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Abstract

Uniaxial compressive strength (UCS) is a crucial mechanical parameter in the mining, construction, and petroleum industries.
However, determination of the UCS is very tough, expensive, time-consuming, and destructive, requires expert workers for
sample preparation, and cannot be determined in the field. As a result, prior researchers have employed different indirect
proxy tests to estimate the UCS indirectly. Among these indirect tests, determining density (p) is the cheapest, simplest,
non-destructive, and does not require sample preparation; also, p can easily be determined in the field. Therefore, the correla-
tion between UCS and p has been rigorously studied in this paper. A total of 800 data points from 26 previous studies were
incorporated and lithology based characteristic simple regression (SR) equations for six rock types (pyroclastic, sandstone,
shale, carbonate, plutonic and volcanite) have been proposed. UCS can easily be estimated using the proposed regression
equations for the six rock types, which will be helpful in geotechnical and geological engineering projects. The lithological
control on the correlation for each rock type has also been validated using principal component analysis (PCA) and descrip-
tive statistics. The obtained database was also used to classify the six rocks on the basis of UCS and p as per International
Association of Engineering Geologist (IAEG) classification. Soft computing method of artificial neural network (ANN) was
also used to estimate the UCS using two ANN models (ANN-1 and ANN-2). Finally, the estimated values of UCS from SR
and ANN models were analysed in 1:1 measured vs. estimated plot and statistically assessed.

Keywords Uniaxial compressive strength - Density - Simple regression - Principal component analysis - Descriptive
statistics - Artificial neural network

Introduction

UCS is the most important and significant strength
parameter, which is basically obligatory to determine in
any civil, mining, geotechnical or geological projects. It
is also crucial in slope mass or rock mass categorization
systems like Q-slope (Bar and Barton 2017), Rock Mass

Communicated by: H. Babaie

4 Kripamoy Sarkar
kripamoy @iitism.ac.in

Tabish Rahman
tabish.17dr000587 @agl.ism.ac.in

Department of Applied Geology, Indian Institute
of Technology (Indian School of Mines) Dhanbad, Dhanbad,
Jharkhand 826004, India

Rating (Bieniawski 1973), and Slope Mass Rating (Romana
1985).

A plethora of researchers have attempted to estimate the
UCS from indirect methods because the determination of
UCS using standard methods suggested by ISRM (1979) and
ASTM (2000) is very tough, time-consuming, destructive,
cannot be determined in the field, expensive and requires
expert handling. Indirect tests which have advantages over
the UCS are P-wave velocity (Vp), point load strength index
(PLSI), Schmidt hammer rebound number (R,,), Brazilian
tensile strength (BTS), and physical properties (p and poros-
ity) have been used in different predictive models to estimate
the UCS (Kahraman 2001, Chatterjee and Mukhopadhyay
2002; Yasar and Erdogan 2004; Sousa et al. 2005; Cobano-
glu and Celik 2008; Khandelwal and Singh 2009; Yagiz
2011; Sharma et al. 2017; Rahman et al. 2020, Rahman and
Sarkar 2021, 2022, 2023 etc.). Among these indirect meth-
ods, the determination of p is the easiest, quick, cheapest,
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non-destructive, can be determined in the field, and requires
no sample preparation.

The relationship between UCS and p has been thor-
oughly investigated in this work on the basis of lithology.
Six rock types, including Pyroclastic, Sandstone, Shale,
Carbonate, Plutonic, and Volcanite have been statistically
studied, which have been incorporated from 26 different
previous studies. The lithological control on the correla-
tions for different rock types have been evaluated using
SR. Two ANN models were also trained to estimate the
UCS using the p and rock type information for overall
dataset (ANN-1), and using p only as input parameter for
each rock type separately (ANN-2). Then the estimated
values of UCS using the models of SR and ANN were
obtained and were analysed with respect to the measured
values of UCS. The statistical significance and validation
of the proposed estimation models is of great importance.
Hence, the given models were assessed using different

statistical tools such as, mean absolute percentage error
(MAPE), root mean square error (RMSE), and correlation
coefficient (R) to validate the accuracy and strength of the
proposed models to estimate the UCS.

A number of researchers have used p and related param-
eters to estimate the UCS for multiple rock types at home
and abroad (Kahraman et al. 2000; Chatterjee and Mukho-
padhyay 2002; Karakus et al. 2005; Moradian and Behnia
2009 etc.) while on the other hand, some researchers have
studied this relationship based on the lithology (Tugrul and
Zarif 1999; Singh and Dubey 2000; Yasar and Erdogan
2004; Mishra and Basu 2013; Rahman et al. 2020; Rahman
and Sarkar 2021, 2022 etc.). Similarly, using supervised and
unsupervised learning, Rahman and Sarkar (2021) proposed
regression equations for 12 rock types between UCS and
V. The regressions to estimate UCS from p presented by
different researchers in earlier works are displayed in Fig. 1,
indicating that there is no universal regression that can be
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used to estimate UCS for diverse rock types based on lithol-
ogy. As a result, the current research is quite crucial.

Previous studies

A number of researchers have studied the relation-
ship between mechanical properties and p of the rocks
(Tugrul and Zarif 1999; Singh and Dubey 2000; Kahra-
man (2001); Chatterjee and Mukhopadhyay 2002; Mora-
dian and Behnia 2009; Anikoh and Olaleye 2013; Awang
and Naru 2015; Rahman and Sarkar 2021 etc.) (Table 1).
Some researchers have provided the dataset for UCS and
p but did not propose a correlation between these two
parameters. Therefore, all the 26 previous studies datasets

were analysed in bivariate regression analysis in Fig. 1.
Tugrul and Zarif (1999) collected 19 granitic rock sam-
ples from different parts of Turkey and correlated the
UCS with the dry and saturated unit weight, where they
suggested good R? values. Kahraman et al. (2000) used a
new drillability index to estimate the penetration rate of
rotary blast-hole drills, where they have provided differ-
ent physical and mechanical properties, including UCS
and p of 22 different rock types. Singh and Dubey (2000)
used eight coal measure sandstone samples to suggest
a correlation between UCS and p with an excellent R?
value of 0.96. Kahraman (2001) used 27 samples of coal
measure rocks and suggested an exponential correlation
to estimate UCS as a function of R, and p with an average
R? value of 0.78. Chatterjee and Mukhopadhyay (2002)

Table 1 Previous studies with their proposed regression equation, rock types, and database identifier

SI. No  References Equations Rock types Database
Identifier
1 Tugrul and Zarif (1999) UCS =57.72y, -1347 19 granitic rock samples T1
2 Kahraman et al. (2000) No equation 22 samples of different rock types T2
3 Singh and Dubey (2000) UCS =0.2078p!0853 8 samples of sandstone T3
4 Kahraman (2001) UCS =6.97 ¢0-0140R, 27 different rock samples T4
5 Chatterjee and Mukhopadhyay (2002) UCS =55.57p — 100.75 12 rock samples of K-G basin TS
UCS=3747p-63.11 12 rock samples of Cauvery basin T6
6 Yasar and Erdogan (2004) No equation 13 samples of carbonate rock T7
7 Karakus et al. (2005) No equation 9 samples of 4 different rocks T8
8 Agustawijaya (2007) No equation 12 samples of soft rocks T9
8 Moradian and Behnia (2009) UCS =142.47exp[-9560.57/pVp] 64 different rock samples T10
10 Sarkar et al. (2010) No equation 40 samples of 4 different rock types T11
11 Kurtulus et al. (2010) No equation 12 samples of Andesite rocks T12
12 Sarkar et al. (2012) No equation 94 samples of 13 rock types T13
13 Mishra and Basu (2013) UCS =3680In(p) — 3548 20 samples of granite T14
UCS =0.00000043¢57% 20 samples of schist T15
UCS=287.7p - 615.9 20 samples of sandstone T16
14 Anikoh and Olaleye (2013) UCS=16.075p — 4.3046 5 shale samples T17
15 Wyering et al. (2014) No equation 131 samples of hydrothermally altered rocks ~ T18
16 Majeed and Bakar (2016) No equation 46 samples of different rock types T19
17 Momeni et al. (2015) No equation 66 samples of limestone and granite T20
18 Awang and Naru (2015) UCS=133.14p — 290.3 29 samples of granite T21
UCS=198.11p —483.38 44 samples of limestone T22
19 Kurtulus et al. (2016) No equation 32 samples of limestones T23
20 Ince and Fener (2016) No equation 10 samples of pyroclastic rocks T24
21 Madhubabu et al. (2016) No equation 19 samples of carbonate rocks T25
22 Broome and Lee (2018) No equation 9 samples of granite T26
23 Gonzaélez et al. (2019) No equation 13 samples of limestone T27
24 Teymen and Mengii¢ (2020) No equation 93 samples of different rock types T28
25 Rahman et al. (2020) No equation 32 samples of shales T29
No equation 39 samples of sandstones T30
26 Rahman and Sarkar (2022) UCS =0.2303¢>0735° 42 samples of sandstone T31
UCS =149.44p—303.57 39 samples of shale T32
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suggested separate linear correlations between UCS and
p for K-G basin and Cauvery basin rocks of India with
excellent R? values of 0.92 and 0.96, respectively. Yasar
and Erdogan (2004) studied the carbonate rocks of Turkey
to suggest correlation equations between sound veloc-
ity and UCS, p and Young’s modulus (E). Karakus et al.
(2005) used index tests to estimate the elastic properties
of 9 rock samples by multiple regression modelling. With
a good R? value of 0.84, Agustawijaya (2007) developed a
linear correlation to estimate the UCS from p. Moradian
and Behnia (2009) performed basic regression analysis
to estimate the static elastic modulus using dynamic elas-
tic modulus. Sarkar et al. (2010) employed an artificial
neural network to estimate the strength characteristics
from 40 samples of four different rock types. Kurtulus
et al. (2010) collected 12 andesitic rock samples Cape
Kaskaval location of Turkey and suggested a correlation
between Vp and p. Sarkar et al. (2012) used 94 samples
of 13 rock types to develop regression models for estimat-
ing the UCS from V. They also proposed equations to
estimate the p from V. For sandstone, schist, and granite
rocks, Mishra and Basu (2013) proposed a correlation
equation between UCS and p. Based on the lithology,
their predicted regressions differ from one another. For
shale samples, Anikoh and Olaleye (2013) proposed a
linear regression equation. The mechanical and physical
properties of hydrothermally altered volcanic rocks from
New Zealand were investigated by Wyering et al. (2014).
Majeed and Bakar (2016) studied the dependence of CER-
CHAR Abrasivity Index on the petrography and mechani-
cal properties of 46 rock samples from Pakistan. Momeni
et al. (2015) used hybrid particle swarm optimisation
based artificial neural network to estimate the UCS from
4 indirect tests, including dry p. Awang and Naru (2015)
studied 29 samples of granite and 44 samples of lime-
stone and suggested linear regression equations between
UCS and p separately. Kurtulus et al. (2016) studied 32
samples of limestone and suggested regression equa-
tions between p and Vp, UCS and Vyp, etc. Ince and Fener
(2016) developed a predictive model for UCS using sev-
eral different parameters, including p for ten pyroclastic
rock samples. Madhubabu et al. (2016) trained an artifi-
cial neural network to estimate the UCS and elastic modu-
lus using five different parameters, including p. Broome
and Lee (2018) obtained results for different physical and
mechanical properties for granites, including UCS and p.
Gonzalez et al. (2019) employed regression analysis to
calculate the UCS of 13 saturated limestones based on Vy
and porosity, as well as suggesting p and S-wave velocity
values. Teymen and Mengiic (2020) estimated the UCS
using 93 samples of various rock types and performed a
comparitive investigation of different estimation mod-
els. The dynamic elastic characteristics and mechanical
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properties of coal measure rocks in India were connected
orrelated with the Vp by Rahman et al. (2020). For sand-
stone and shale samples individually, Rahman and Sarkar
(2022) proposed a correlation equation between UCS and
p in dry and saturated conditions.

Data processing

The data points collected by earlier researchers for various
rock types have been disintegrated and categorised into six
rock types based on lithology (Fig. 2). A total of 800 data
points were used in the analysis. With an R-value of 0.731,
a general overall trend was provided that included all rock
types. Equation 1 is an exponential regression equation that
was proposed.

UCS = 0.536¢!823% (D

The data points were categorised into six rock types after
data disintegration from prior investigations on the basis of
lithology (pyroclastic, sandstone, shale, carbonate, plutonic
and volcanite).

Result and discussion
Regression analysis

A basic regression analysis was used in this study to classify
six different rock types. On the basis of the best R-value, the
best fit curve was determined as linear (y =mx +c), expo-
nential (y =me*), or power (y =mx°). The independent vari-
able is x, the dependent variable is y, and the constant is c.
The many lithological groups discovered by data processing
are discussed below. For different correlations between UCS
and p, an overall regression equation has been proposed to
compare it with the lithology-based regression equations
with respect to strength and accuracy.

Pyroclastic

A total of three previous study datasets were analysed in
order to propose a general regression equation for pyroclas-
tic rocks, and an exponential regression equation with an
excellent R-value of 0.86 was developed (Fig. 3a).

UCS = 0.1216¢>!11% 2
All the three previous studies' databases complement

each other. The obtained regression for the T18 database
is almost parallel and overlaps with the overall trend. The
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trendline obtained for the T24 database lies above and
parallel to the overall trend, while the trendline for the T28
database overlaps the overall trendline.

Sandstone

To produce a characteristic regression trendline for sand-
stone rocks, 11 previous study datasets were employed
(Fig. 3b). With an R-value of 0.87, an exponential regres-
sion equation was found.

UCS = 0.3007e! 9270 3)

The trendline obtained for databases T3, T14 and T28
are parallel to each other and steeper than the overall trend

plotted at higher p values, respectively. The trend lines
for databases T4. T5, T6, T9, T10, T13, T30 and T31 lie
almost parallel to the obtained overall trend.

Shale

An exponential overall trendline was obtained using four
previous studies databases with an excellent R-value of
0.89 (Fig. 3c).

UCS = 0.0333¢>05° 4)

The regression trendline for T29 and T32 databases
lies parallel and close to the overall regression trendline
obtained. Gentler gradient trend lines were obtained for
T13 and T17 databases than the overall trend.
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This rock group contains all the carbonate group rocks such
as limestone, marlstone, marble and dolostone. To propose a
characteristic regression to estimate the UCS from p for car-
bonate rocks, a total of 13 prior studies databases were used
(Fig. 3d). With a moderate R-value of 0.63, an exponential
overall regression trendline was formed.

UCS = 0.1896¢>12%5° %)

The derived overall regression trendline is gentler than
the trendlines for databases T10, T22, T27, and T27. The
T4 and T11 trendlines are nearly parallel to the general
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trendline, but they predict greater UCS values for corre-
sponding p values; the T25 trendline, on the other hand,
predicts lower UCS values for comparable p values. The
derived overall regression trendline is quite near to the T2,
T7, T8, T20, and T23 database trendlines.

Plutonic

Granite and other plutonic rocks from the T28 prior study
database, such as diorite, granodiorite, syenite, and gabbro,
make up this rock group. An exponential regression curve
with a moderate R-value of 0.70 was proposed using data
from seven prior research (Fig. 3e).
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UCS = 0.0046¢>7%41p (6)

The T1, T14, and T26 regression trendlines have a steeper
gradient than the overall regression curve, while T19, T20,
T21, and T28 regression trendlines have more gentle gradi-
ents than the overall trendline.

Volcanites

The rock group consists of different volcanic rocks such as
basalt, andesite, dacite, rhyolite etc. A power overall regres-
sion trendline has been proposed using five previous studies
databases with a good R-value of 0.80 (Fig. 3f).

UCS = 2.3131p*07 (7

All the previous studies' regression trendlines (T8, T13,
T18, and T28) follow the overall regression trendline except
the T12 database, which has a steeper regression trendline.

Comparative analysis

Table 2 and Fig. 4 illustrate all of the regression equations
and trendlines based on lithology that were obtained using
prior studies' databases. Figure 4 shows the lithological
control on the correlation between UCS and p. Each of the
rock types addressed in this paper has its own characteris-
tic regression trendline. This lithological control was also
observed between the correlation of UCS and V, by Rahman
and Sarkar (2021). Similar to Rahman and Sarkar (2021),
the principal component analysis (PCA) has been applied
to the present dataset. The PCA is an unsupervised machine
learning technique which is used to classify datasets. It is
used to simplify datasets or reduce its dimension or features
such that minimum number of features can explain the maxi-
mum amount of variance. Here, we have only two features,
i.e. UCS and p, and the PCA has reduced the dimension of
the dataset from 2 to 1 (Fig. 5). The linear results of PC1
have been plotted for each rock type, and it can be observed
that each rock type has been classified as per the lithology.
Hence, we can conclude from this analysis that there is a

Table 2 Lithology-based regression equations with their R values for
6 different rock types

Sr. no Rock type Overall trend equation R value
1 Pyroclastic UCS=0.1216¢>!1160 0.8581
2 Sandstone UCS =0.3007¢! %70 0.8662
3 Shale UCS =0.0333¢>05° 0.8928
4 Carbonate UCS =0.1896¢> 122 0.6280
5 Plutonic UCS =0.0046¢>7241p 0.6990
6 Volcanite UCS =2.3131p*097 0.7993
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Fig.4 Obtained regression curves for six rock types in the present
study

clear control of the lithology on the relationship between
UCS and p.

The regression for pyroclastic rocks exists in the very
low-p zone but estimates the highest UCS for the corre-
sponding p values. Sandstone and carbonate have similar
regression trendlines, however sandstone regression esti-
mates higher UCS values for the corresponding p values.
Ata p of 2.8 g/cc, their regression trendline converges. The
shale and plutonic rocks regressions have the highest gra-
dients and are parallel to one another. For similar values
of p, the regression for shale predicts greater UCS values
than the regression for plutonic rocks. Volcanite rocks have
a regression trendline that is parallel to that of carbonate
rocks, but it estimates substantially higher UCS values for
the corresponding p values. At a p of 2.8 g/cc, the volcanite
and plutonic trendlines converge and cross-cut each other.

Statistical evaluation

Descriptive statistics were used to deduce the lithologi-
cal control on the UCS and p of 6 different rock types. In
Tables 3 and 4 for UCS and p, respectively, the statistical
parameters such as mean, median, mode, standard deviation,
variance, skewness and kurtosis give us a clear idea that
each rock type which has been classified in this study have
its own characteristics.

In Fig. 6, the maximum frequency for UCS was observed
to be in the range of 50 to 60 MPa, while the maximum
frequency for p was observed to be in the range of 2.7 to
2.8 g/cc for all the data points used in this study. The mean
UCS for overall rock type was 61.43 MPa, and the mean
p was 2.43 g/cc (Tables 3 and 4, respectively). Pyroclastic
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Fig.5 The lithological clas- 250
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Table 3 Descriptive statistical Rock type  Statistical parameters
parameters for UCS of overall
and individual rock types Count Mean Median Mode  Standard  Sample Variance Kurtosis Skewness
Deviation
Overall 800 61.43  49.80 38.00 44.54 1983.96 1.28 1.23
Pyroclastic 46 2431 2594 2.10 16.73 279.94 0.46 0.68
Sandstone 179 3844 3148 48.00 28.92 836.63 4.08 1.74
Shale 86 49.19 4590 44.00 15.82 250.36 -0.93 0.23
Carbonate 295 55.84  51.30 38.00 35.16 1236.07 2.97 1.21
Plutonic 121 100.73  92.28 102.99 53.96 2911.97 -0.94 0.42
Volcanite 73 113.04 117.13  146.20 42.18 1779.40 -0.57 0.19
Table 4 Descriptive statistical Rock type Statistical parameters
parameters for p of overall and
individual rock types Count Mean  Median Mode  Standard Sample Kurtosis Skewness
Deviation ~ Variance
Overall 800 243 2.53 2.70 0.35 0.12 3.56 -1.62
Pyroclastic 46 1.59 1.72 1.75 0.27 0.07 -0.89 -0.69
Sandstone 179 2.28 2.35 2.25 0.37 0.14 2.87 -1.57
Shale 86 2.38 2.39 2.31 0.10 0.01 0.71 -0.46
Carbonate 295 2.56 2.63 2.70 0.24 0.06 1.90 -0.54
Plutonic 121 2.64 2.64 2.62 0.11 0.01 3.11 0.57
Volcanite 73 2.54 2.56 2.69 0.20 0.04 1.13 -0.70

rocks were observed to be the weakest, with a mean UCS
of 24.31 MPa, while volcanite rocks were observed to be
strongest, with a mean UCS of 113.04 MPa. Similarly,
pyroclastic rocks were also observed to be the least dense
rock with a mean p of 1.59 g/cc, while plutonic rocks were
observed to be the densest with a mean p of 2.64 g/cc.
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The frequency distribution plot for UCS was shown in
Fig. 7a for six different lithology groups. The distribution
was observed to be positively skewed, which is character-
istic of the UCS of the rocks. The main distinguishing cri-
teria for different rock types were observed to be the mean
and standard deviation (Table 3). Conversely, the frequency
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Fig.6 Overall frequency bar graph including all rock types for a UCS, and b p

distribution plot for p of the six lithology groups showed a
negatively skewed characteristic (Fig. 7b).

There are numerous classifications of rocks and rock
masses on the basis of different rock properties, such as
UCS, p, ¢, and Vp. The most significant and widely used
parameter is the UCS. The classification of rocks on the
basis of UCS has been suggested by many international
standard agencies and groups, such as the Geological Soci-
ety Engineering Group Working Party (1977), the Com-
mission of Engineering Geological Mapping of the IAEG
(1979), ISRM Commission on the Classification of Rocks
and Rock Masses (1981). The classification of rocks pro-
posed by IAEG on the basis of UCS and p has been given
in Tables 5 and 6. The IAEG (1979) classification scheme
was applied to the dataset of dry UCS and p obtained in
the present study for six rock types from 26 previous stud-
ies. It was observed from the box chart in Fig. 8, the mean
UCS of sandstone, shale, and pyroclastic rocks lie in the
‘moderately weak’ class, while the mean UCS of carbonate,
volcanite, and plutonic rocks are classified in the ‘strong’
class. The box chart for p in Fig. 9 showed that the mean p
of pyroclastic rock lies in the ‘very low’ p class. The mean
p of sandstone, volcanite, and shale lie in the ‘moderate’ p
class, while the mean p of carbonate and plutonic rocks lie
in the ‘high’ p class.

Artificial neural network (ANN)

Artificial neural network is a robust supervised machine
learning technique. This soft computing technique has been
used since 1940’s in different fields of science and technol-
ogy which mimics the functioning of a biological brain. The
method has also been used widely in the field of Engineering

Geology by many researchers (Ghabousi et al. 1991; Singh
et al. 2001; Sharma et al. 2017).

In this study, a two-layered feed-forward network with
hidden sigmoid neurons and linear output neurons was used
to estimate the UCS using the p and rock-type information.
The ANN-1 network consists of two neurons of input param-
eter (800 X 2), a single neuron of target parameter (800 X
1), and three hidden neurons (Fig. 10a), while the ANN-2
network consists of one neuron of input parameter (800 x
1), a single neuron of target parameter (800 X 1), and three
hidden neurons (Fig. 10b).

The Bayesian regularization (trainbr) algorithm was used
to train the network using the neural fitting application of
MATLAB, which is effective for such datasets (Rahman and
Sarkar 2021). The performance of a trained network was
obtained to be 715.71 at epoch 37 for the ANN-1 model. The
regression for training and testing of the ANN-1 model pro-
duced an R-value of > 0.8 (Fig. 11). The R-value for training,
testing and all the dataset, and the performance and epoch
of the ANN-2 models for each rock type has been given in
Table 7.

Assessment of the predictive performance
of the ANN and SR models

The relationship between the measured and estimated UCS
from ANN and SR models for six different rock types have
been shown in Fig. 12. The performance of the relationship
was assessed using the statistical tools such as, mean absolute
percentage error (MAPE), root mean square error (RMSE),
and correlation coefficient (R). The MAPE is the measure of
the accuracy of a predictive model which is defined by the
given Eq. 8. Generally, the MAPE value range from 0 to 100%,
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Table 6 TAEG (1979) classification on the basis of p

Class 1 2 3 4 5
Descrip-  Very low Low Moderate High Very high
tion
p (g/cc) <1.80 1.80 - 2.20- 2.55- >2.75
2.20 2.55 2.75

but it can exceed above 100% for high estimated values, indi-
cating low error in estimation with values closer to 0.

1 |Mi _Pil
MAPE = ;Zi:] { i X 100} (8)

The RMSE is used to measure the differences between
the measured and estimated values, which it calculated

using the following Eq. 9. The RMSE values range from 0
to oo, indicating low error in estimation with values closer
to 0.

n
RMSE = \/izizl (M, - P,)’ ©)
where M, is the measured i value, P, is the i predicted
value and 7 is the total number of iteration.

The precise metric used in a correlation analysis to
quantify the strength of the linear relationship between
two variables is the correlation coefficient (Eq. 10). The
values of R range from -1 to+ 1 indicating the strength and
the direction of the slope of the correlation. The R value
closer to 1 indicate a good correlation, while the R value
closer to O indicate a poor correlation.
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where cov is the covariance, X and Y are measured and esti-
mated values respectively, and o is the standard deviation.
The performance of the SR and ANN models was ana-
lyzed in a 1:1 measured vs estimated UCS scatter plot in
Fig. 11. The MAPE values for ANN models for all rock
types were observed to be greater than the MAPE values
obtained for the SR model. On the other hand, the RMSE
and R values were observed to be better for the ANN model
than the SR model. The RMSE values were better for ANN
models than the SR model in all rock types except pyro-
clastic and shale, and the R values were also better for the
ANN-1 model for all rock types except pyroclastic and sand-
stone (Table 8). The results of the analyses indicated that
the ANN model was much better in the fitting of the data-
set, while the SR model was better in predictive accuracy.
The inaccuracy in the prediction of UCS using the ANN-1
model can be explained by the lithological control on the
correlations. The simple neurons of the ANN-1 model were
unable to deduce the lithological control on the estima-
tion of UCS using the p and rock type data, whereas, in the
ANN-2 model, the accuracy was maximized. Since the SR
model was developed for each lithology separately, it shows
a greater accuracy in the prediction of the UCS. Hence, the
regression equations provided in this section are of great sig-
nificance and importance in the field of prediction of UCS.
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Fig. 11 Showing the obtained R-values for training, test, and all dataset, and the performance of the ANN-1 model to predict the UCS using the

p and rock type information
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Table 7 Showing the obtained R-values for training, test, and all data-
set, and the performance of the ANN-2 models to predict the UCS
using the p for each rock type

Rock type R-values Performance ~ Epoch

Training Test All

Conclusion

The study aimed to establish characteristic regression equa-
tions for six rock types between UCS and p. The lithologi-
cal control on the correlation between UCS and p has been
evaluated using simple regression analysis and descriptive
statistics.

The six rock types studied are pyroclastic, sandstone,
shale, carbonate, plutonic, and volcanite. It was observed
from the simple regression analysis that the regression for
each rock type is characteristic of that particular lithology.
Hence, six different regression equations were obtained for
each rock type with a better R-value (except carbonate and
plutonic rocks) than the R-value obtained for the overall
regression, including all the rock types. The PCA was also
used to classify the datasets on the basis of lithology, where

Pyroclastic 0.87 0.84 0.86 65.66 15
Sandstone 0.72 076  0.72 413.22 4
Shale 0.87 096  0.89 55.63 17
Carbonate 0.64 0.68  0.64 764.51 71
Plutonic 0.75 055 0.72 1312.26 34
Volcanite 0.70 085 0.73 812.45 47
Fig. 12 The comparison in a 10—
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Table 8 Statistical assessment

of the estimated values of UCS Statistical Parameters Rock Type

from p using ANN and SR Pyroclastic Sandstone Shale Volcanite Plutonic Carbonate

models for different rock types
MAPE-ANN-1 107.09 63.98 15.85 23.40 38.95 71.10
MAPE-ANN-2 49.79 42.83 12.62 19.90 35.58 69.69
MAPE-SR 43.42 35.17 12.39 19.96 38.03 62.86
RMSE-ANN-1 15.84 20.92 8.13 29.81 37.80 27.21
RMSE-ANN-2 8.43 20.67 7.20 28.70 37.36 26.96
RMSE-SR 8.43 20.94 7.33 31.58 49.01 35.11
R-ANN-1 0.49 0.68 0.89 0.71 0.71 0.64
R-ANN-2 0.86 0.69 0.89 0.73 0.72 0.64
R-SR 0.87 0.70 0.89 0.67 0.58 0.44

it was observed that the PC1 components show characteristic
trends on the basis of lithology.

Descriptive statistics were used as a robust tool to sim-
plify the datasets of UCS and p in a meaningful and under-
standable way. The statistical parameters of central tendency
(mean, median, and mode), standard deviation, sample vari-
ance, kurtosis, and skewness were used to classify the data-
sets into different rock types. The box plots for UCS and p
with reference to the IAEG classification of rocks have also
been shown to understand the statistical significance of the
dataset for different lithological groups.

An ANN model was also developed using the BR algo-
rithm to estimate the UCS using the p and rock types as
inputs. The models of SR and ANN were compared in a
1:1 scatter plot and statistically tested, it was observed that
the SR model was much better in terms of accuracy while
the ANN model showed greater strength of the correlation
between measured and estimated UCS values.
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