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Abstract
Water quality strongly influences sustainable growth of a healthy society and green environment. According to the
International Initiative on Water Quality (IIWQ) of the UNESCO Intergovernmental Hydrological Programme (IHP), it is
essential to address water-quality issues holistically in developed and developing countries. Due to rapid urbanization and
industrialization in many developing countries, groundwater - one of the major sources of drinking is getting highly affected.
The traditional laboratory-based chemical testing process with conventional statistical methods is often used to analyze water
quality. However, it is time-consuming. Recently, Artificial Intelligence (AI) based approaches have proven to be a better
alternative for analysis and prediction of the quality of water, provided with its chemical components’ data. In this paper,
we present research focusing on groundwater quality analysis using Artificial Intelligence (AI) in a case study of Odisha,
an eastern- state of India and the data acquired from the Northern delta, the North Central Coast of Vietnam. The dataset
in Vietnam is collected by the Ministry of Natural Resources and Environment, providing technical regulations on water
resources monitoring. The Central Groundwater Board and the Government of India collect the dataset from India. The
target problem is formulated as a multi-class classification problem to predict groundwater quality for drinking suitability
by WHO standards. AI methodologies such as logistic regression, K-NN, Support Vector Machine (SVM) variants, decision
tree, AdaBoost and XGBoost are used. Prediction results have demonstrated that Adaboost, the XGBoost and the Polynomial
SVM model accurately classified the Water Quality Classes with an accuracy of 92% and 98%, respectively. It would help
decision-makers effectively choose the best source of water for drinking.
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Introduction

With growing urbanization and deforestation, groundwa-
ter quality is changing invisibly due to various types of
pollution. It is because of harmful substances like chemi-
cals, microorganisms, radio-activity or heat energy which
enter directly or indirectly into bodies of water. Classi-
fying and predicting water quality is important for var-
ious purposes like drinking, and irrigation (Wang et al.
2017; WHO Guidelines for drinking water quality 2004).
Recently, interdisciplinary research has gained momentum
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to study groundwater quality across various parts of the
globe (Venkata Vara Prasad et al. 2022; Dogo et al. 2019;
Ranjithkumar and Robert 2021). The major focus has been
given to developing countries due to the fact that industrial-
ization and urbanization in developing countries are mostly
affecting groundwater quality (Ground Water Year Book
2018).

Water quality is usually assessed by costly, traditional
laboratory and statistical analysis, which is time-consuming
(WHO Guidelines for drinking water quality 2004). Several
types of research (Sahu et al. 2021; Barik and Pattanayak
2019; Ground Water Year Book 2018; Madhav et al. 2020)
have been done to carry out water quality analysis focusing
on only hydro-chemical processes. In this regard, AI-based
approaches can be used for quick and reliable analysis and
have been recently adopted by research communities across
the globe (Hanoon et al. 2021; Ahmed et al. 2020; Khan and
See 2016). This solves major issues related to water.
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A set of state-of-the-art ML models are selected, which
have shown better performance on many regional water
quality datasets of different countries. Motivated by their
performance, the present work has considered applying
those models and their variants and studying the efficacy of
the models on the Odisha, India and Vietnam water quality
datasets.

In Sahu et al. (2021), processes using silicate-halite
dissolution and reverse ion exchange were employed for
the phreatic aquifer, considering Odisha as a focused area.
In Barik and Pattanayak (2019), the authors used data plot
dispositions on Gibb’s diagram to indicate the chemistry
of groundwater for irrigation purposes in Rourkela city of
Odisha. In Harichandan et al. (2021), empirical correlation
analysis between WQI and physio-chemical parameters was
investigated to study the drinkability of water. The authors
in (Madhav et al. 2020) applied hydro-chemical processes
to study drinking and farming cases.

To the best of our knowledge, machine learning
based approaches have so far not been incorporated for
water quality analysis, especially in Odisha and Vietnam,
which can make the process more effective and less
time consuming. In this context, some machine learning
approaches that have already been applied successfully in
other regions of the world are presented below as a point of
motivation.

In Wang et al. (2021), stream water quality was predicted
for different urban densities scenario using explainable
machine learning methods. The authors in Haghiabi et al.
(2018) have predicted WQI by random forest method,
namely ANN and SVM. A similar approach was presented
in Kouadri et al. (2021) on irregular datasets for the
southeast Algerian region using multi-linear regression,
random forest, M5P tree etc. The WQI based ML methods
were also used in Wang et al. (2017) for the Ebinur lake
watershed, China.

Supervised learning methods were used in Ahmed et al.
(2019) for water-quality analysis of Rawal water lake in
Pakistan. In Theyazn et al. (2020), the authors used AI
based approach using an auto-regressive neural network
model named NARNET for water quality analysis and
classification. Principal component analysis (PCA) and
gradient boosting methods were used in Khan et al. (2021)
for water quality prediction and classification. Using hydro-
meteorological data, a data-driven model was proposed
in Sokolova et al. (2022) for predicting microbial water
quality.

In Tiyasha et al. (2021), the authors have focused on
assessing Klang river water quality using deep learning
models. It involves water quality index computation by
considering six notable water quality parameters. The
proposed method uses random forest, decision tree and deep
learning models on two scenarios: “small scale catchment”

and “large scale catchment”. In both cases, the deep learning
model is claimed to perform well in the case of non-linear
data.

The authors in Tiyasha et al. (2020) have presented a
thorough survey for the last decade on AI based model
development for river water quality assessment. The major
points focused on in this survey are variability in inputs
for river water quality assessment, model architecture, and
metrics for evaluation and investigation in different regions.

In Tiyasha et al. (2021), the authors adopted a hybrid
tree-based approach for predicting river dissolved oxygen
(DO) using satellite and hydro-meteorological data for the
Klang river of Malaysia. Different selector algorithms are
used for feature selection, namely, Boruta, GA, MARS and
XGBoost. In the next phase, tree-based models like random
forest, Ranger, and cForest are used to predict the DO. The
best-performing models reported are XGBoost and MARS
while considering the coefficient of determination as the
evaluating parameter.

In the study by Nizal et al. in Nur Najwa Mohd et al.
(2022), water quality parameters are predicted using a
neural network-based approach with an integrated GUI. The
focused region is selected as the Langat River of Malaysia.
They adopted a novel approach of including rainfall data to
predict water quality. The GUI design takes real-time inputs
and can predict different water quality parameters.

Ubah et al. (Ubah et al. 2021) have proposed ANN-
based models for analyzing river water quality for irrigation
purposes. The data are collected for Ele river Nnewi of
Anambra State. The model is capable of predicting the water
quality index for one year. The authors in Venkata Vara
Prasad et al. (2021) propose an automated analysis of water
quality using ML and autoML methodology. They claimed
that autoML performs better than conventional ML if binary
classes are predicted. The authors in Zhu et al. (2022) have
presented an extensive survey on water quality analysis for
different environments like drinking water, surface water,
seawater etc. A set of 45 ML algorithms are evaluated and
presented for water quality analysis.

In this paper, we make a reasonable attempt to use
AI-learning-based models to analyse the water quality for
drinking purposes.

We applied XGboost, a polynomial support vector
machine, a decision tree, logistic regression, a K-NN, and
a CNN in this experiment. It has been found that XGBoost
performs best, with an accuracy of 92.67 and 98%; as
mentioned in the paper, we have provided more detailed
results of the other models in Section “Results summary &
discussion”, Results summary and Discussion.

The dataset collected and published by the Central
Ground Water Board, Government of India and the Ministry
of Natural Resources and Environment providing technical
regulations on water resources monitoring in Vietnam are
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considered as inputs for this case study (Ground Water Year
Book 2018). The significant contributions of this research
are depicted below.

i. The underlying problem is formulated as a multi-class
classification problem for a distinct classification of
the drinkability of water

ii. State-of-the-art water quality estimation models,
including Water Quality Index (WQI) model and Water
Quality Class (WQC) model as per WHO specifica-
tions, are used to carry out a realistic analysis

iii. A thorough exploratory data analysis is carried out for
better water quality prediction

iv. A set of well-known learning models are used for
optimal prediction of WQC

The rest of the paper follows: Section “Water quality
estimation model” describes the water quality estimation
model, and Section “Problem formulation and proposed
framework” shows the problem formulation and proposed
framework. Section “Proposed strategy” explains the
detailed strategy adapted to apply the AI-learning-based
approaches. Section “Results summary & discussion”
presents the results summary with performance evaluation
metrics; the conclusion is given in Section “Conclusion”.

Water quality estimationmodel

The water quality index (WQI) is used to measure the
quality of water, and it is calculated based on some state-
of-the-art parameters (Khan and See 2016; Haghiabi et al.
2018; Wang et al. 2017). To estimate WQI, mostly nine
well-known parameters are considered. In our case, out
of four- teen surveyed parameters as given in Ground
Water Year Book (2018), after performing exploratory
data analysis, the thirteen most influencing parameters
are considered, including Total Hardness (TH), Total
Dissolved Solids (TDS), pH, Sulphate (SO4), Electrical
Conductivity (EC), Alkalinity, Magnesium (Mg), Sodium
(Na), Potassium (K), Chloride (Cl), Calcium (Ca), Fluoride
(F), and Bicarbonate (HCO3). As per WHO guidelines
(WHO Guidelines for drinking water quality 2004), the
permissible range of different parameters is shown in
Table 1. In the case of the Vietnam dataset, out of
twenty-one surveyed parameters as given by the Vietnam
authorities, after performing exploratory data analysis, 12
most influencing parameters are considered, including Total
Dissolved Solids (TDS), pH, Sulphate (SO4), Harshness-
General, Harshness-Permanent, Magnesium (Mg), Sodium
(Na), Potassium (K), Chloride (Cl), Calcium (Ca), Fluoride
(F), Bicarbonate (HCO3). Table 2 shows the permissible
range of different parameters. Using these parameters and

Table 1 Odisha Permissible value for parameters used in calculating
WQI

Parameter Permissible Value

PH 6.5-8.5

Sodium 200

Electrical Conductivity(EC) 1000

Potassium 12

Total Dissolved Solids(TDS) 500

Carbonate 0

Total Hardness 300

Bicarbonate 350

Alkalinity 200

Chloride 250

Calcium 75

Sulphate 200

Magnesium 50

Fluoride 1.5

prescribed weights, the WQI and WQC are defined for each
sample as given below.

Water quality indexmodel

To estimate the water quality, a standard parameter named
as Water Quality Index (WQI) given by the equation (1) is
mostly used (Kouadri et al. 2021) (Haghiabi et al. 2018).
In this study, a total of 13 from Odisha and sixteen from

Table 2 Vietnam Permissible value for parameters used in calculating
WQI

Parameter Permissible Value

PH 5.5 - 8.5

Sodiumna 200

Fe3iron 5

Potassiumk 12

T otalDissolvedSolids 400

Carbondioxideco2f ree 51

SulphateironSo4 400

Bicarbonate 350

Harnessgeneral 300

Chlorinecl 250

Calcium 75

Sulphate 200

Magnesiummg2 50

F luoride 1

Harnesspermanent 393

T otalPhenol 0.001
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Vietnam significant parameters are taken into consideration
to calculate the WQI.

WQI =
∑N

i=1qi × wi
∑N

i=1wi

(1)

where N represents the total number of parameters
considered for water quality evaluation (In our case, it is
13 in Odisha and 12 in Vietnam). qi is the quality rating
scale for the individual parameters, which is computed using
equation (2).

qi = 100 × (
Vi − Videal

Si − Videal

) (2)

In the above equation, Vi is the estimated value for
parameter ‘i’ and Videal is the permissible value for
parameter ‘i’ in case of water without impurity. Si is the
permissible value for parameter ‘i’. Further, wi is estimated
as given in equation (3).

wi = K

Si

(3)

where K is a proportionality constant which is calculated
below.

K = 1
∑N

i=1 Si

(4)

Water quality class model

Using WQI values, WHO (WHO Guidelines for drinking
water quality 2004) has prescribed a standard range for
Water Quality Class (WQC) of drinking water which is
given below.

WQC =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Excellent, if 0 ≤ WQI ≤ 25,

Good, if 26 ≤ WQI ≤ 50,

P oor, if 51 ≤ WQI ≤ 75,

V ery Poor, if 76 ≤ WQI ≤ 100,

Undrinkable, if WQI > 100

(5)

Problem formulation and proposed
framework

This section briefly presents the problem formulation for
water quality analysis and drinkability prediction using
the above water quality estimation models. After that, a
framework is proposed to solve the problem using machine
learning based approaches.

Water drinkability as Multi-class classification
problem

Based on the WQI value which can be estimated as
in equation (1) and mapping it to a respective class in
equation (5), the water quality for drinking purposes can be
predicted. Indeed, using equation (5), it is formulated as a
classification problem with multiple classes as per the range
of WQI value. Assuming the training dataset consists of ’n’
features or attributes of water quality, formally, the problem
can be expressed as:

Each data sample is represented as a pair of {(xi, Yi)}ni=1,
where xi are vectors of features and Yi ∈ {1, 2, .., k},
the respective labels representing one of the k classes
according to estimated WQI value. In our research, for
more meaningful classification in terms of drinkability, the
water quality classes are modified as given in the equation
below without loss of generality. The modified water quality
class model used in our work is given as in equation (6)
with k = 4 and k = 10, including Excellent, Good, Poor,
Bad classes for the Odisha dataset while Excellent, Good,
Medium, Poor, Fair for the Vietnamese dataset.

OdishaWQC =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Excellent, if 0 ≤ WQI ≤ 25,

Good, if 26 ≤ WQI ≤ 50,

P oor, if 51 ≤ WQI ≤ 75,

Bad, if WQI > 75

(6)

V ietnamWQC =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Poor, if 0 ≤ WQI ≤ 25,

Fair, if 25 ≤ WQI ≤ 50,

Medium, if 50 ≤ WQI ≤ 70,

Good, if 70 ≤ WQI ≤ 90,

Excellent, if 90 ≤ WQI ≤ 100,

(7)

The proposed machine learning-based framework is
depicted in the next section using the above description.

Proposed flow diagram

To solve the water quality analysis and drinkability problem,
which is formulated as a multi-class classification problem
as mentioned above, the schematic flow diagram of
applying machine learning models is shown in Fig. 1.

It broadly goes through three phases: (i) Selection of
the geographical region for which the groundwater quality
needs to be analyzed and then the collection of water quality
parameters value. (ii) In the second phase, Exploratory Data
Analysis (EDA) and pre-processing of the data samples
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Fig. 1 Proposed flow diagram
for water quality analysis and
prediction

are carried out. The EDA process mainly has two sub-
steps: (a) correlation analysis, and (b) data cleansing

& outlier detection. The correlation analysis involves
determining the dependencies between various parameters
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Fig. 2 Hydro-geological map of Odisha

and with WQI value. Subsequently, in the data cleansing &
outlier detection phase, the non-contributing parameters are
removed, and abnormal data values are ignored as outliers
for better prediction. (iii) In this last phase, the data values
are normalized for uniform scaling and then fed to applied
ML models. The models are then evaluated using standard
performance metrics. This evaluation will help decide the
best model for predicting the water quality for the selected
geographical region.

Proposed strategy

Following the framework shown in Fig. 1, this section
describes the systematic process of predicting water quality
with the specified drinkability classes using some AI-
learning models.

Region selection and dataset collection

This research uses datasets from Odisha, an eastern state
of India and the Northern delta and North central of
Vietnam. The hydro-geological map of the state of Odisha
is shown in Fig. 2. To monitor the ground-water level
and chemical components, CGWB (Central Ground Water
Board), Bhubaneswar, has set up 1600 NHNS (National
Hydrograph Network Stations) as open/dug wells and
piezometers as shown in Fig. 3. To observe the changes in
the chemical components of groundwater, the water samples
are collected once a year from these NHNS and analysed
in the regional water laboratory. This data is further studied
and represented in the Ground Water Year Book Report
(Ground Water Year Book 2018). Thus, the data is extracted
from the published report of 2018-19 and converted suitably
to a CSV file for AI-based analysis. The dataset includes
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Fig. 3 National Hydrograph
Network Stations in Odisha

13 parameters. In the case of Vietnam, 12 parameters are
inclusive; thus, the data is extracted from the national water
resources planning and inspection centre federation for
planning and investigation of water resources in the North.

Exploratory data analysis

The Exploratory Data Analysis (EDA) is a pre-requisite
process which is carried out to investigate data for patterns
discovery, outlier detection, testing hypotheses and creating
summary statistics and representing them graphically. The
statistical description of the water sample dataset collected
from Odisha is given in Tables 3, 4 and 5, and the statistical
description of the water sample collected from Vietnam is
given in Tables 6, 7 and 8 below.

The total number of samples collected is 1241 from
all 30 districts of Odisha, while the samples collected
in Vietnam are 2138. Table 3–8 shows some standard
statistical metrics for the sample dataset, namely, the total
number of samples (count), the mean value of a respective

parameter, standard deviation (std), minimum (Min.) and
maximum (Max.) parameter value and percentile-based
description, considering 25%, 50 % and 75% of data
samples for a particular parameter. This helps in getting an
early insight into thenature of the samples. For example, it is
observed from table 3 that the 50 percentile of the data has a
pH value less than or equal to 7.9 which gives an inference that
the quality is acidic and not good for drinking. Table 6–8
showing the parameters for the Vietnamese dataset, it is
observed from Table 6 that the 50 percentile of the data has a
pH value less than or equal to 7.0 giving a similar inference
that the quality is acidic and not good for drinking.

Similarly, it is observed from Table 3 that the 50
percentile of the sample has EC less than or equal to 550.
Also, it is inferred that the 50 percentile and 75 percentile
of the samples have a Carbonate value of zero. So, this is
considered a non-contributing parameter for water quality
analysis and hence, not considered. The summary of all
the metrics is presented by considering thirteen parameters,
excluding Carbonate as the non-contributing parameter for

Table 3 Statistical description of groundwater dataset of Odisha

Metrics PH EC TDS TH Alkalinity

Count 1241 1241 1241 1241 1241

Mean 7.82 695.4 358.057 215.015 178.496

Std. .399 536.819 280.979 156.787 104.932

Min. 6.46 7.15 30 20 15

25% 7.58 360 186 123 105

50% 7.9 550 277 184 158

70% 8.12 900 456 267 228

Max. 8.78 5770 2766 1945 765
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Table 4 Statistical description of the groundwater dataset of Odisha (continue)

Metrics Ca Mg Na Potassium

Count 1241 1241 1241 1241

Mean 43.941 25.617 49.991 13.162

Std. 30.612 25.835 61.033 29.670

Min. 0 -4 0 0

25% 26 10 17 1.6

50% 39 19 30 3.8

70% 53 34 65 10.1

Max. 497 345 820 332

Table 5 Statistical description of the groundwater dataset of Odisha (continue)

Metrics Bi-carbonate Chloride Sulphate Fluoride

Count 1241 1241 1241 1241

Mean 215.799 92.170 26.223 .398

Std. 126.507 127.14 30.662 .419

Min. 18 0 -3 0.02

25% 128 26 4 0.16

50% 192 55 17 0.27

70% 275 110 38 0.47

Max. 933 1753 434 3.94

Table 6 Statistical description of the groundwater dataset of Vietnam

Metrics PH K TDS105 CO2-free CL

Count 2138 2138 2138 2138 2138

Mean 6.974649 12.196974 1239.541553 51.047629 554.431787

Std. 0.680514 25.786524 2505.418750 63.327026 1448.927194

Min. 2.530000 0.080000 43.000000 0.000000 4.430000

25% 6.620000 2.100000 251.000000 17.585000 22.000000

50% 7.070000 4.700000 460.500000 35.200000 60.270000

70% 7.330000 10.000000 1110.250000 63.800000 449.332500

Max. 8.650000 305.000000 25901.000000 1573.000000 14623.130000

Table 7 Statistical description of the groundwater dataset of Vietnam (continue)

Metrics Na CO2-free So4 Mg2

Count 2138 2138 2138 2138

Mean 319.902713 319.902713 33.693891 51.826906

Std. 824.533900 63.327026 114.156348 81.516255

Min. 0.800000 0.000000 0.000000 0.000000

25% 22.825000 17.585000 0.000000 12.162427

50% 52.600000 35.200000 4.800000 27.969214

70% 251.750000 63.800000 19.210000 55.933573

Max. 8200.000000 1573.000000 1218.000000 981.920000
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Table 8 Statistical description of the groundwater dataset of Vietnam (continue)

Metrics NO3- HCO3- HP(CaCO3)

Count 2138 2138 2138

Mean 0.3849119 353.486333 393.290115

Std. 1.750676 309.806085 679.036660

Min. 0.000000 0.000000 0.000000

25% 0.000000 140.350000 73.125000

50% 0.000000 271.540000 168.150000

70% 0.020000 475.960000 380.000000

Max. 44.800000 1742.120000 6445.000000

analysis. Further, since most of the Carbonate values are
zero, any non-zero value found in the sample dataset is
treated as an outlier.

Data cleansing and outlier detection in Odisha and Vietnam
Dataset

The abnormal or outlier data points are removed by follow-
ing a boxplot analysis. We set the max threshold as per the
drinkability standards by the Government of India and stan-
dards set by the Vietnam authorities. Here we can observe
in Fig. 4 using a boxplot that there are some readings of Flu-
oride and pH which exceed the general margin by a huge
amount, in our case it is a natural occurrence that can cause
some serious problems to the health of a person, a simi-
lar analysis was done for some other parameters as well
while in Fig. 5, shows the number of outlier data point in
Vietnam dataset are very few and not far from threshold
values.

Correlation analysis in Odisha and Vietnam Dataset

Correlation analysis finds chemicals that depend on each
other, which is needed to predict the existence of a chemical
component if data is missing or changes suddenly. Tables
9 and 10 displays the corelation analysis parameters used
in Odisha and Vietnam. We use Pearson Correlation.
The degree of association or correlation and the type
of relationship (Positive or Negative Correlation) help
predict the presence/absence of interdependent chemicals.
Figures 6 and 7 show correlation analysis results.

The following observations are made from the analysis
Odisha dataset. (i) Calcium and Magnesium are correlated
to TH (Total Hardness) - It is because TH is a measurement
of calcium, magnesium and chloride. As hardness is caused
due to chlorides of magnesium and calcium, our body needs
both Ca and Mg to remain healthy.

(ii) Sodium and Magnesium are correlated to Chloride
- From this, we can conclude that generally, in the water,

Fig. 4 Outlier Detection in the
groundwater dataset Odisha
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Fig. 5 Outlier Detection in the
groundwater dataset Vietnam

Table 9 Observation from co-relation analysis of different water parameters Odisha

Co-relation pH EC TDS TH Alkalinity

pH 1.000000 0.151216 0.16141 0.107877 0.298009

EC 0.151216 1.000000 0.985947 0.85203 0.676578

TDS 0.16141 0.985947 1.000000 0.826257 0.676252

TH 0.107877 0.85203 0.826257 1.000000 0.512589

Alkalinity 0.298009 0.676578 0.676252 0.512589 1.000000

Calcium 0.049762 0.650262 0.641328 0.796832 0.335106

Magnesium 0.123624 0.789482 0.757618 0.901382 0.515389

is-drinkable. -0.177312 -0.618706 -0.610951 -0.538213 -0.655714

WQI 0.40007 0.580675 0.600764 0.377814 0.640992

WQC 0.445067 0.568321 0.578188 0.418977 0.651174

Table 10 Observation from co-relation analysis of different water parameters Vietnam

Co-relation Na Mg2 Fe3 Fe2 Cl

Na 1.000000 0.926813 -0.065447 0.04619 0.99208

Mg2 0.926813 1.000000 -0.068776 0.061315 0.93432

Fe3 -0.065447 -0.068776 1.000000 0.065451 -0.05983

Fe2 0.04619 0.061315 0.065451 1.000000 0.077844

Cl 0.99208 0.93432 -0.05983 0.077844 1.000000

S04 0.331313 0.455828 0.02015 -0.008358 0.306298

pH 0.058535 0.056621 -0.153673 -0.493187 0.022139

is-drinkable. -0.250264 -0.352268 0.000378 -0.088832 -0.253682

WQI 0.889289 0.929837 0.013497 0.291981 0.902264

1710



Earth Science Informatics (2023) 16:1701–1725 

Fig. 6 Odisha co-relation
analysis of WQI with all other
water parameters

we have Sodium and Magnesium as Sodium Chloride
and Magnesium Chloride. Both these salts are essential
requirements for our body.

While the following observation was observed on the
Vietnam dataset. There were strong correlations (a total of
17) between the pair of feature variables. After the bi-variate
analysis, we dropped one of the features against each of the
strong correlation matrices.

(i) Sodium and Magnesium are correlated to Chloride
- From this, we can conclude that generally, in the water,
we have Sodium and Magnesium as Sodium Chloride
and Magnesium Chloride. Both these salts are essential
requirements for our body Tables 16 and 17.

It is observed from Fig. 8 that all parameters are
positively correlated with WQI, and Potassium shows the
highest correlation with WQI.

Data pre-processing

It is essential to ensure data quality that should be
checked before applying AI-learning algorithms. Normal-
ization technique is applied to change the values of numeric
columns and to utilize a common scale without losing infor-
mation and distorting differences in the ranges of values.
– Min-max scaler: It is applied to scale the value

within [0,1] and to compress all the inliers in the
narrow range [0, 0.005]. In the presence of outliers,
Standard Scaler does not guarantee balanced feature
scales due to the influence of the outliers while
computing the empirical mean and standard deviation.
This leads to shrinkage in the range of the feature
values.

Xsc = X − Xmin

Xmax − Xmin

(8)

Fig. 7 Vietnam co-relation
analysis of WQI with all other
water parameters
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Fig. 8 Loss vs Accuracy for the Vietnam dataset

To deal with this matter, feature-wise normalization
using as Min-Max Scaling as given in equation(7) is used
before model-fitting.

Usingmachine learningmodels and performance
evaluation

This section briefly describes the background of some state-
of-the-art machine learning models which are applied for
predicting water-quality classes based on drinkability. The
models are then evaluated by using standard performance
metrics.

The Models Hyperparameters and model training. Once
data are preprocessed, we define the classifier for a given
algorithm such as XGBoost, and then we fit and transform
the classifier with the input trained data. We build the
model using the classifier. We train the model using the
train component of the data. Once the model is successfully
trained, we evaluate the model’s performance using the
test component of the data. Hyperparameters of the applied
models are used to build the model specific to the algorithm.
Most of the cases, these Hyperparameters are used by
default only.

The models are then evaluated by using standard
performance metrics described in the hyperparameter table
of our model in Table 11.

Models background

Logistic regression It is a classification algorithm based on
supervised learning. It uses the sigmoid function or logit
function. It fits the data into a logit function, which fits the
line into a curve between 0 and 1. The line acts like an
asymptotic line for the sigmoid curve. This model is mostly
used for binary classification problems. But, to deal with
multiple classes in our problem, a variant of this model is
used, which is known as multinomial logistic regression.
This model variant is followed in (Theyazn et al. 2020) to
deal with multiple classes. The most important application
of LR is to estimate the probability of the occurrence
of an event, given information about predictors that may
influence the outcome. (Hosmer and Lemeshow 1989), and
(George and Meshack 2019), LRMs are distinguished from
ordinary linear regression models as a class of generalized
linear models by the range of their predicted values, the
assumption of the variance of the predicted response, and
the distribution of their prediction errors.

K-Nearest Neighbors K-Nearest Neighbors (K-NN) is a
supervised classifier and non-parametric in nature. (Hmoud
Al-Adhaileh and Waselallah Alsaade 2021) It uses the
notion of data point proximity using distance computation
to create a grouping of similar data points. Though it can
be used both for classification and regression, it is mostly
used as a classifier. In our case, Euclidean distance is used
for determining the closeness of data points to different
centroids. In case of a new point, it classifies it using
the majority vote of K of its neighbours. The important
and challenging step in the K-NN method is determining
the optimal K value. In our case, the optimal K value is
decided by plotting error Vs. K values as shown in Fig. 6.
The decided K value is 2 and 3 as it gives the minimum
error. In data science and machine learning, classification
is a crucial issue. The KNN is one of the oldest and most
accurate algorithms for pattern classification and regression
models; it’s easy to understand and implement for both
classification and regression problems; it’s ideal for non-
linear data because it makes no assumptions about the
underlying data; and it can naturally handle multi-class
cases and perform well with sufficient representative data.

Decision Tree It is a hierarchical classification and a
regression model in machine learning. By considering an
instance from the samples, it makes a traversal of the
tree and performs a comparison with important features
with some pre-determined branching statements. A most
important feature is selected as root, and subsequent levels
are generated based on splitting other features. (Tiyasha
et al. 2021) Decision trees are used to solve classification
problems and classify things according to their learning
characteristics. In addition, you can use them to solve
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Table 11 Hyperparameters of few models

Hyperparameter of XGboost

Model-xgb xgb.XGBClassifier

Objective binary: logistic, multi:softprob

Random-state 42

Colsample-bytree 0.8

Learning-rate 1

Max-depth 10

N-estimators 40

N-jobs 1

Min-samples-leaf 3

Min-samples-split 15

Scale-pos-weight 1

Hyperparameter of CNN Model

Metrics is equal sparse-categorical-crossentropy

The input shape 16

The activation relu and softmax

Epochs 150

Model.add(Desnse 60

Adam optimizer used to optimize network performance

Hyperparameter of SVM Model

Linear svm.SVC(kernel=linear)

Decision-function-shape ovo

Poly svm.SVC kernel=poly

Degree 3

Sig svm.SVCkernel=sigmoid

Hyperparameter of SVM Adaboost

AdaBoostClassifier

N-estimator 100

Base-estimator None

Learning-rate 1

Random-state 1

problems involving regression or forecast continuous results
based on unanticipated data.

Support Vector Machine (SVM) SVM is a support vector
machine and is widely used as a classifier. It is most
effective in high-dimensional space. Different variants of
SVM are available, linear SVM, polynomial SVM, RBF
SVM, and sigmoid SVM. All these variants are applied
to our problem, and the performance of the best variant
is presented. (Arabgol et al. 2015) In machine learning,
the significance of support vector machines (SVM) has
been demonstrated by the fact that SVM can handle
classification and regression on linear and non-linear data.
(Nur Najwa Mohd et al. 2022) Adopted an SVM to predict
the concentration and distribution of nitrate in groundwater.

AdaBoost AdaBoost is otherwise known as the adaptive
boosting method. It is an ensemble technique used in
machine learning. The adaptiveness lies in the reassignment Fig. 9 Average accuracy of prediction of water quality classes for all models
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Fig. 10 Vietnam Average
accuracy of prediction of water
quality classes for all models

of weights to each instance in case of incorrectly classified
instances. To reduce the bias, boosting is used.(Tu et al.
2017) AdaBoost has the benefits of being quick, easy to

operate, and simple to program. Except for the number of
iterations, no parameter adjustment is necessary. Without
prior knowledge of WeakLearn, it can be combined flexibly

Fig. 11 Precision comparison of different models for Water Quality Classes
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Fig. 12 Vietnam Precision
comparison of different models
for Water Quality Classes

Fig. 13 F1-Score comparison of
different models for Water
Quality Classes
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Fig. 14 F1-Score Vietnam
comparison of different models
for Water Quality Classes

with any method to seek a weak hypothesis. Given sufficient
data and a WeakLearn with only reliable moderate accuracy,

it can provide theoretical learning guarantees. (Alaa 2018)
Adaboost is less susceptible to overfitting because the input

Fig. 15 Recall comparison of
different models for Water
Quality Classes Odisha
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Table 12 Comparison of the average value of performance metrics of all models Odisha

Model Avg. Accuracy Avg. Precision Avg. F1-score Avg. Recall

Logistic Regression 0.7051 0.7200 0.6275 0.6025

K-NN 0.7509 0.7550 0.7050 0.6775

Polynomial SVM 0.9012 0.9175 0.9025 0.8925

Decision Tree 0.8989 0.8975 0.8900 0.8850

AdaBoost 0.5445 0.6375 0.4950 0.4650

XGBoost 0.9267 0.9225 0.9175 0.9200

parameters are not jointly optimized. Using Adaboost, the
accuracy of weak classifiers can be enhanced.

XGBoost XGBoost stands for Extreme Gradient Boost-
ing. It is an ensemble model based on the tree concept. It
is an enhancement of the gradient boosting framework by
applying approximation algorithms. It provides a parallel
tree-based framework for boosting. It applies to classifica-
tion, regression and ranking problems. (Ramraj et al. 2016)
XGBoost offers a few technical advantages over other gradi-
ent boosting approaches, including a more direct route to the
minimum error, converging more quickly with fewer steps,
and simplified calculations to improve speed and lower
compute costs. In XGBoost, individual trees are created
using multiple cores and data is organized to minimize the
lookup times. This decreased the training time of models,
which in turn increased the performance.

Convulutional neural network CNN CNNs have convo-
lutional, pooling, and fully-connected layers. Local connec-
tions, shared weights, pooling, and layers are fundamental
CNN applications. The fully-connected layers get their out-
puts. Backpropagation trains filter weights. (O’Shea and
Nas 2015) Adam optimizer is used to optimize network per-
formance. We utilized ReLU for the first and second layers
and Softmax for the third. ReLU is a nonlinear function
that outputs positive input directly and returns zero other-
wise. CNN is the most widely used DL model in computer
vision, image processing, speech recognition, natural lan-
guage processing, and anomaly detection for drinking water
using the BiLSTM ensemble technique(Chen et al. 2018).
Significant importance of the CNNs model, the model does

not require human supervision for the task of identifying
essential features. They are very accurate at image recogni-
tion and classification. Weight sharing is another significant
advantage of CNNs.

Performance metrics

The standard metrics used for evaluating the models are
briefly presented below.

- Accuracy: It is measured in terms of the number of
correct predictions done by the model over a total number
of observed values. The corresponding equation is given in
(9), where TP stands for true positive, TN stands for true
negative, FP stands for false positive, and FN stands for false
negative.

Accuracy = T P + T N

T P + T N + FP + FN
(9)

- Precision defines the ratio of correctly classified
instances of a given class to the total classified instances
of that particular class. It is calculated as given in
equation (10).

Precision = T P

T P + FP
(10)

- Recall is estimated as given in equation (11),

Recall = T P

T P + FN
(11)

Further, precision and recall alone can not reflect all
aspects of the accuracy. Thus, the harmonic mean, i.e., F1-

Table 13 Comparison of the average value of performance metrics of all models Vietnam

Model Avg. Accuracy Avg. Precision Avg. F1-score Avg. Recall

Logistic Regression 0.9672 0.5333 0.5517 0.5714
K-NN 0.9719 0.9854 0.9902 0.9950
Polynomial SVM 0.9766 0.9902 0.9926 0.9950
Decision Tree 0.9696 0.9901 0.9889 0.9877
AdaBoost 0.9696 0.9853 0.9877 0.9901
CNN 0.9766 0.9950 0.9913 0.9877
XGBoost 0.9813 0.9902 0.9938 0.9975
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score, is also computed as shown in equation (12). Its value
lies between 0 and 1. The higher value of the F1-score
reflects better accuracy.

F1 − score = 2 × Precision × Recall

P recision + Recall
(12)

Finally, a confusion matrix is also found, which is an N
× N matrix to evaluate the performance of a classification
model, where N is the number of target classes. In our
case, N is 4. The matrix compares the actual target value
with the predicted value of the model. Hence, it gives a
comprehensive view of the model’s performance.

Performance of CNN

The plot for the loss and accuracy as a function of epochs
for the Vietnam training and test sets to see how the network
has performed is depicted below. The average accuracy
achieved across classes is 99%.

Results summary & discussion

The performance of the above-applied models is summa-
rized w.r. to average accuracy in Figs. 9 and 10 shows the
average accuracy of classifying the samples according to
all four classes. It is observed that XGBoost performance
is optimal with an average accuracy of 92.67 % and 98%,
followed by polynomial SVM with 90.3% and 97%. The
average accuracy of the decision tree is 89.89% and 96%.
Logistic regression and k-NN have an average accuracy
of 70.51%, 75.09% and 907%, respectively. Poor perfor-
mance is observed on Adaboost, with an average accuracy
of 54.45% on the Odisha dataset. Using CNN on the Viet-
namese dataset, the average accuracy across classes is 97%,
while XGBoost performs optimally with an average accu-
racy of 98.13%, followed by polynomial SVM with 97.66%.
The decision tree’s average accuracy is 96.89%. The aver-
age accuracy of logistic regression and k-NN is 96.6% and
97.19%, respectively. In contrast to the poor performance

Fig. 16 Confusion matrices of some selected models for water quality classes of Odisha
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Fig. 17 Confusion matrices of
some selected models for water
quality classes of Vietnam
dataset

Table 14 Performance metrics of Logistic regression model

Water Class Precision F1-score Recall

Performance measures of Odisha groundwater data
Excellent 0.83 0.80 0.78
Good 0.61 0.70 0.84
Poor 0.50 0.31 0.23
Bad 0.94 0.70 0.56

Performance measures of Vietnam groundwater data
Good 0.71 0.80 0.61
Medium 0.80 0.78 0.83
Poor 0.98 0.99 0.99
Fair 0.53 0.55 0.57

Table 15 Performance metrics of K-NN model

Water Class Precision F1-score Recall

Performance measures of Odisha groundwater data
Excellent 0.79 0.85 0.92
Good 0.71 0.72 0.73
Poor 0.58 0.49 0.43
Bad 0.94 0.76 0.63

Performance measures of Vietnam groundwater data
Good 0.89 0.85 0.90
Medium 0.41 0.67 0.50
Poor 0.99 1 0.99
Fair 0.75 0.64 0.69
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Fig. 18 Mean error vs. K-value

Fig. 19 Mean error vs. K-value

Table 16 Performance metrics of Polynomial SVM

Water Class Precision F1-score Recall

Performance measures of Odisha groundwater data

Excellent 0.89 0.91 0.92

Good 0.91 0.90 0.90

Poor 0.87 0.90 0.94

Bad 1.00 0.90 0.81

Performance measures of Vietnam groundwater data

Good 0.78 0.90 0.92

Medium 0.4 0.5 0.66

Poor 0.99 0.99 0.99

Fair 0.84 0.81 0.78
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Table 17 Performance metrics of Decision Tree

Water Class Precision F1-score Recall

Performance measures of Odisha groundwater data

Excellent 0.94 0.94 0.93

Good 0.87 0.89 0.91

Poor 0.82 0.79 0.77

Bad 0.96 0.94 0.93

Performance measures of Vietnam groundwater data

Good 0.5 0.33 0.25

Medium 0.5 0.57 0.66

Poor 0.99 0.98 0.98

Fair 0.62 0.66 0.71

observed with Adaboost on the Odisha dataset, with an
average accuracy of 54.45%, the model performed better
on the Vietnamese dataset, with an average accuracy of
96.96%.

Figures 11 and 12 show the water quality class-wise
precision comparison of all applied models. It is observed
that for the considered dataset, XGBoost is able to classify
with the highest precision value for classes, Excellent and
Good, with an average precision of 0.9225 and 0.9813.
Similar performance is observed from polynomial SVM and
decision tree for all classes with an average precision of
0.9175 and 0.8975, respectively. The average precision for
Adaboost is 0.6375, which is the lowest among all models
comparison in Odisha. The other performance metrics,
including precision, F1-score and recall, are compared
class-wise.

The comparison of performance among six models by
Precision is shown in Fig. 11 and 12 below.

The comparison of performance among six models by
F1-Score is given in Figs. 13 and 14.

The Recall values obtained by applying these models are
compared in Fig. 15.

In Fig. 13, a similar process is followed as in Fig. 11, but
it represents the class-wise F1-score comparison among the
six used models. By averaging all four classes’ F1-score val-
ues, it is observed that XGBoost has an average F1-score of
0.9175% and 0.9938%, followed by 0.9025 and 0.9926 for
polynomial SVM while 0.8900 and 0.9889 for decision tree.
The average F1-score for AdaBoost is the lowest among all
applied models, with the value 0.4950 on the Odisha dataset
while 0.9877 is obtained for the Vietnam data. Figure 15
shows a recall value comparison between the applied mod-
els for all four classes. Similar observations are made on
average recall value. XGBoost performs optimally with an
average recall value of 0.9200 and 0.9975. In contrast,
Adaboost performs poorly on the sample dataset, with an
average recall value of 0.4650 on Odisha data and 0.9901 on
Vietnam data. The average value of all performance metrics
is shown in Tables 12 and 13. It is observed that XGBoost
and polynomial SVM have shown optimal performance.

Table 18 Performance metrics of AdaBoost

Water Class Precision F1-score Recall

Performance measures of Odisha groundwater data

Excellent 0.65 0.50 0.40

Good 0.51 0.63 0.82

Poor 0.39 0.35 0.31

Bad 1.00 0.50 0.33

Performance measures of Vietnam groundwater data

Good 0.5 0.33 0.25

Medium 0.5 0.57 0.66

Poor 0.99 0.98 0.98

Fair 0.62 0.66 0.71
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Further, the confusion matrices of some selected models
such as XgBoost, RBF SVM, polynomial SVM and decision
tree are presented in Figs. 16 and 17 to make a holistic
observation about the model performance. The results show
that the XgBOOST and Polynomial SVM model accurately
classified the water quality classes with an accuracy of 92%
and 90%, respectively, on Odisha data. In contrast, Vietnam
data has 97% and 98%, respectively.

Performance of logistic regression

Logistic regression worked with an accuracy of 70 %
on Odisha data and 96% on Vietnam data with other
performance metrics as shown in Table 14. The reason for
less accuracy may be caused by less correlation between the
parameters, which does not help well the Logistic regression
to classify.

Performance of K-Nearest Neighbor

The supervised KNN model is also applied for the
prediction of the water classes as shown in Table 15. To
find the best value of K, we plot the graph between Error
and K Value. Based on the value of K in which the error
is minimum, we select the best K value. We find 2,3 as the
best values of K which resulted in an accuracy of 75 %.
Other performance metrics are shown in Table 15 and on
the Vietnamese dataset to find the best value of K, and we
plot the graph between Error Rate and K Value. The error
rate is found to be minimum at K=10, thus resulting in an
accuracy of 97%. Error Rate with K is shown in Figs. 18
and 19.

The dependency of errors on the value of K is also given
in Figs. 18 and 19.

Table 19 Performance metrics of XGBoost

Water Class Precision F1-score Recall

Performance measures of Odisha groundwater data

Excellent 0.95 0.95 0.96

Good 0.92 0.92 0.92

Poor 0.86 0.86 0.86

Bad 0.96 0.94 0.94

Performance measures of Vietnam groundwater data

Good 0.96 0.95 0.96

Medium 0.50 0.67 1.00

Poor 0.99 0.99 0.99

Fair 0.69 0.67 0.64

Performance of support vector machine and its
variants

The following variants of SVM are applied and the best-
performing SVM variant’s result is summarized. Variants of
SVM
Linear SVM

This is applicable to linearly separable problems. We
performed linear SVM which resulted in an accuracy of
75.5%. on Odisha and 97% on Vietnam dataset

Polynomial SVM
Polynomial Kernel: The polynomial kernel features are

added with higher-order polynomials to analyze the data.
This mechanism is implemented by the SVC class and the
accuracy obtained in Odisha is 90.3 % and 97%. Table 16
show the metrics obtained by polynomial SVM model for
Odisha and Vietnam.

RBF SVM
The RBF kernel function is used in this case with two

hyper-parameters: (i) Gamma, and (ii) C (regularization
parameter). A lower C value is set at the cost of training
accuracy of on Odisha 77.9% and 97% on the Vietnam
dataset.

Sigmoid SVM
The sigmoid kernel function is used with an accuracy of

27.3%.
Among the four variants of SVM, the polynomial SVM

shows the maximum accuracy on Odisha (90 %) and 94%
on the Vietnam dataset. Table 13 gives results of other
performance measurements.

Performance of Decision Tree

The decision tree model gives the accuracy as 89%
on Odisha and 96% on the Vietnam dataset, and other
performance metrics are shown in Table 17.

Performance of AdaBoost

The Adaptive Boosting algorithm (Adaboost) is an ensem-
ble method of learning. The accuracy obtained on Odisha
is 54 % and 96% on the Vietnam dataset with other perfor-
mance metrics as shown in Table 18.

Performance of XGBoost

XGBoost is a hierarchy-based ensemble machine learning
algorithm. The accuracy obtained in Odisha is 92 % and
98% in Vietnam. Table 19 shows other performance metrics
obtained by applying this model.
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Conclusion

Groundwater quality monitoring is an important prerequi-
site for water management. In this article, a case study on
the state of Odisha, India and Vietnam’s northern delta is
conducted to predict the water quality for drinking purposes.
As a first step, exploratory data analysis is used to remove
non-contributing parameters, CO3−, to analyze the water
quality dataset, to detect outliers and to find out the correla-
tion between different water quality parameters. Further, a
set of representative supervised AI-learning algorithms are
used to compute WQI. The water metrics, including pH, EC,
Total Phenol, Harshness - permanent, TDS, Turbidity, Chlo-
ride, Magnesium, Sodium, Chloride, Alkalinity etc, were
used in this study. For the classification purpose, we have
used different models such as Logistic regression, KNN,
CNN, AdaBoost, XGBoost, SVM and its variants, and deci-
sion tree where XGBoost and Polynomial SVM worked
well with an accuracy of 92% and 98 %, respectively. The
average accuracy across classes for CNN on the Vietnam
data is 99%.

The present work uses 13 water quality parameters from
Odisha and 12 parameters from Vietnam which can be
further minimized, and a lesser number of parameters can be
used to predict the drinkability class without compromising
the accuracy. The scope of work can also be extended
to validate the performance of Machine Learning models
by applying them to similar datasets collected from other
countries. Further, the WQI ranges can be fuzzified, and a
fuzzy inference system can be developed for predicting the
water classes.
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