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Abstract
Geodetic techniques for surveying and rapid mapping need to be revisited due to the present progress on satellite, sensor, 
and geospatial technologies. Conventional surveying methods provide high level of accuracy but require significant human 
involvement in the field while GNSS (Global Navigation Satellite System) positioning method, provides unsatisfactory 
accuracy in urban or high vegetated areas due to the degraded GNSS signal coverage. In this study, an alternative surveying 
method is proposed which facilitates the process of characteristic point localization, using stereoscopic vision and at least 
one visual marker. At first, the camera system localizes itself and maps the study area using stereo SLAM (Simultaneous 
Localization and Mapping) algorithm while subsequently detects the visual markers (origin and targets), placed in the 
area. Afterwards, using a multi-view geometry method for the marker localization and an optimization algorithm for origin 
marker’s plane alignment, the system is able to export the coordinates of the markers and a point cloud (provided by SLAM) 
in a local coordinate system based on the origin marker’s pose and location. The study involves both terrestrial and unmanned 
aerial vehicle platforms that may carry the proposed equipment. An extensive set of indoor and outdoor, terrestrial and UAV 
experiments validates the methodology which succeeds a horizontal and vertical error in a level of 10 cm or better. To the 
best of our knowledge this study proposes the first surveying alternative which requires only a stereo camera and at least one 
visual marker in order to localize specific and arbitrary points in a centimeter level of accuracy. The proposed methodology, 
demonstrates that the use of low-cost equipment instead of the costly and complicated surveying equipment, may prove suf-
ficient to produce an accurate 3D map of the scene in an unknown environment.
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Introduction

Geospatial technology, based on higher geodesy, remote 
sensing and geographical information science has change 
the way that scientists, engineers and citizens study or inter-
act with their environment. This fact results in fundamental 
advances in various topics of geomatics such as location-
based applications, spatial data infrastructures, navigation or 

geodetic equipment. Nevertheless, conventional surveying, 
although is the most accurate and robust method of applied 
geodeysy, it remains a time consuming process with sig-
nificant human effort (Carrera-Hernández et al. 2020). On 
the other hand, GNSS (Global Navigation Satellite System) 
positioning method, provides unsatisfactory accuracy in 
urban or high vegetated areas due to the degraded GNSS 
signal coverage (Chiang et al. 2019).

Specifically, traditional and modern surveying methods 
are not always complementary, since in many cases, the use 
of total stations is mandatory and cannot be substituted with 
GNSS receivers, while in other cases traditional surveying is 
prohibitive. However, most surveying procedures including laser 
scanning involve costly equipment while the necessity of a cost-
effective surveying alternative in GNSS-degraded environments 
remains a critical unresolved issue (Trigkakis et al. 2020).

In the initial research of this study (Trigkakis et al. 2020), 
alternative solutions for positioning in GNSS-degraded areas 
are presented. Some approaches involve the improvement 
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of signal with respect to independent system analysis (Pani-
grahi et al. 2015) while other methodologies propose alter-
native techniques including angle approximation (Tang et al. 
2015), shadow matching (Urzua et al. 2017), multipath esti-
mations using 3D models (Zahran et al 2018) and statistical 
models (Romero-Ramirez et al. 2018; Partsinevelos et al. 
2020). Various studies make use of high-resolution aerial 
or terrestrial images and statistical / machine learning algo-
rithms in order to georeference, map and detect dynamic pat-
terns (Zahran et al. 2018; Jende et al. 2018), while the use of 
simultaneous localization and mapping (SLAM) algorithms 
combined with complementary methods from Photogram-
metry and / or GNSS / INS (Inertal Navigation System) for 
localization in GNSS denied environments is signified in the 
literature (Bobbe et al. 2017; Gabrlik 2015; Helgesen et al. 
2019). Under the same perspective, some studies use monoc-
ular SLAM approaches and attempt to solve the inherent 
problem of scale estimation by using barometers, altimeters 
and landmarks (Urzua et al. 2017; Kuroswiski et al. 2018) or 
by utilizing orientation (AHRS) and position sensors (GPS) 
(Munguía et al. 2016). In Lichao Xu et al. (2019), a localiza-
tion method for indoor environments is presented, which is 
able to recognize pre-defined markers with centimeter level 
of accuracy utilizing RGB-Depth ORB-SLAM2 algorithm.

Several studies have been conducted for accurate and / 
or rapid mapping with the use of mobile mapping systems 
(MMS), Photogrammetry and image processing techniques. 
In Kalacska et al. (2020), authors follow the approach of 
Structure-from-Motion (SfM) with multi-view stereo tech-
nique of Photogrammetry to produce ortho-images and 3D 
surfaces without the use of ground control points (GCPs) 
using UAVs equipped with GNSS receivers and optical sen-
sors. In Pinto and Matos (2020), densely 3D information in 
underwater environments is constructed through the fusion 
of multiple light stripe range (LSR) and photometric stereo 
(PS) methods outperforming the corresponding conventional 
methods in terms of accuracy while in Bañón et al. (2019), 
aerial images and ground control points (GCPs) are used 
in order to produce a 3D model in a coastal region through 
SfM. The characteristic points are measured using a GPS 
receiver for the validation of the methodology with a vertical 
RMSE error of 0.12 m. Tomaštík et al. (2017), evaluate the 
positional accuracy of forest rapid—mapping, using point 
cloud data created by UAV images and the Agisoft software 
with an accuracy level of 20 cm.

Various studies are referred to localization and detection 
methods employing MMS equipped with stereo sensors. 
Haque et al. (2020), propose an unmanned aerial system 
(UAS) which is able to find its location in a 3D CAD model 
of a pre-defined environment. The UAS with a stereo-depth 
camera, maps the area using OrbSLAM2 algorithm (Mur-
Artal and Tardós 2017), detects and extracts vector features 
with the aid of a convolutional neural network (CNN) and 

rectifies its location comparing the SLAM mapping area 
with the 3D CAD model. In Li et al. (2017), authors propose 
a pose estimation methodology based on mobile accelerom-
eters, visual markers and stereo vision fusion, achieving a 
centimeter level of accuracy while in (Vrba and Saska 2020; 
Vrba et al. 2019), a methodology that detects a micro aerial 
vehicle (MAV) is proposed, utilizing machine learning tech-
niques and an RGB-Stereo depth camera with an average 
RMS error of 2.86 m. In Zhang et al. (2019), a real-time 
obstacle avoidance method is developed with the aid of a 
stereo camera, a GNSS receiver and an embedded system 
mounted on a UAV in order to detect obstacles and follow an 
alternative, obstacle-free path. In Ma et al. (2021), authors 
utilize a UAV with two cameras and a GNSS receiver in 
order to detect and geographically localize insulators in 
power transmission lines based on the bounding box of the 
detected insulators. Moreover, stereo-depth cameras have 
been used in UAVs for autonomous landing in GNSS-denied 
environments, where a UAV is able to detect, locate and 
land on an unmanned ground vehicle (UGV) making use of 
information from a multi-camera system and deep learning 
algorithms (Yang et al. 2018; Animesh et al. 2019).

As referred above, the literature abounds of positioning 
methodologies for GNSS-denied areas, rapid mapping solu-
tions using photogrammetric techniques or localization sys-
tems based on SLAM and detection. Although most of the 
studies propose alternative localization solutions, none of 
them focus on surveying or traditional topography combined 
with computer vision and multi-view geometry algorithms.

In the monocular approach of the present methodology 
(Trigkakis et al. 2020) an implementation based on SLAM, 
point cloud and image processing techniques, localizes char-
acteristic points in a local coordinate system utilizing only a 
monocular camera attached on a UAV in combination with 
a visual marker. Although the main issue of the monocular 
setup approaches is the scale estimation (Sahoo et al. 2021), 
the proposed methodology controlled this issue by using the 
“Multiple convergence” method achieving an accuracy level 
of 50 cm (Trigkakis et al. 2020).

In this study, the methodology is further extended using 
a stereo camera instead of a single sensor and validated 
conducting various indoor and outdoor, UAV and terrestrial 
experiments. More specifically, the extended methodology 
takes advantage of a stereo camera and a visual marker, and 
is capable to map an unknown area, providing refined esti-
mations of point coordinates in a local 3D coordinate sys-
tem fusing stereo SLAM, image processing techniques and 
coordinate system transformations. The main objective of 
this study, is to propose a surveying or rapid-mapping alter-
native with an accuracy level of 10 cm or better, using con-
ventional components, while supporting the use of a UAV. 
Although the present study validates the methodology in 
terms of localization accuracy in a local coordinate system, 
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the use and connection with a global coordinate reference 
system such as WGS-84 is quite possible. The methodology 
can be employed in urban environments or dense-canopy 
areas where the GNSS signal is degraded, in emergency 
situations (Chuang 2018) where there is a need for damage 
assessment (Ampadu et al. 2020; Lassila 2018) and / or in 
search and rescue applications (Mishra et al. 2020; McRae 
et al. 2019). The proposed methodology is a cost-effective, 
rapid and efficient surveying solution where a few minutes of 
flying and processing are sufficient to map an area of inter-
est and extract the coordinates of the characteristic points 
without limitations related with steeply slope terrains or 
occluded areas.

To the best of our knowledge, there is no similar solution 
that makes use of a visual SLAM algorithm, a stereo camera 
and a visual marker in order to provide a 3D local coordi-
nate system in a 10 cm level of accuracy. Unlike the similar 
localization methods, the coordinate estimations were not 
extracted in a software-based reference system but in a ref-
erence system which is well-defined in the scene. The main 
contribution of the study are as follows:

•	 An alternative surveying solution was developed using 
stereo-SLAM, multi-view geometry and coordinate sys-
tem transformations.

•	 The methodology can be performed with minimum and 
cost-effective equipment since a stereo-camera and at 
least one visual marker are enough to map an unknown 
environment localizing characteristic points in a 3D local 
coordinate system.

•	 All coordinate estimations are transferred and exported 
in a local reference system which is well-defined in the 
scene, using the plane and the pose of a visual marker.

•	 The proposed solution provides an accuracy in a level 
of 10 cm or better, a significant improvement compared 
with the monocular approach.

In the following sections the core system, the equipment 
and the implementation are presented, while in Section 3 an 
extensive set of experiments and results validate the pre-
sented methodology and demonstrate that can be used as an 
alternative surveying solution. Sections 4 and 5 discuss the 
results and conclusions of the proposed methodology.

Materials and methods

The main goal of this study is the localization of visual 
markers and characteristic points of the scene, providing 
their local coordinates in 3D space under a high level of 
accuracy using minimal equipment. The presented meth-
odology maps the area of interest, by extracting the pose 
estimation of pre-defined visual markers and a point cloud 

in a local coordinate system using stereo vision. At first, the 
visual markers are placed in the scene; the origin marker 
defines the reference system of the coordinate estimations 
while the target markers are represent the characteristic 
points or features. Subsequently, a SLAM algorithm enables 
the stereo camera to map the desired area and localize itself 
in an unknown environment (Mur-Artal and Tardós 2017), 
while in combination with image and geometrical process-
ing, the present methodology estimates the coordinates of 
target markers and an arbitrary point cloud which approxi-
mates the structure of the environment, allowing additional 
measurements in the local coordinate system of the scene.

System architecture

The system architecture is presented in the following figure 
(Fig. 1).

As presented in Fig. 11, the processing levels in the pro-
cedure are separated in three stages. Initially, a video is cap-
tured by a stereo camera creating a bag file (http://​wiki.​ros.​
org/​Bags). After the recording process, scripts in Python 
language extract stereo imaging data using ROS (Robot 
Operating System, https://​www.​ros.​org/), obtain calibra-
tion information utilizing camera’s factory settings while 
separate and store the imaging data per sensor.

Subsequently, the SLAM uses ORB (Rublee et al. 2011) 
algorithm in order to extract the interest keypoints οf images 
and the local descriptors which aid the system to recognize 
the features from multiple angles and distances. The SLAM 
algorithm extracts the ORB features from both images (left 
and right) while for each ORB feature of the left image, 
detects the corresponding ORB feature of the right image. 
The coordinates of stereo interest keypoints are defined as 
(uL,υL, uR) (Mur-Artal and Tardós 2017) where the first two 
coordinates (uL,υL) are the horizontal and vertical coordi-
nate of the the left image while the third one is the horizontal 
coordinate of the right image. Afterwards, the system, using 
the internal parameters of the camera and the information of 
the extracted features, predicts the position and orientation 
of the camera (pose), while if it observes groups of features 
in multiple sequential frames, it stores a keyframe.

Based on the process above, the SLAM algorithm outputs 
multiple keyframes which are treated as landmarks since, in 
combination with the keypoints, are necessary for the local 
mapping, the loop closure detection and for the re-locali-
zation of the camera. For the optimization of the camera’s 
pose prediction, local mapping and loop closure detection, 
SLAM algorithm utilizes the bundle adjustment (BA) algo-
rithm using the Levenberg–Marquardt method (Mur-Artal 
and Tardós 2017).

After the end of the SLAM process, it outputs a point 
cloud and a trajectory of the scene while traditional 
image processing techniques such as adaptive and Otsu 
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thresholding (Otsu 1979) provide the identifications of tar-
get markers. Subsequently, through the multi-line conver-
gence method (Trigkakis et al. 2020), the locations of the 
markers are estimated while the pose of the origin marker 
is optimized with the utilization of plane alignment method 
(Trigkakis et al. 2020). Finally, the coordinate estimations 
are transferred in a local coordinate system, defined by 
the pose of the origin marker (see Section 2.2). After the 
end of the process, the resulted 3D scene with the point 
cloud, the camera trajectory and the marker estimations, are 
graphically presented through the visualization module (see 
Section 2.3).

The study’s methodology performs SLAM process-
ing based on ORB-SLAM2 (Mur-Artal and Tardós 2017) 
algorithm making use of two infrared sensors, while ArUco 
library (Romero-Ramirez et al. 2018; Garrido-Jurado et al. 
2016) is utilized to represent origin and target markers. 
ArUco markers, are synthetic square markers defined by a 
binary matrix (black and white) with a black border and a 
specific identifier (id), meaning that different markers are 
given different identities.

The ORB-SLAM2 algorithm was selected due to its 
robustness over several state-of-the-art SLAM alterna-
tive solutions such as LDSO (Gao et al. 2018), openVINS 
(Geneva et al. 2020), VINS-fusion (Qin et al. 2019), Maplab 
(Schneider et al. 2018), Basalt (Usenko et al. 2019), Kimera 
(Rosinol et al. 2020) and open-VSLAM (Sumikura et al. 
2019). In Sharafutdinov et al. (2021), authors compare the 
above SLAM alternatives using the ablsolute pose error 
metric in position and rotation and quite popular data-
sets in robotics such as EuRoC MAV (Burri et al. 2016), 

OpenLoris-Scene (Shi et al. 2020) and KITTI (Geiger et al. 
2012). The results prove that ORB-SLAM2 and openVS-
LAM achieved the highest overall accuracy. Moreover, 
in (Giubilato et al. 2018), authors compare stereo visual 
SLAM algorithms for planetary rovers proving the supe-
riority of ORB-SLAM2 against the S-PTAM (Pire et al. 
2015), LibVISO2 (Geiger et al. 2011), RTAB-MAP (Labb 
and Michaud 2013) and ZED-VO (the proprietary software 
by ZED development toolkit, https://​www.​stere​olabs.​com/​
devel​opers/​relea​se/).

ORB-SLAM2 in stereo mode provides a real-world scale 
that is given in meters due to the known camera baseline 
between the two sensors instead of the monocular solution 
in the previous version of this study (Trigkakis et al. 2020) 
where the scale was calculated mathematically.

Functionality

A core component of the methodology for the final coordi-
nate estimations and 3D scene reconstruction is the coordi-
nate system definition. The first coordinate system is defined 
and established by ORB-SLAM2 using the first frame of the 
captured video. The x and y axes in this initial coordinate sys-
tem, follow the right and top directions of the frame respec-
tively while the z axis is equivalent with the camera direction 
towards the landscape of the area. Subsequently, the calibra-
tion data and the camera pose (retrieved by camera trajectory 
information) along with the target marker coordinates which 
are calculated by OpenCV (https://​opencv.​org/) algorithms, 
extract the vectors of rotation and translation that are utilized 
in transformation of the initial reference system to the camera 

Fig. 1   System architecture of the proposed methodology

https://www.stereolabs.com/developers/release/
https://www.stereolabs.com/developers/release/
https://opencv.org/
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reference system. Finally, the reference system definition mod-
ule, calculates the translation vector and rotation matrix from 
the orientation and translation of the origin marker and defines 
the final reference system based on the origin marker’s pose. 
The x and y axes of the marker reference system follow the 
right and top direction of the marker while the z axis follows 
the zenith direction as depicted in Fig. 2 below.

Concerning the marker pose estimates, the Multiple Line 
Convergence (M.L.C.) method (Trigkakis et al. 2020) was 
implemented. M.L.C. is a method for the marker location 
definition that is based on the observation that the extended 
line segments which connect each pose estimate with cor-
responding camera position, converge in an area that cor-
responds to the location of the marker in the 3D scene. The 
method defines the optimized point that the extended line 
segments converge, using pseudo-inverse least squares opti-
mization (Samuel 2004; Eldén 1982). The method can be 
described by the following equation:

where p is the minimized distance of the theoretical conver-
gence point from all the lines while S + is the pseudo-inverse 
matrix of S which is defined in Eq. 2. C is defined in Eq. 3.

where each line is defined with “i”, “αi” is the starting point 
of line “i” and “ni” is the direction of line i while “I” is an 
identity matrix.
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Subsequently, Plane alignment method (P.A.) (Trigkakis 
et al. 2020) is performed to correct the translation and rota-
tion errors of the origin marker that defines the final coor-
dinate system of the scene. This step is important because 
any pose estimation error in the origin marker is transferred 
in every target marker and point cloud data of the scene. 
With the P.A. method, the pose and rotation of the origin 
marker is corrected leading to reliable measurements and 
an accurate definition of the origin coordinate system.

Visualization module

The visualization of the results is a requirement during the 
implementation, testing and experimentation phases of the 
methodology since visualizing the data in a 3D scene is 
important for tasks that require metric information from the 
corresponding real-world scene. Beyond the visualization 
capabilities that the module provides through the processing, 
it can be used in offline mode with a built-in user interface, 
allowing the navigation and interaction within the visual 
scene. More specifically, it is able to render the entire scene 
containing the marker estimations, the camera trajectory and 
the point cloud, while the vectors of the camera trajectory 
pose and the detection line segments of the camera to the 
markers’ center are also depicted in the 3D scene (Fig. 3).

From a more practical perspective, the user interface sup-
ports point selection through a cursor extracting the corre-
sponding coordinate estimations on the screen, while provid-
ing a succinct overview of the camera trajectory reproducing 
the path of the camera through animation.

Figure 3 depicts the user interface (UI) of the visualiza-
tion module in which a part of a 3d scene is visualized. All 
the features that are displayed in the figure are located in the 
local reference system based on the origin marker. The poses 
(translation and orientation) of the camera are depicted using 
the line segments (in green, Fig. 3) which follow the trajec-
tory of the camera while the marker detections of the camera 
are visualized as red lines which connect each camera posi-
tion with center of the detected marker. It’s worth mentioning 
that the center of markers is placed on the convergence point 
of the lines based on the multi-line convergence method. 
Finally, the user is able to select a point from the point cloud 
that are visualized in green color, exporting on the top-right 
of the screen the coordinates from the initial and final coor-
dinate system while if more points are selected, the module 
exports the corresponding mean values of the selected point.

Equipment setup

The main equipment components include a stereo camera, the 
aruco markers, a conventional computing system and a UAV. 
Concerning the stereo-camera, the Intel Realsense D435 

Fig. 2   Coordinate system transformation. During the mappping 
process, the proposed methodology uses the first recorded frame as 
defined by ORB-SLAM2 while after the export of coordinate estima-
tions, the system defines a local coordinate system using the pose of 
the origin marker. Image source: (Trigkakis et al. 2020)
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stereo-depth camera was used which includes two infrared 
sensors (left and right), a color sensor and an infrared projec-
tor for the depth information. In the present study, only the 
two infrared sensors were used. The resolution of the camera 
sensors is 1280 × 800, the sensor aspect ratio is 8:5, the focal 
length 1.93 mm, while the format is 10-bit RAW.

The UAV that was used in the present study is a custom-
made hexacopter (Fig. 4a). The frame as well as the propel-
lers, are made of carbon fiber while the Flight Control Unit 
(FCU) is a Pixhawk 2 Cube. The UAV is designed to be used 
with a companion embedded computer, a Raspberry Pi 4 
module with 8 GB of RAM running at an overclocked rate 
of 2.3 GHz (Fig. 4b). The embedded computer interfaces 
with both the FCU as well as the Realsense camera (Fig. 4c).

The origin and the target markers have a size of 
30 × 30 cm while they are installed in a custom-made adjust-
able stand. This stand is able to stabilize the marker pose in a 
horizontal reference plane with the aid of two stainless steel 
threaded rods and a leveler (Fig. 5a).

For validation purposes and ground-truth measure-
ments, a Topcon GPT 3000 geodetic total station was used 
with ± (3 mm + 2 ppm × D) mean square error (m.s.e) meas-
urement accuracy where D is the measured distance between 
the total station and the prism (Fig. 5b).

Results

To validate the present methodology an extended set of 
experiments was performed under different conditions relat-
ing to the study area, the arrangement of markers on the 
ground and the use or not of a UAV.

For the evaluation process, a geodetic total station was 
utilized in order to measure the reference coordinates of the 
visual markers and several characteristic points. The origin 
of the local coordinate system was defined using the center 
of the origin marker with the coordinates X = 0, Y = 0 and 
Z = 0. It’s worth mentioning that the videos were recorded 
at 90fps using 848 × 480 resolution.

Fig. 3   Multiple point selec-
tion inside the visualization 
module. A point is then shown 
through the UI at the top of 
the screen, in its original point 
cloud coordinates, as well as 
with coordinates expressed in 
a marker-determined coordi-
nate system. The same process 
applies to the selected points, by 
averaging the location and treat-
ing it as a new point, with both 
original and marker-determined 
coordinates

(a) (b) (c)

Raspberry Pi 4 module

Realsense D435 ste-

reo camera

Fig. 4   a The custom-made hexacopter UAV. b The Intel Realsense D435 stereo camera attached on the UAV. c The Raspberry Pi 4 module
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For the evaluation of the experiments the absolute error 
( ||Xmeas − Xest

|| ) between the measured coordinates of X, Y, 
Z and the corresponding estimations is used while the hori-
zontal error ( 

√
X2

err
+ Y2

err
 ) is also calculated. The experi-

ments below are separated in two main sections: terrestrial 
and UAV experiments.

In each experiment, a visual marker which represents the 
origin of local coordinate system and one or three mark-
ers which represent the targets are located to the scene and 
measured with the total station for ground truth information. 
Afterwards, the stereo camera, stand-alone or attached on 
the UAV is guided through a desired trajectory path in order 
to identify the markers and maps the surroundings.

The experiments were designed aiming to simulate a real-
case scenario of surveying a plot or a field in which tradi-
tional land surveying techniques and equipment are utilized. 
More specifically, the main field-work of a surveyor is to 
measure the coordinates of a few points that form the bor-
ders of the mapping area while in most of the cases, the path 
that the surveyor follows can be approached with straight, 
right-angle, step-shaped, pi-shpaed and squared-based paths.

Thus, in the present experimentation, the methodology was 
tested utilizing the commonly-used paths that referrred above 
while the visual markers which represent the characteristic points 
of the path were placed on locations aiming to form the shape 
of each path similarly to a real-case scenario. For instance in a 
surveyed area with square shape, the visual markers are placed in 
the four corners of the square while in a long straight path, two or 
more visual markers are located along the straignt path.

Terrestrial experiments

Straight path (indoor)

The first experiment was conducted in an indoor environ-
ment. Two markers were utilized for the origin and target 

marker respectively, in a distance of 3.5 m while the cam-
era followed a straight path as presented in Fig. 6a. It's 
worth mentioning that the target marker was placed  about 
70 cm higher than the origin marker. The results of this 
experiment are presented in Table 1.

As it’s presented in Table  1, the X error is below 
5.50 cm while Y error below 3 cm with the horizontal 
error in a level of 6 cm while the vertical error is below 
4 cm.

Right‑angle path (indoor)

This experiment was performed in an indoor environment. 
Three target markers and an origin marker were used, placed 
in a right-angle shape (Fig. 6b). The maximum distance 
between the origin and the farthest target marker is 7.20 m.

In this experiment, as it is observed in Table 2, a hori-
zontal error of 2.57 cm in target 1 with 0.019 cm of error in 
X axis and 2.569 cm in Y axis while in targets 2 and 3 the 
horizontal error reaches a level of 6 cm with about 5.50 cm 
of error in X axis and 5 cm in Y axis. The vertical error in 
target 1 is 3.10 cm while in the targets 2 and 3 the accuracy 
is decreased with an error of 9 cm.

Step‑shaped path (indoor)

In the following indoor experiment, three target markers 
and an origin marker were used placed in the same shape 
as in previous experiment but the camera followed a step-
shaped path (Fig. 6c). The maximum distance between the 
origin and the final target marker is 7.20 m.

In Table 3, the horizontal error of target 1 is about 2 cm 
with 0.85 cm of error in X axis and 1.9 cm in Y axis while 
in targets 2 and 3, an accuracy below 5.5 cm is observed. 
In target 2 the X and Y errors are about of 3 cm while tar-
get 3 reaches an error of 5 cm in X and 2.3 cm in Y. The 

Fig. 5   a The origin marker 
located on a custom-made 
adjustable stand which is able 
to stabilize the marker pose in a 
horizontal reference plane using 
two stainless steel threaded rods 
and a leveler. b The GTP-3000 
geodetic total station
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vertical error of target 1 is below 1 mm while in targets 2 
and 3 the error is about 5.50 cm and 7.50 cm respectively.

Pi‑shaped path (indoor)

This experiment was conducted in an outdoor environment 
in a sunny day. Three markers were used as targets which 
were placed in a pi-shaped path as depicted in Fig. 7. The 
maximum distance between the origin and the target 3 
marker was about 17.50 m.

In this outdoor experiment, as it is presented in Table 4, the 
horizontal error of target 1 is 1.70 cm with 0.08 cm of error in 
Y axis while target’s 2 horizontal error is below 3.5 cm with 
0.4 cm of error in X axis. In target 3 the error is increased in 
a level of 9 cm with 0.3 cm of error in X axis and 8.8 cm in Y 
axis. As observed, although the study area in this experiment 

was wider than the areas of indoor environments and the dis-
tance between the origin and the farthest marker was 10 m 
larger than the experiments 2 and 3, the horizontal accuracy 
was higher. This result is reasonable because in a sunny out-
door environment the sensors receive refined information 
because of illumination conditions of the scene, which results 
in more accurate mapping while the geometry of the outdoor 
scene such as buildings and trees aids the methodology to 
provide more accurate results for target markers. Concern-
ing the vertical error, the targets 1 and 2 succeed an error 
below 7.8 and 2.5 cm respectively while in target 3, the error 
is increased in a level of 25 cm. This difference of the vertical 
error between target 3 and targets 1—2 is due to the variable 
height of the camera between target 2 and target 3 because 
of different altitude levels of the ground. This is an interest-
ing result which determines that the camera height should be 
stable during the mapping process which is proved with the 
UAV-experiment results in the following section.

UAV experiments

Straight path

The first experiment with the custom-built UAV was con-
ducted in an outdoor environment without obstacles such as 

Fig. 6   Trajectory paths of 
indoor experiments a straight 
path b right angle path c step-
shaped path

Table 1   Estimations of straight path (indoor) experiment

Target marker X (cm) Y (cm) Z (cm)

Ground Truth -48.0 350.0 70.60
Estimations -42.71 347.29 66.80
Error 5.29 2.71 3.70
XY error 5.94  -

Table 2   Estimations of right-angle path (indoor) experiment

Target marker X (cm) Y (cm) Z (cm)

Target 1: Ground Truth 0 340.5 0
Target 1: Estimations -0.019 337.931 3.10
Target 1: Error 0.019 2.569 3.10
Target 1: XY error 2.57  -
Target 2: Ground truth -89.0 690.5 0
Target 2: Estimation -86.711 685.719 9.062
Target 2: Error 2.289 4.781 9.06
Target 2: XY Error 5.30
Target 3: Ground truth -212.50 690.50 12.0
Target 3: Estimation -209.212 685.49 20.783
Target 3: Error 3.288 5.01 8.783
Target 3: XY Error 5.99

Table 3   Estimations of step-shaped path (indoor) experiment

Target marker X (cm) Y (cm) Z (cm)

Target 1: Ground Truth 0 340.5 0
Target 1: Estimations 0.85 338.6 0.08
Target 1: Error 0.85 1.9 0.08
Target 1: XY error 2.08  -
Target 2: Ground truth -89.0 690.5 0
Target 2: Estimation -85.244 687.3 5.14
Target 2: Error 3.156 3.20 5.14
Target 2: XY Error 4.49  -
Target 3: Ground truth -212.50 690.50 12.0
Target 3: Estimation -207.662 688.275 19.31
Target 3: Error 4.838 2.225 7.31
Target 3: XY Error 5.33 - 
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trees or buildings. Two markers were utilized for the origin 
and target marker respectively in a distance of about 5 m 
while the UAV followed a straight path with a flight height 
of 3 m. (Fig. 8).

As presented in Table 5 the horizontal error is 7.15 with 
below 5.50 cm of error in X and Y axis while the vertical 
error is 1.15 cm. It’s worth to mention that the vertical error 

is refined compared with the non-UAV indoor and outdoor 
experiment due to stable height of the camera.

Square path

The last experiment was performed in the same area of the 
previous experiment (Fig. 8a) using the custom-made UAV. 
Four markers were used, one for the origin and three for the 
targets in a distance of about 5 m while the UAV followed a 
square path with a flight height of 3 m (Fig. 9). This experi-
ment was repeated 50 times under similar conditions and 
equipment setup in a period of a month in order to evalu-
ate the presented methodology using statistical metrics. For 
each target marker the absolute error between the coordinate 
estimations (X, Y, Z) and the corresponding ground truth 

Fig. 7   a Survey area b Right 
angle trajectory path

Table 4   Estimations of pi-shaped path (outdoor) experiment

Target marker X (cm) Y (cm) Z (cm)

Target 1: Ground truth 244.4 0 -6.0
Target 1: Estimation 242.7 0.08 1.8
Target 1: Error 1.7 0.08 7.8
Target 1: XY Error 1.70  -
Target 2: Ground truth 105.6 920.2 -4.0
Target 2: Estimation 105.2 916.8 -1.5
Target 2: Error 0.4 3.4 2.5
Target 2: XY Error 3.42  -
Target 3: Ground truth 621.7 1618.1 -24.0
Target 3: Estimation 621.4 1609.3 0.8
Target 3: Error 0.3 8.8 24.80
Target 3: XY Error 8.81  -

Fig. 8   a Survey area b Straight 
trajectory path

Table 5   Estimations of straight path (outdoor) experiment

Target marker X (cm) Y (cm) Z (cm)

Ground Truth 0.00 486.00 0.2
Estimations -4.74 480.65 -1.15
Error 4.74 5.35 1.35
XY error 7.15  -
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coordinates (measured with the total station) were calculated 
extracting the average, the RMSE, the standard deviation for 
each axis (X, Y and Z) and the horizontal error RMSE xy.

As presented in Table 6 which represents the results for 
target 1, the average of X error is below 5 cm with a standard 
deviation of 3 cm while in Y axis the average error is below 
8 cm with a standard deviation of 5 cm. The horizontal error 
is in a level of 10 cm with RMSE in 5.50 cm for the X axis 
and 9.50 cm for the Y axis. The results in Z axis succeed 
very high accuracy with 1.80 cm in average error, 1.23 cm 
standard deviation and a vertical error of 2.13 cm.

For target 2 as presented in Table 7, the average of X error 
is below 5.50 cm with a standard deviation of 2.20 cm while 
in Y axis the average error is below 8 cm with a standard 
deviation of 5 cm. The horizontal error is in a level of 10 cm 
with an RMSE in 6 cm for the X axis and 9.00 cm for the 
Y axis. The results in Z axis succeed an accuracy (vertical 
error) in a level of 3.50 cm with 3.40 cm in average and a 
standard deviation in a level of 1 cm.

Finally, for target 3 as presented in Table 8, the average 
of X error is below 9.00 cm with a standard deviation of 
1.70 cm while in Y axis the average error is below 7 cm with 
a standard deviation of 4 cm. The horizontal error is in a level 
of 11.50 cm with an RMSE in 8.90 cm for the X axis and 
7.60 cm for the Y axis. The results in Z axis succeed again 

high accuracy (vertical error) in a level of 4 cm with 3.20 cm 
in average and a standard deviation in a level of 2.50 cm.

Initial and proposed methodology comparison

For the initial (Trigkakis et al. 2020) and proposed meth-
odology comparison, an outdoor terrestrial experiment was 
conducted in multiple times maintaining the similar con-
ditions and experiment setup. The trajectory path was in 
a right-angle shape while three targets were placed on the 
scene (Fig. 10).

As presented in the Fig. 10, the distance between the 
starting point of the camera and the origin marker is larger 
than the previous experiments of the proposed methodolgy 
because the monocular SLAM requires more time to initial-
ize and start the mapping and tracking procedure.

The two approaches were tested in terms of distance 
estimations between the origin and target markers and the 
localization accuracy. The reference measurements were 
produced using a geodetic total station which provides an 
error about 1—2 cm.

The measured distances between the markers and the 
corresponding estimations (in average) of the initial and 
proposed methodology are presented in the following table:

As presented in Table 9, the distance estimations of the 
initial methodology is quite less accurate compared with the 
proposed methodology. More specifically, in target 1 the pro-
posed methodology provides an error in a level of 3.50 cm 
which is almost three times smaller than the corresponding 
error or the initial methodology. Moreover, in targets 2 and 
3, which are placed in a larger distance than the target 1, the 
proposed methodology maintains the error in an respectable 
level of about 6 cm while the initial methodology, provides 
an error in a level of 20 cm which is four times larger than 
the corresponding errors of the proposed methodology.

Fig. 9   Square trajectory path and camera direction

Table 6   Evaluation of square path (outdoor) experiment for target 1

Target 1 X (cm) Y (cm) Z (cm)

Average 4.50 7.96 1.80
Std. Deviation 2.93 4.89 1.23
RMSE 5.27 9.19 2.13
RMSE xy 10.59

Table 7   Evaluation of square path (outdoor) experiment for target 2

Target 2 X (cm) Y (cm) Z (cm)

Average 5.46 7.38 3.36
Std. Deviation 2.16 4.88 1.05
RMSE 5.81 8.66 3.50
RMSE xy 10.43

Table 8   Evaluation of square path (outdoor) experiment for target 3

Target 3 X (cm) Y (cm) Z (cm)

Average 8.75 6.64 3.17
Std. Deviation 1.64 3.99 2.20
RMSE 8.89 7.61 3.78
RMSE xy 11.70
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The target localization results (in average) of both 
approaches are presented in the following table:

As observed in the Table 10, while the accuracy of the 
proposed methodology in Z axis is slightly higher, the hori-
zontal accuracy is analogous with the accuracy in distance 
estimations. More specifically, the proposed methodology 
provides high accuracy in target 1 in a level of 3 cm which 
is quite close to the total station’s accuracy while the initial 
approach produces an error in a level of 8.50 cm. Moreover, 
in targets 2 and 3, the proposed methodology provides an 
error of about 6 and 7.50 cm respectively while the initial 
appoach localizes the targets with an error about 19.50 cm 
which four times higher than the proposed metdhology.

In short, the proposed methodology proved its superiority 
compared with the initial approach (Trigkakis et al. 2020) 
while its estimations in distances about 6 m or below are 
close to the accuracy of land surveying which is until now 
the most accurate and reliable method for point localization 
in applied Geodesy. Thus, the results of the proposed meth-
odology are considered as sufficient since the target localiza-
tion is povided using a software-based approach while the 
land surveying utilizes the mechanical parts of total station 
in order to measure distances and angles aiming to produce 
the corresponding target localization.

Validation of characteristic points

This experiment was performed in order to validate the 
coordinates of characteristic points from the extracted point 
cloud. Characteristic points at the sense of topography are 
points that compose significant geometric features in a sur-
veying area e.g. building corners, plot boundaries etc. The 
purpose of the experiment was to find the accuracy of five 
characteristic points in two sides of a building (Fig. 11). The 
first three points (point 1, point 2 and point 3) are building 
corners with about 1.5 m height from the ground while the 
final two points (point 4 and point 5) building corners in 
the ground. The characteristic points were measured with 
the total station in order to calculate the ground truth of the 
points. The results are presented in Table 11.

As presented in Table 11, the horizontal error in point 1, 
point 2, point 4 and point 5 is below 10 cm while the vertical 
error in point 1, point 3, point 4 and point 5 is below 5 cm. 
It’s worth to observed that point 4 have horizontal error 
0.50 cm and vertical error 1.50 cm. The points are mainly 
created due to intensive contrast and texture features in the 
scene in order to reconstruct the geometry of a 3D environ-
ment. Thus, points 4 and 5 which are defined in building 
corners on the ground, succeed refined results, compared 
to points 1, 2 and 3 which were defined + 1.50 m above the 
ground. Points 1 and 2, defined in building corners with 
intensive color contrast have greater horizontal accuracy 
than point 3, while the high vertical accuracy of point 3 
(0.71 cm) is due to the rotation of the camera direction in 
the horizontal plane (in order to follow the right angle shape 

Fig. 10   Outdoor expeirment with right-angle trajectory path

Table 9   Evaluation in distance estimations of the initial (I.M) and 
proposed (P.M) methodology

Target markers Distances (I.M) Distances (P.M)

Origin—Target 1 (Ground Truth) 340.5 340.5
Origin—Target 1 (Estimation) 348.98 337.19
Error (cm) 8.48 3.31
Origin -Target 2 (Ground Truth) 696.21 696.21
Origin -Target 2 (Estimation) 715.41 691.16
Error (cm) 19.20 5.05
Origin—Target 3 (Ground Truth) 722.46 722.46
Origin—Target 3 (Estimation) 742.39 715.94
Error 19.93 6.52

Table 10   Evaluation of target localization of the initial (I.M) and pro-
posed (P.M) methodology

(cm) Initial approach Proposed methodology

X Y error Z error X Y error Z error

Target 1 8.52 1.5 3.13 0.66
Target 2 19.22 6.5 5.85 5.86
Target 3 19.81 7.75 6.78 7.53
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of the trajectory, Fig. 11) allowing a wider stereo vision 
information for point 3.

Discussion

The proposed methodology encounters the issue of high 
accuracy mapping with the use of stereo vision. The meth-
odology estimates the marker and arbitrary point locations in 
3D space of an unknown environment using a visual marker 
and a stereo camera with or without a UAV. At first, the 
stereo camera is guided through a desired path, identifies 

the markers and maps the surroundings. In a second step, 
a local coordinate system is created for the scene with an 
origin defined by the initial marker that the camera comes 
across, while the coordinates of the target markers and the 
arbitrary points of the point cloud are calculated based on 
the origin marker. In order to evaluate the methodology, dif-
ferent sets of experiments were performed in terms of study 
area (indoor / outdoor), the use or not of a UAV, the number 
and location of markers, the trajectory paths and the point 
cloud validation, while in the last UAV experiment, a statis-
tical evaluation was conducted based on 50 separate records 
of the scene. Although the methodology’s accuracy is highly 
correlated with some factors that will be further mentioned, 
it achieved quite remarkable horizontal and vertical accuracy 
considering the minimal equipment used.

The experiments separated in two main categories: non-
UAV and UAV experiments. Concerning the non-UAV 
experiments, the maximum horizontal error is in a level of 
6 cm and the minimum error, in a level of 2 cm for indoor 
environment while in outdoor environment the maximum 
horizontal error is less than 9 cm and the minimum error 
less than 2 cm. It is observed that in non-UAV experiments, 
the horizontal error is linearly correlated with the distance 
between the target markers and the origin marker and the 
horizontal error is increasing in proportion with the distance 
(Table 12).

It’s worth to mention that the outdoor non-UAV experi-
ment succeeds higher horizontal accuracy than the indoor 
experiment. For instance, as referred in Table 12, the hori-
zontal error in target 2 of outdoor pi-shaped experiment is 
3.42 cm in a distance of 9.26 m from the origin while in 
the indoor experiments the error in target 2 is in a level of 
5.50 cm in a distance of 7 m. Moreover, the error in target 3 
of outdoor experiment is 8.81 cm in a distance of 17.33 m, 
only 3 cm higher than the corresponding errors of indoor 
experiments (5.99, 5.33 cm) which have a 10 m shorter dis-
tance (7.22 m). This difference of horizontal error in indoor 

Fig. 11   a A map with the 
characteristic measured points 
(p1, p2, p3, p4, p5) and path 
trajectory b The study area in 
which the characteristic points 
are depicted

Table 11   Evaluation of characteristic measured points

Points X (cm) Y (cm) Z (cm) Min Dist

Point 1: G. T 98.30 325.48 144.00 9.29
Closest point 102.72 317.55 142.84
Error 4.42 7.93 1.16
XY error 9.08  -
Point 2: G. T 97.18 451.63 150.0 13.90
Closest point 98.78 447.03 162.36
Error 1.60 4.60 12.36
XY error 4.87  -
Point 3: G. T 93.90 600.00 149.00 13.01
Closest point 102.06 589.58 148.29
Error 8.16 10.42 0.71
XY error 13.23  -
Point 4: G. T 953.85 613.26 -7.00 1.5802
Closest point 954.00 612.82 -8.51
Error 0.15 0.44 1.51
XY error 0.46  -
Point 5: G. T 1699.7 619.38 -10.00 8.64
Closest point 1698.75 626.35 -15.00
Error 0.95 6.97 5.00
XY error 7.03  -
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and outdoor experiments is due to the refined information 
that the sensors acquire in outdoor environments because 
of physical illumination while the geometry of the outdoor 
scene such as buildings and trees aids the methodology to 
provide more accurate results for target markers that are 
located close to features like a building.

Regarding the vertical error, the distance doesn’t seem to 
affect the results in general as presented in Table 13 below.

The main reason that decreases the vertical accuracy in 
non-UAV experiments is the variable height of the camera 
because of the physical vertical motion of the human body 
while walking and the different altitude levels of the ground. 
Thus, in indoor experiments where the only vertical motion of 
the camera is due to walking, the maximum vertical error is 
less than 9.50 cm and the minimum vertical error is less than 
1 cm. On the other hand, the combination of these two factors 
in outdoor environment is able to highly decrease the vertical 
accuracy. As observed in Table 11, while the vertical error of 
targets 1 and 2 is less than 8 cm the error of target 3 reaches in 
a level of 25 cm. The overall vertical accuracy can be refined if 
the camera height is stable as proved in the UAV-experiments. 
Also a gimbal system on the terrestrial, non-UAV measure-
ments could further compensate possible vertical errors.

In the UAV experiments, the stereo camera is attached 
on the custom-made UAV and interfaces with the embed-
ded computing system while the flight height is about 3 m. 
The first UAV experiment was performed in a straight path 
trajectory and succeeded horizontal error less than 7.50 cm 
and vertical error less than 1.5 cm. Even though from the 
first experiment it is evident that the horizontal accuracy is 
quite promising and the vertical error seems to be decreased 
compared with the non-UAV methodology, it was difficult 
to evaluate the UAV-enabled methodology because the wind 
during flight and the drifts of UAV from the trajectory path 
had significant impact to the results. Thus, a square path 
experiment was conducted in which the UAV performed 50 
flights in a time-step of several days in sunny weather and 

low wind speed conditions in order to evaluate the UAV-
enabled accuracy statistically. The square shape of the path 
was chosen because of its simplicity in order to interpret the 
results and simulate a real-world survey area.

As presented in Table 14, the horizontal error in all tar-
gets is less than 12 cm while as mentioned all RMSE errors 
in X and Y axes are less than 9 cm (Tables 6, 7 and 8). The 
standard deviation of X axis varies in a range of 1.50 to 3 cm 
while in Y axis, reaches a level of 5 cm (Table 15). This vari-
ability in horizontal error is highly correlated with the UAV 
drifts from the trajectory path during the flight.

Most of the flights from this experiment preserved a 
stable and accurate square trajectory path which produced 
refined results as observed in Tables 16, 17 and Fig. 12. 
The horizontal error in target 1 and target 3 is in a level of 
8 cm with a standard deviation less than 3.10 cm in X axis 
and less than 2.90 cm in Y axis, while in target 3 the error 
is in a level of 11 cm with a standard deviation 1.63 cm in 
X and 2.63 in Y axis.

In Fig. 12, is visualized the impact of the UAV drifts in 
the results. In target 3 the accrracy is about 1 cm higher 
while in targets 1 and 2, the error is decreased with 2 and 
3 cm respectively in the results without a drift. The figure 
above and Tables 12 and 14 determines that the weather 
conditions and more specifically the wind speed which 
is the most important factor for a stable flight are quite 
important for the effectiveness of the methodology. It’s 
worth to mention that the horizontal errors are very similar 
with the non-UAV experiments which prove that the flight 
height of 3–4 m has no impact to the results.

Table 12   Distance (from the 
origin to target marker) and 
horizontal error in non-UAV 
experiments

Experiment Right angle path (indoor) Step-shaped path (indoor Pi-shaped path (outdoor)

Distance Hor. error Distance Hor. error Distance Hor. error

Target 1 3.4 m 2.57 cm 3.40 m 2.08 cm 2.44 m 1.7 cm
Target 2 6.96 m 5.30 cm 6.96 m 4.49 cm 9.26 m 3.42 cm
Target 3 7.22 m 5.99 cm 7.22 cm 5.33 cm 17.33 m 8.81 cm

Table 13   Distance (from the 
origin to target marker) and 
vertical error in non-UAV 
experiments

Experiment Right angle path (indoor) Step-shaped path (indoor) Pi-shaped path (outdoor)

Distance Ver. error Distance Ver. error Distance Ver. error

Target 1 3.4 m 3.10 cm 3.40 m 0.08 cm 2.44 m 7.80 cm
Target 2 6.96 m 9.06 cm 6.96 m 5.14 cm 9.26 m 2.50 cm
Target 3 7.22 m 8.78 cm 7.22 cm 7.31 cm 17.33 m 24.80 cm

Table 14   RMSExy and RMSEz per target

Target 1 (cm) Target 2 (cm) Target 3 (cm)

RMSE xy RMSE z RMSE xy RMSE z RMSE xy RMSE z

10.59 2.13 10.43 3.50 11.70 3.78
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On the other hand, the vertical error in terms of RMSE 
derived from all the records (drift and without drift) is less 
than 2.20 cm in target 1 with standard deviation of 1.23 cm, 
while for targets 2 and 3 the vertical errors are less than 
3.80 cm with standard deviation of 1.05 and 2.20 respec-
tively. Comparing with non-UAV experiments the vertical 
error is significantly lower, which verifies that a stable height 
of the camera is highly recommended for the improvement 
of vertical accuracy.

Concerning the point cloud that the methodology exports, 
although it cannot be used for target estimations in specific 
points, the experiment in Section 3.3 proves that most of the 
characteristic points that were measured with the total sta-
tion were identified, generating a denser point cloud close to 
the measured points because of the color and depth contrast 

of features. Thus, the point cloud constructs the 3D envi-
ronment with a centimeter-level of accuracy which can be 
visualized and measured through the visualization module.

To sum up, as the results proved, the proposed methodol-
ogy is able to be used as a surveying alternative in outdoor 
or indoor environment with or without a UAV. More spe-
cifically, two real-case scenarios of mapping can be cov-
ered: the localization of points in an accessible urban or 
vegetated area and the mapping of a rocky or hard to walk 
area. Regarding the urban or vegetated area, the user is able 
to walk along the trajectory path with the stereo-camera in 
a steady motion, achieving a 3D error (XY and Z error) in 
a level of 6 cm in a distance of about 20 cm between the 
origin and target markers.. On the other hand, in a hard-to 
walk area, the user is able to place the visual markers in the 
desired locations and then, using a UAV with an attached 
stereo camera to map the area and estimate the target coor-
dinates, maintaining a steady motion for the camera. The 
3D error according to the evaluation above is in a level 
of 6.11 cm and 7 cm with and without drifts respectively. 
Thus, with or without the use of a UAV, the methodology 
covers the most real-life cases in terms of the environment 
variability.

Table 15   Standard deviation for 
X, Y and Z axes per target

Target 1 (cm) Target 2 (cm) Target 3 (cm)

Std D. X Std D. Y Std D. Z Std D. X Std D. Y Std D. Z Std D. X Std D. Y Std D. Z

2.93 4.89 1.23 2.1 4.88 1.05 1.64 3.99 2.20

Table 16   RMSExy and RMSEz per target for the flights without 
UAV drifts

Target 1 (cm) Target 2 (cm) Target 3 (cm)

RMSE xy RMSE z RMSE xy RMSE z RMSE xy RMSE z

7.51 2.43 8.21 3.45 10.60 4.47

Table 17   Standard deviation for 
X, Y and Z axes per target for 
the flights without UAV drifts

Target 1 (cm) Target 2 (cm) Target 3 (cm)

Std D. X Std D. Y Std D. Z Std D. X Std D. Y Std D. Z Std D. X Std D. Y Std D. Z

3.04 1.72 1.62 2.48 2.84 1.26 1.63 2.63 2.30

Fig. 12   Horizontal error in 
terms of RMSE of flights with 
drift and flights with no drift 
from trajectory path
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For the localization of the targets with high performance 
as presented in the results section, a certain way of mapping 
have to be followed in order the methodology to provide 
qualitative results. The camera has to follow a trajectory that 
begins a few meters before the origin marker and then pro-
ceed, approaching close and overtaking all the markers (ori-
gin and targets) maintaining a non-complicated path. This 
technique, provides a reasonable sequence of frames to the 
system, aiding the feature extraction process, camera pose 
estimations and consequently marker localization using the 
M.L.C and P.A methods. The sudden unreasonable camera 
movements or a complicated camera trajectory where the 
camera doesn’t approach the markers directly maintaining 
a steady direction, will significantly decrease the accuracy.

Moreover, the large distance (about 20  m or above) 
between the origin and target markers can decrease the accu-
racy of the methodology especially when the origin and the 
target markers are not colinear. However, the error of each 
target is dependent only on the location of the origin marker 
and not affected by the other markers. For instance, in the 
UAV-based experiment of the square path, the error of the 
target 1, target 2 and target 3 is not accumulated, instead each 
of these targets is associated only with the origin marker. 
Nevertheless, the increased distance between the origin and 
target markers can affect the accuracy.. This issue is a limita-
tion of the methodology which can be encountered with the 
integration of a life-long SLAM architecture (as referred by 
the computer vision community) which constitutes one of 
the main future goals of the proposed methodology.

Comparing with the monocular approach of this method-
ology (Trigkakis et al. 2020), the stereo approach succeeded 
highly improved results in a more complex experimentation. 
In Trigkakis et al. (2020) the RMSExy for the target marker 
is 41 cm and RMSEz is 6.4 cm while in the stereo approach 
the horizontal accuracy reaches a level of 11 cm and about 
3 cm of vertical accuracy. The accuracy in stereo approach 
is about four times better in terms of RMSExy and two times 
better in terms of RMSEz proving that the stereo approach 
produces more accurate and sophisticated results.

Conclusions

The present study, proposes an alternative mapping meth-
odology which focuses on surveying in indoor and outdoor 
environments. The main contribution of this study is that 
solves the issue of precise localization of visual points in 
a 10 cm of accuracy using only a stereo camera, a conven-
tional computing system and a visual marker while the use 
of a UAV is integrated and tested.

In other words, instead of similar computer vision sys-
tems, this study focuses on the localization with high accu-
racy using a coordinate system defined in the scene, based 

on the pose of a physical marker. This fact, makes the meth-
odology completely comparable with the traditional sur-
veying process in which the measurements are conducted 
using a geodetic total station and the coordinate system is 
defined in the scene, using the internal geometry of the total 
station on a reference point. However, while the traditional 
surveying requires significant human effort and a quite costly 
equipment, the proposed methodology is conducted with just 
a walk in a specific path of the scene, being able to provide 
the coordinate estimations in a few minutes.

Moreover, the two UAV and non-UAV approaches of the 
methodology provide flexibility to the users in terms of the 
area morphology, the type of environment and the desired 
accuracy. For instance, for the mapping of a steep and rocky 
survey area, the UAV approach is recommended, while 
for an indoor environment the non-UAV use can achieve 
respectable accuracy. For a surveying project which requires 
high vertical accuracy, the UAV approach will produce 
refined results while for the mapping of a plot, the non-UAV 
approach can achieve high horizontal accuracy.

Although the present study provides significant advan-
tages compared with the traditional surveying, it contains 
limitations that are still under research. Although the map-
ping process in the field is quite straightforward, is affected 
from factors such as the wind speed, the variable height of 
the camera, the illumination conditions and the distance 
from the origin which decrease the accuracy of the system. 
Also, even in an ideal scenario where the accuracy is able to 
decrease under the level of 10 cm, is still far away from the 
accuracy of traditional surveying which achieves an accu-
racy level of 1—2 cm.

However, knowing the factors that decrease the accuracy, 
is setting the basis for the future research of the optimization 
of the methodology. For instance, a smaller and more stable 
UAV could perform more accurate flights with even higher 
horizontal accuracy or a gimbal device could stabilize the 
camera during data collection. Moreover, the optimization 
of the SLAM algorithm in order to improve its robustness in 
different illumination conditions or to maintain its accuracy 
in larger distances, could increase even more the effective-
ness of this study.

Taking in to account all the above constraints, the main 
goal of this study for the future is to achieve accuracy in a 
level of 2–5 cm. This level of accuracy in combination with 
the minimum cost of equipment is possible to change the 
way of mainstream surveying is conducted and add a new 
simple and cost-effective surveying technique in terms of 
scientific methodology and equipment.
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