows 
evaluation of its economic value. The relationship between UCS and numerous physical and mechanical parameters has been 
extensively investigated. However, these models lack accuracy, where as regional and small samples negatively impact these 
models' reliability. The novelty of this work is the use of state-of-the-art machine learning techniques to predict the Uniaxial 
Compressive Strength (UCS) of carbonate rocks using data collected from scientific studies conducted in 16 countries. The 
data reflect the rock properties including Ultrasonic Pulse Velocity, density and effective porosity. Machine learning models 
including Random Forest, Multi Layer Perceptron, Support Vector Regressor and Extreme Gradient Boosting (XGBoost) are 
trained and evaluated in terms of prediction performance. Furthermore, hyperparameter optimization is conducted to ensure 
maximum prediction performance. The results showed that XGBoost performed the best, with the lowest Mean Absolute 
Error (ranging from 17.22 to 18.79), the lowest Root Mean Square Error (ranging from 438.95 to 590.46), and coefficients 
of determination  (R2) ranging from 0.91 to 0.94. The aim of this study was to improve the accuracy and reliability of models 
for predicting the UCS of carbonate rocks.

Keywords Uniaxial compressive strength (UCS) · Carbonate rocks · Machine learning · Ultrasonic pulse velocity (UPV) · 
Effective porosity · Density

Introduction

Physical and mechanical characteristics of rocks (UCS, 
porosity, density, abrasion resistance, etc.) affect their areas 
of application. The economic interest in carbonate rocks is 
not only associated with the field of civil engineering (e.g., 
construction materials: marble stones, freestone, aggregates, 
hydraulic binders) but also with the paper and plastics indus-
tries with rubbers, polymers, paints, sealants, adhesives, and 
pharmaceutical and cosmetic products.

The Uniaxial Compressive Strength (UCS) is one of the 
most critical mechanical parameters in rocks (Hasanipanah 
et al. 2022; Hassan & Arman 2022; Moussas & Diamantis 
2021). However, in some cases a UCS test cannot be per-
formed because it is costly, time-consuming, and destruc-
tive. Therefore, an accurate estimation of this parameter is 
required (Lai et al. 2016).

Several correlations between mechanical and physical 
parameters of geomaterials have been established with the 
UCS. Kurtulus et al. (Kurtulus et al. 2012) determined the 
mechanical properties of serpentinized ultrabasic rocks 
through ultrasonic velocity measurements. They found good 
relationships between UCS and various mechanical param-
eters (with static elasticity modulus values  R2 = 0,7; with 
ultrasonic pulse velocity  R2 is more than 0,8 and with Point 
load index is(50)  R2 is more than 0,9).

Yasar and Erdogan (Yasar & Erdogan 2004) correlated 
the compressive strength with sound Velocity within car-
bonate rocks and they found  R2 = 0,8. Within concrete, 
Del Rıo et al. (Del Río et al. 2004a) reported a exponential 
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relationship between compressive strength and ultrasonic 
pulse velocity. Vasconcelos et al. (Vasconcelos et al. 2008) 
and Chen et al. (X. Chen et al. 2015) reported good rela-
tionships within granitic samples and basalt samples. They 
found determination coefficients 0,7 and 0,8 respectively. 
Shariati et al. (Shariati et al. 2011) reported a linear rela-
tionship between UCS and ultrasonic pulse velocity within 
concrete samples with  R2 = 0,9. A recent Malaysian study 
established empirical correlations estimating UCS from 
ultrasonic velocity measurements for granite and schist sam-
ples with  R2 = 0,9 (Lai et al. 2016).

Moreover, researchers have developed fast and reliable 
techniques to determine the characteristics of rocks, such 
as the ultrasonic method, which appears to be a promising 
technique for experimental laboratory tests (Lai et al. 2016). 
Numerous research works have developed different predic-
tive models of the UCS in geomaterials. However, they have 
several drawbacks, such as lack of accuracy (Del Río et al. 
2004b) found  R2 = 0.48, Abdelhedi et al. (Abdelhedi et al. 
2017) found  R2 = 0,6; Arman (Arman 2021) found  R2 = 0,5), 
a small sample size. Kumar et al. (Kumar et al. 2020) were 
studied a Multiple regression model with 7 samples; Xue 
and Wei (Xue & Wei 2020) were elaborated a hybrid model 
with 44 data points; Kamaci and Pelin. (Kamaci & Özer 
2018) were established empirical models with 9 samples; 
Abdelhedi et al. (Mohamed Abdelhedi et al. 2020a) were 
studied artificial neural network models using 66 samples; 
Sakız et al. (Sakız et al. 2021) were used 37 samples to cre-
ate fuzzy inference system models predicting drilling rate 
index from rock strength and cerchar abrasivity index prop-
erties), and the study's regional scope (Sharma et al. (Sharma 
et al. 2017) were Developed a novel models using neural 
networks and fuzzy systems for the prediction of strength of 
rocks in India; Ghorbani and Hasanzadehshooiili (Ghorbani 
& Hasanzadehshooiili 2018) established models to predict 
UCS and CBR of microsilica-lime stabilized sulfate silty 
sand using ANN and EPR models in Iran.

Gowida et al. (Gowida et al. 2021) were created models 
to predict UCS while drilling using artificial intelligence 
tools in the Eastern province of Saudi Arabia, Barham et al. 
(Barham et al. 2020) were staudied Artificial Neural Net-
work models to predict UCS in Um-Qais city in Jordan, 
Assam and Agunwamba (Assam & Agunwamba 2020) were 
established models to predict CBR and UCS Values of Ntak 
Clayey Soils in AkwaIbom State, Nigeria).

Previous models for predicting the physical and mechani-
cal characteristics of sedimentary rocks, such as carbonate 
rocks, have been found to have significant limitations and 
drawbacks (as discussed under the second section of this 
study). With the ongoing international need for the explora-
tion of new georesources, particularly in the wake of recent 
economic crises, there is a growing need for new and effec-
tive methods of mining exploration. The development of 

models that can accurately predict the characteristics of 
sedimentary rocks, such as carbonate rocks, is of paramount 
importance for the identification and exploration of new 
georesources. These rocks, which are commonly found in 
various geological formations and are often used as con-
struction materials, play a crucial role in the building indus-
try (Ammari et al. 2022; Ben Othman et al. 2018; Calvo & 
Regueiro 2010; Mridekh 2002).

The objective of this study is to evaluate the performance 
of state-of-the-art machine learning models in predicting the 
Uniaxial Compressive Strength (UCS) of carbonate rocks 
using basic physical tests, namely Ultrasonic Pulse Velocity 
(UPV), density, and effective porosity.

The remainder of this paper is organized as follows. Sec-
tion 2 presents the dataset and the machine learning tech-
niques employed in this study. In Sect. 3, the results of the 
computational experiments are presented and analysed. The 
findings are then discussed and compared to existing litera-
ture in Sect. 4. Finally, in Sect. 5, conclusions are presented.

Literature description

The uniaxial compressive strength (UCS) is a critical 
mechanical property of the rocks used in various engineering 
projects. It is used to assess the structural stability against 
the load. To determine the UCS, it is necessary to use high-
quality core samples, which are difficult to obtain because of 
the presence of foliated, fractured, and weak rocks.

Accordingly, several research works have proposed pre-
diction models of the UCS using different tools (new or 
classic modeling). Table 1 summarizes previous works that 
established models that predict the UCS.

The previous works presented in Table 1 illustrate def-
erent limitations, such as the lack of metrics for model 
evaluation. In other words, some metrics do not reflect the 
accuracy of models. In addition, the lack of data hinders the 
creation of good models especially when they are restricted 
to a specific area or country. This table appears to be sum-
marizing various studies that have used different models 
and input variables to predict various outputs, such as uni-
axial compressive strength (UCS). The studies have used a 
variety of machine learning techniques, including artificial 
neural networks (ANN), support vector machines (SVM), 
extreme learning machines (ELM), multivariate regression, 
and geostatistical algorithms. The sample sizes for the stud-
ies range from 9 to 1771, and the models were trained and 
tested on samples collected from various locations around 
the world. The models generally achieved good accuracy, 
with R-squared values ranging from 0.5 to 0.99 and root 
mean squared error (RMSE) values ranging from 0.09 to 
8.17. However, some of the studies had low sample sizes or 
were limited to a specific region, which may have reduced 
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the generalizability of the results. Some studies also only 
used one evaluation metric or had low accuracy.

Dataset

In this study, 1001 sets of data samples were gathered from 
references listed in Table 2. These samples came from a vari-
ety of countries, as shown in Fig. 1. The data were obtained 
from scientific articles published in research journals, and 
they were collected from studies that aimed to create mod-
els for predicting physical and mechanical characteristics of 
carbonate rocks. The data collected for this study were used 
to train and test the models, and the results of the modeling 
efforts were used to predict UCS in carbonate rocks.

Machine learning algorithms

•Artificial intelligence (AI) is a rapidly advancing field that 
encompasses a wide range of computational techniques for 
clustering, prediction, and classification tasks (Ebid 2020). 
The development of AI algorithms has led to significant 

advancements in a variety of fields, including healthcare 
(Elleuch et al. 2021), agriculture (Ayadi et al. 2020), sustain-
ability (Abulibdeh et al. 2022; R; Jabbar et al. 2021; Zaidan 
et al. 2022), mines exploration (Mahmoodzadeh et al. 2022a) 
and transportation (Ben Said & Erradi 2022; Rateb Jabbar 
et al. 2018; Mirzaei et al. 2022; Mahmoodzadeh et al. 2022b; 
Mahmoodzadeh et al. 2022c; Mahmoodzadeh et al. 2022d; 
Mahmoodzadeh et al. 2022e).

The field of geology has seen a significant interest in the 
application of artificial intelligence (AI) in recent years. AI 
has been applied to a variety of geoscience-related tasks 
such as the determination of reservoir rock properties, 
drilling optimization, and enhanced production facilities 
(Solanki et al. 2022). Additionally, these techniques have 
been used in carbonate rock exploration for the prediction of 
rock and mortar UCS values (M Abdelhedi et al. 2020a, b, 
c). Furthermore, AI has been applied in mining and geologi-
cal engineering, including rock mechanics, mining method 
selection, mining equipment, drilling-blasting, slope sta-
bility, and environmental issues (Bui et al. 2021).. These 
applications of AI in geology demonstrate the potential of 
this technology to revolutionize the field and provide new 
insights and solutions to geoscience-related problems. It 
can lead to more accurate and efficient predictions of geo-
technical parameters, understanding of rock properties and 
ultimately to more efficient and sustainable resource man-
agement. The use of AI in geology can also aid in the explo-
ration and discovery of new mineral and energy resources. 
This highlights the potential of AI to be a valuable tool 
for geologists and engineers in the field of geology, as it 
can help to improve our understanding of the earth and its 
resources.

In this study, four techniques were applied for learning: 
Random-forest regressor, MLP regressor, support vector 
machine, and XGB regressor. Cross-validation and the Grid-
SearchCV were used for model optimization. In this study, 
we focused on supervised machine learning models, which 
are trained using labeled data and are able to make predic-
tions about new, unseen data. We used the most commonly 
employed methods for building these models, which involve 
using algorithms to analyze and learn from the data in order 
to make accurate predictions. The goal of our study was to 
compare and evaluate the effectiveness of these methods 
for predicting geotechnical parameters. By understanding 
the accuracy and capabilities of these models, we can better 
understand and predict the behavior of geomaterials, which 
is important for a variety of engineering applications.

Random‑forest Regressor

Over the last decades, random forest (RF) has received 
considerable attention owing to its reliability and Competi-
tive performance. (Bagherzadeh et al., 2021a; Bagherzadeh 

Table 2  Origin of the dataset

Number of 
dataset

Country of origin References

1 15 Tunisia Abdelhedi et al. 2017
2 40 Hungary Török & Vásárhelyi 2010
3 16 Italy Barone et al. 2015
4 31 Pappalardo 2015
5 27 Spain Gomez-Heras et al. 2020
6 20 Benavente et al. 2006
7 44 Iran Moradian & Behnia 2009
8 40 Sarkar et al. 2012
9 22 Azimian & Ajalloeian 2015
10 33 India Madhubabu et al. 2016
11 32 Rahman et al. 2020
12 41 England Assefa et al. 2003
13 66 Malaysia Momeni et al. 2015
14 90 Turkey Çelik 2019
15 13 Yasar & Erdogan 2004
16 55 Ceryan et al. 2013
17 32 Kurtulus et al. 2016
18 12 Sertçelik et al. 2018
19 9 KAMACI et al. 2018
20 13 Chile González et al. 2019
21 18 Germany Reyer & Philipp 2014
22 37 Ethiopia Gudissa et al. 2021
23 30 Jordan Ahmad 2020
24 190 Thailand Jaggapan 2017
25 35 Brazil Silva 2020
26 40 KSA Al-Osta et al. 2018
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et al., 2021b; Bagherzadeh & Shafighfard 2022; Shafigh-
fard et al. 2022; Tang & Na 2021). Figure 2 illustrates this 
technique: a supervised ensemble learning algorithm that 
constructs a "forest" or ensemble of decision trees (DT). 

Each DT classifies the data instances. The final classification 
decision is obtained by aggregating the classification results 
of all the DTs. The common aggregation mechanism is bag-
ging, which attributes the last class based on majority voting.

Fig. 1  Samples areas from different countries worldwide

Fig. 2  Random Forest algorithm
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At each node of the decision tree (Fig. 2) entropy is given 
by:

where E: Entropy.c: The number of unique classes.pi: Prior 
probability of each given class.

(Schonlau & Zou 2020).

MLPRegressor

Multi Layer Perceptron is a class of neural network that con-
sists of a set of neurons that are connected in a layered fash-
ion. Each neuron at the intermediate layers is fully connected 
to neurons from the previous layers. At the neuron level, non 
linear transformation is applied and results are forwarded to 
the next layer. MLP is trained using backpropagation algo-
rithm with the objective of minimizing a loss function (Okan 
2020). The transformation at the neuron is expressed by:

Then, the output can be expressed by:

where: ∫ (l) : the activation function of the hidden layer.ŷ(l−1)
i

 : 
the output of the neuron of the (l-1)hidden layer.w(l)

i,j
 : the 

weight between the neuron of the hidden layer and the output 
layer.b: the bias of the output layer.l: the hidden layer.

(Seo & Cho 2020).

Support vector machine (SVM)

Support vector machine (SVM)(Cortes et  al. 1995; 
Mahmoodzadeh et al. 2022a, b, c, d, e, f) is a traditional 
machine learning algorithm well known for its simplicity 
and flexibility in addressing different classification problems. 
Remarkably, this algorithm has proven its efficiency even for 
small-scale data sets. The aim of this method is to identify the 
best position for splitting the data set into a multidimensional 

(1)E = −

c∑

i=1

pixlog(pi)

(2)ŷ(l) = ∫
(l)
(

q(l−1)∑

i=1

w
(l)

i,j
ŷ
(l−1)

i
+ b

(l)

j

)

space called a hyper plane. A two-dimensional space has a 
one-dimensional hyper plane, which is just a line. For a three-
dimensional space, its hyper plane is a two-dimensional plane 
that slices the cube, as illustrated in Fig. 3.

Support vector regression (SVR) is a flexible technique 
not only applicable to linear models but also robust to out-
liers. Large residuals contribute linearly, whereas the loss 
function ignores points with small residuals (on the basis 
of a predefined threshold ε). Using linear kernels, SVR is 
applicable to linear models. By using radial or polynomial 
kernels, it becomes suited for non-linear predictions. The 
expression minimized in SVR is provided below where Le 
is the loss and c is the cost parameter.

(Gupta et al. 2019).

XGBRegressor

XGBoost (T. Chen & Guestrin 2016) is another tree-based 
algorithm that is highly effective and widely used in ML 
applications. It has successfully solved numerous challeng-
ing problems in data science (T. Chen & He 2020; Luckner 
et al. 2017; Paradkar et al. 2001) and has won several ML 
competitions (Nielsen 2016). XGBoostis trained using a 
boosting strategy in which multiple successive weak learn-
ers are trained. A weak learner, typically a shallow DT, 
is generally a lightweight model with several parameters. 
At each step, another weak learner is added to learn from 
the error of the previous one, as illustrated in Fig. 4. This 
algorithm has substantial advantages, including memory 
efficiency and the specificity of weak learners. More spe-
cifically, training vulnerable learners requires less memory 
than the sequential strategy of RF, where strong learners 
need to be trained to reach a consensus on an instance 

(3)c
∑n

i=1
Le(yi − ŷi +

∑p

j=1
�̂2j

(4)Le
(
yi −�yi

)
=

{
||yi −�y i| −

0 if yi−�yi<𝜀

𝜀otherwise

}

Fig. 3  Support Vector Machine 
(SVM)
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class. Furthermore, although weak learners do not perform 
well generally, they perform well in some data instances.

By adding a regularization term into the objective function, 
the XGBoost algorithm becomes more robust against over-
fitting. The overall regularized XGBoost loss is expressed as:

where yi is the real value, ŷ(r)
i

 is the prediction at the r-th 
round,  gr is the term denoting the structure of the decision 
tree, L 

(
yi, ŷ

(r)

i

)
 is the loss function, n is the number of train-

ing examples, and Ω
(
gr
)
 is the regularization term given by:

where T is the number of leaves, w is the weight of the 
leaves, λ and γ are coefficients whose default values are set 
at λ = 1 , γ = 0(Rzychoń et al. 2021).

Cross‑validation

Cross validation is a model evaluation method that is bet-
ter than residuals. The problem with residual evaluations is 
that they do not give an indication of how well the learner 
will do when it is asked to make new predictions for data it 
has not already seen. One way to overcome this problem is 
to not use the entire data set when training a learner. Some 
of the data is removed before training begins. Then when 
training is done, the data that was removed can be used to 
test the performance of the learned model on ``new'' data 
(Anderssen et al. 2006; Brereton 2006; Broadhurst & Kell 
2006; Westerhuis et al. 2008).

GridSearchCV

Adjustable parameters called hyperparameters can be used 
to control the training process of a model. To find the best 
configuration of these hyperparameters, we can use a process 

(5)Obj(r) =
∑n

i=1
L
(
yi, ŷ

(r)

i

)
+
∑r

i=1
Ω(gr)

(6)Ω
(
gr
)
= γT +

1

2
λ
∑T

j=1
w2

j

called hyperparameter optimization. This involves searching 
for the combination of hyperparameters that leads to the best 
model performance. However, this process is often manual 
and requires significant computational resources.

GridSearchCV is a class established by a scikit-learn 
framework for parameters adjustment that estimators imple-
ment (Müller & Guido 2016).

Model's metrics

In this study, three performance indices, namely the coeffi-
cient of determination  (R2), the mean absolute error (MAE) 
and the root mean square error (RMSE) were used.

The mean absolute error (MAE) and root-mean-square 
error (RMSE) for evaluating the performance of the estab-
lished model and the correlation coefficient (R) are defined 
as follows:

where  yi and  xi denote respectively the preferred output and 
estimated output;y ̅ and x ̅ denote average values, whereas n 
denotes each sample in the data set (Abdurrahim Akgun-
dogdu 2020; Mahmoodzadeh et al. 2022a, b, c, d, e, f; Tiya-
sha et al. 2020).

SHapley Additive exPlanations (SHAP)

The Shapley Additive Explanations (SHAP) method was uti-
lized in the analysis of primary factors that influence Uni-
axial Compressive Strength (UCS) value of carbonate rocks. 

(7)MAE =
1

n

∑n

i=1
||yi − xi

||

(8)RMSE =

√
1

n

∑n

i=1
(yi − xi)

2

(9)R2 = 1 −

∑n

i=1
(Yi − Ŷi)

2

∑n

i=1
(Yi − Yi)

2

Fig. 4  Gradient Boosting Deci-
sion Trees
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SHAP (Biecek & Burzykowski 2021; Molnar 2022), as a 
game theoretic method, explains the output of any machine 
learning model by connecting optimal credit allocation to 
local explanations through the use of game theory's tradi-
tional Shapley values and their related extensions.

In mathematical terms, the Shapley values, denoted by 
ϕj, provide a way to attribute a "fair" value of a feature j to 
the prediction of an instance. The Shapley values are defined 
as the average marginal contribution of a feature j over all 
possible coalitions of feature values. Mathematically, the 
Shapley values for a feature j can be defined as:

Where F is the set of all features, S is a subset of F, and f 
is the prediction function.

The SHAP values, denoted by Φj, are a unified measure 
that combines the Shapley values with local explanations. 
The SHAP values represent the contribution of a feature j to 
the prediction of an instance and are defined as:

Where x is the instance being explained, x' is a reference 
instance sampled from the background dataset, and E[f(x)] is 
the expected value of the prediction function over the back-
ground dataset.

As conclusion, SHAP uses the Shapley values to attribute 
a fair value to each feature and combines them with local 
explanations to provide a unified measure of feature impor-
tance called SHAP values.

Carbonate rock tests

Tests must be performed in the laboratory to determine the 
physical and mechanical parameters of rocks. The uniaxial 
compressive strength test (UCS), effective porosity, density, 
and ultrasonic pulse velocity are parameters that determine 
the mechanical and physical characteristics of rocks.

UCS

We calculated the UCS by dividing in the loaded surface 
area (MPa) the applied compressive stress applied by the 
testing machine (Amiri et al. 2022; Y. Liu & Dai 2021; 
Mohamed et al. 2018).

Ultrasonic velocity test

We used the transmission method to identify the 'P' longi-
tudinal wave velocities. We placed the ultrasonic receiver 
transducers and the transmitter perpendicularly to the load 

(10)
𝜙j(f ) = (1∕|F|!)

∑
_{S ⊆ F − {j}}|S|!(|F| − |S| − 1)!f (S ∪ {j}) − f (S)

(11)Φj(x) = ϕj(f) + E[f(x)] − E[f(x
�

)]

axis. The ultrasonic device determined the ultrasonic pulse 
velocity (Mohamed Abdelhedi et al. 2020a; Mohamed 
Abdelhedi & Abbes 2021).

Effective porosity and density

The volume occupied by the water flow represents the 
effective porosity. Thus, we saturated the specimens with 
water to identify the effective porosity  (Pe), defined as the 
following:

Where  Vpi and  Vt represent respectively the volume 
of the connected pores and the sample volume (Lafhaj & 
Goueygou 2009; Peng & Zhang 2007).

The density represents the mass of the specimen con-
tained in a given volume unit, expressed in kN/m3 or kg/
m3(Mohamed Abdelhedi et  al. 2020b; Peng & Zhang 
2007).

Results and discussion

We conduct correlation analysis to investigate the relation-
ship between data features. Figure 5 shows relationships 
between different variables (dependent and independent). 
It is noted that the coefficient of determination varies 
between -1 and 1. When the color is very dark or very 
light, a strong relationship between the two corresponding 
variables is determined.

This figure shows a strong negative linear relationship 
between the uniaxial compressive strengthand effective 
porosity, and in contrast, a strong negative linear relationship 
between effective porosity and ultrasonic wave velocity. How-
ever, there is a strong positive linear relationship between 
ultrasonic velocity and uniaxial compressive strength.

Nguyen-Sy et al. (Nguyen-Sy et al. 2020) used a similar 
representation in rating the relationship between cement 
ratio, blast furnace slag, fly ash, water, superplasticizer, 
coarse aggregate, fine aggregate, age, and UCS within 
concrete. This study found a good relationship between 
the UCS and age and between the UCS and cement ratio 
within concrete samples.

Table 3 shows the statistical parameters of the data-
set. The range of all variables was enormous: ultrasonic 
velocity was 6325 m/s, density was 1.91, effective porosity 
was 42.14%, and MPa of UCS was 179.76. This extensive 
range allows a good modelling margin, making the model 
more valuable and the prediction more feasible.

The density of the samples varied between 1.43 and 
3.34, where as the effective porosity varied between 0.01% 

(12)Pe = Vpi∕Vt
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and more than 40%.Theuniaxial compressive strength var-
ied between less than 1and more than 180 MPa, where 
as ultrasonic velocity varied between 1110 and 7435 m/s. 
These results indicate different categories of carbonate 
rocks such as hard, ductile, and brittle.

Four machine learning algorithms were applied to 
create four different models predicting this parameter: 
'RandomForestRegressor' (Fig.  6), 'MLPRegressor' 
(Fig. 7), 'support vector machine' (Fig. 8), and 'Xgboos-
tRegressor' (Fig. 9).

RandomForestRegressor algorithm (Fig. 6) shows a 
straight distribution of points, giving a coefficient of deter-
mination  (R2) equal to 0.65.

The points illustrated in Fig. 7 are more aligned, pro-
viding a better coefficient of determination  (R2 = 0.94). 
This figure shows the model created by the MLPRegressor 
algorithm.

Figure 8 presents a model correlating the predicted UCS 
values using SVM modelling with the tested values. The 

Fig. 5  Variables Heatmap

Table 3  Dataset statistical parameters

Min Max Range Mean SD

Vp 1110 7435 6325 4514.9 1268.41
D 1.43 3.34 1.91 2.53 0.23
Pe 0.01 42.15 42.14 8.09 7.73
UCS 0.74 180.5 179.76 63.34 34.77

Fig. 6  Expected versus observed UCS values using RandomFor-
estRegressor modeling
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coefficient of determination of this linear relationship is 
0.78.

The XgboostRegressor algorithm's model gives a linear 
relationship with  R2 = 0.89 between predicted UCS values 
and observed values.

These models were optimized using 'Grid_searchcv' as an 
optimization algorithm and validated using 'cross-validation.

Table 4 shows the evaluation of the different models 
using different metrics. In this study, we compared the pre-
diction accuracy of UCS in various machine learning mod-
els. We employed three different metrics: mean squared 
error (MSE), coefficient of determination  (R2), and mean 
absolute error (MAE).

Before optimization and validation of models, the 
MLPRegressor algorithm had the lowest mean squared 
error (584.06), the lowest mean absolute error (20.07), and 
the best coefficient of determination (0.94). However, with 
the RandomForestRegressor algorithm, MSE = 5949.55, 
MAE = 60.35 and  R2 = 0.65, with the SVM algorithm, 
MSE = 3109.17, MAE = 40.99 and  R2 = 0.78, and with the 
XGBRegressor algorithm, MSE = 1753.56, MAE = 32.83 
and  R2 = 0.85.

After model optimization, the majority of scores 
improved, and the results show that both SVM and MPL 
models are the best, with a score equal to 0.91.

After model validation, the cross-validation algorithm 
divides the data into four parts, and we obtained four very 
similar scores for each metric, which indicates very good 
validations (Table 4).

The model that contains the lowest number of errors was 
created by the XGBRegressor algorithm (MSE is between 
438.95 and 590.46, and MAE is between 17.22 and 18.79). 
However, two models show good coefficients of determina-
tions  (R2 of the MLPRegressor model is between 0.92 and 
0.94, and  R2 of the XGBRegressor model is between 0.91 
and 0.94).

The model created by MLPRegressor showed, after vali-
dation, good coefficients of determination, but it also had 
vast errors (more than 6000 of MSE).

The results indicated the best model that presents the best 
coefficients of determinations and fewer errors is the model 
created by the XGBRegressor algorithm.

Fur ther more ,  a  three- fo ld  cross-val ida t ion 
analysis(Schaffer & Edu 1993) was performed to validate 
the performance of the proposed model and mitigate the 
potential issue of over fitting. The data was partitioned into 
three equal segments and each segment was utilized as the 
validation set while the remaining two were employed as the 
training set. The results of the validation were then averaged 
to obtain a comprehensive accuracy score for the model. 
This procedure was repeated three times, with each segment 
utilized once as the validation set, thereby ensuring the com-
prehensive testing of the model on all available data. The 
results of the analysis confirmed the obtained findings and 
demonstrate that the best model, in terms of its coefficients 
of determination and lower error rates, was the model cre-
ated by the XGBRegressor algorithm.

Liu et al. (Z. Liu et al. 2015) also used MLPRegres-
sor (artificial neural networks using an extreme learning 

Fig. 7  Expected versus observed UCS values using MLPRegressor 
modeling

Fig. 8  Expected versus observed UCS values using SVM modeling

Fig. 9  Expected versus observed UCS values using XgboostRegres-
sor modeling
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machine) and found scores of approximately 0.7. However, 
they employed small data sets to estimate the UCS of car-
bonate rocks (54 samples).

Aboutaleb et al. (Aboutaleb et al. 2018) used 482 samples 
to create three models (support vector machine, artificial 
neural network, and multiple regression analysis) predict-
ing the UCS of carbonate rocks. The authors found three 
 R2 higher than 0.9. However, they were selected from one 
place (Iran), and thus, the interpretation of the results was 
regional.

Ceryan and Samui (Ceryan & Samui 2020) established 
three models by applying the extreme learning machine 
(ELM), the minimax probability machine regression 
(MPMR), and the least square support vector machine (LS-
SVM). They found  R2 of approximately 0.9; however, they 
used just 47 samples, and the study was localized in NE 
Turkey.

Nguyen-Sy (Nguyen-Sy et al. 2020) established three 
models by applying the ANN, SVM, and XGBoost meth-
ods with 1030 collected concrete datasets. They found  R2 
between 0.91 and 0.93.

From the Middle East region in the Eastern Province of 
Saudi Arabia, a data set of 1771 data points was obtained. To 
create the models, researchers employed the support vector 
machine (SVM), the adaptive neuro-fuzzy inference system 
(ANFIS), and the artificial neural network (ANN).Models 
were evaluated using the R-value and AAPE as metrics 
(Gowida et al. 2021).

The Shapley Additive Explanations (SHAP) method was 
utilized in this study to conduct a comprehensive analysis 
of the primary factors that impact the Uniaxial Compres-
sive Strength (UCS) of carbonate rocks. The SHAP method, 
rooted in coalitional game theory, was employed to calcu-
late the Shapley values, which are a fair measure of feature 
importance among the data instances. The feature values 
were considered as players in a coalition and the Shapley 
values determined their relative contributions to the predic-
tion of UCS.

The results of the feature importance analysis, as pre-
sented in Fig. 10, indicated that Density and Porosity were 
the most significant features affecting the Uniaxial Compres-
sive Strength (UCS) of carbonate rocks. In contrast, Ultra-
sonic Pulse Velocity was found to have limited impact on 
the prediction of UCS. These results suggest that Density 
and Porosity play a crucial role in determining the UCS of 
carbonate rocks.

To further evaluate the generalization capability of the 
proposed model, a second feature importance method, Per-
mutation Importance, was applied using the Eli5 library 
(Korobov 2017). The results of this analysis were consist-
ent with the findings obtained through the SHAP method, 
emphasizing the crucial role of Density and Porosity in 
the prediction of UCS. The weight values of Density and Ta
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Porosity were 0.9014 ± 0.0876 and 0.7843 ± 0.0822, respec-
tively, while Ultrasonic Pulse Velocity had a weight value of 
0.0291. These results reinforce the conclusion that Density 
and Porosity are the primary determinants of UCS in car-
bonate rocks.

Conclusions

The goal of this study was to develop an accurate interna-
tional model for predicting the uniaxial compressive strength 
(UCS) of carbonate rocks using ultrasonic velocity, effective 
porosity, and density as input variables. A dataset was com-
piled from 26 countries worldwide, consisting of data from 
scientific papers that used these input variables to predict 
UCS. Four artificial intelligence models were trained and 
tested using this dataset: random forest regressor, MLPRe-
gressor, SVM, and XGBRegressor.

Initially, the model developed using the MLPRegressor 
method was found to be the best according to the evaluation 
metrics used. However, after optimization and validation, 
both the MLPRegressor and XGBRegressor models were 
found to have good performance based on the  R2 metric. 
Upon further evaluation using all three metrics  (R2, MSE, 
and MAE), the XGBRegressor model was found to be the 
most accurate, with  R2 values between 0.92 and 0.94, MSE 
less than 600, and MAE less than 20.

This study represents the first attempt to predict the UCS 
of carbonate rocks using a model that spans 16 countries 
and four continents. The results of this study show that the 
XGBRegressor model developed in this study can be used 
to accurately estimate the UCS of any carbonate rock found 
on the earth's surface.

As future work, we plan to investigate the use of advanced 
machine learning techniques, such as deep learning or trans-
fer learning, to develop and refine models for predicting the 
uniaxial compressive strength of carbonate rocks. This could 
potentially improve the accuracy and performance of the 
models. Additionally, we will continue to study the influence 
of variables such as grain size, mineral composition, and 

rock type on the uniaxial compressive strength of carbonate 
rocks to gain a more comprehensive understanding of the 
factors that contribute to the strength of these materials.
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