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Abstract
Uniaxial compressive strength (UCS) is a crucial mechanical parameter in the mining, construction, and petroleum industries. 
However, determination of the UCS is very tough, expensive, time-consuming, and destructive, requires expert workers for 
sample preparation, and cannot be determined in the field. As a result, prior researchers have employed different indirect 
proxy tests to estimate the UCS indirectly. Among these indirect tests, determining density (ρ) is the cheapest, simplest, 
non-destructive, and does not require sample preparation; also, ρ can easily be determined in the field. Therefore, the correla-
tion between UCS and ρ has been rigorously studied in this paper. A total of 800 data points from 26 previous studies were 
incorporated and lithology based characteristic simple regression (SR) equations for six rock types (pyroclastic, sandstone, 
shale, carbonate, plutonic and volcanite) have been proposed. UCS can easily be estimated using the proposed regression 
equations for the six rock types, which will be helpful in geotechnical and geological engineering projects. The lithological 
control on the correlation for each rock type has also been validated using principal component analysis (PCA) and descrip-
tive statistics. The obtained database was also used to classify the six rocks on the basis of UCS and ρ as per International 
Association of Engineering Geologist (IAEG) classification. Soft computing method of artificial neural network (ANN) was 
also used to estimate the UCS using two ANN models (ANN-1 and ANN-2). Finally, the estimated values of UCS from SR 
and ANN models were analysed in 1:1 measured vs. estimated plot and statistically assessed.

Keywords Uniaxial compressive strength · Density · Simple regression · Principal component analysis · Descriptive 
statistics · Artificial neural network

Introduction

UCS is the most important and significant strength 
parameter, which is basically obligatory to determine in 
any civil, mining, geotechnical or geological projects. It 
is also crucial in slope mass or rock mass categorization 
systems like Q-slope (Bar and Barton 2017), Rock Mass 

Rating (Bieniawski 1973), and Slope Mass Rating (Romana 
1985).

A plethora of researchers have attempted to estimate the 
UCS from indirect methods because the determination of 
UCS using standard methods suggested by ISRM (1979) and 
ASTM (2000) is very tough, time-consuming, destructive, 
cannot be determined in the field, expensive and requires 
expert handling. Indirect tests which have advantages over 
the UCS are P-wave velocity  (VP), point load strength index 
(PLSI), Schmidt hammer rebound number  (Rn), Brazilian 
tensile strength (BTS), and physical properties (ρ and poros-
ity) have been used in different predictive models to estimate 
the UCS (Kahraman 2001, Chatterjee and Mukhopadhyay 
2002; Yasar and Erdogan 2004; Sousa et al. 2005; Çobano-
glu and Çelik 2008; Khandelwal and Singh 2009; Yagiz 
2011; Sharma et al. 2017; Rahman et al. 2020, Rahman and 
Sarkar 2021, 2022, 2023 etc.). Among these indirect meth-
ods, the determination of ρ is the easiest, quick, cheapest, 
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non-destructive, can be determined in the field, and requires 
no sample preparation.

The relationship between UCS and ρ has been thor-
oughly investigated in this work on the basis of lithology. 
Six rock types, including Pyroclastic, Sandstone, Shale, 
Carbonate, Plutonic, and Volcanite have been statistically 
studied, which have been incorporated from 26 different 
previous studies. The lithological control on the correla-
tions for different rock types have been evaluated using 
SR. Two ANN models were also trained to estimate the 
UCS using the ρ and rock type information for overall 
dataset (ANN-1), and using ρ only as input parameter for 
each rock type separately (ANN-2). Then the estimated 
values of UCS using the models of SR and ANN were 
obtained and were analysed with respect to the measured 
values of UCS. The statistical significance and validation 
of the proposed estimation models is of great importance. 
Hence, the given models were assessed using different 

statistical tools such as, mean absolute percentage error 
(MAPE), root mean square error (RMSE), and correlation 
coefficient (R) to validate the accuracy and strength of the 
proposed models to estimate the UCS.

A number of researchers have used ρ and related param-
eters to estimate the UCS for multiple rock types at home 
and abroad (Kahraman et al. 2000; Chatterjee and Mukho-
padhyay 2002; Karakuş et al. 2005; Moradian and Behnia 
2009 etc.) while on the other hand, some researchers have 
studied this relationship based on the lithology (Tugrul and 
Zarif 1999; Singh and Dubey 2000; Yasar and Erdogan 
2004; Mishra and Basu 2013; Rahman et al. 2020; Rahman 
and Sarkar 2021, 2022 etc.). Similarly, using supervised and 
unsupervised learning, Rahman and Sarkar (2021) proposed 
regression equations for 12 rock types between UCS and 
 VP. The regressions to estimate UCS from ρ presented by 
different researchers in earlier works are displayed in Fig. 1, 
indicating that there is no universal regression that can be 

Fig. 1  Empirical regression 
curves between UCS and ρ 
obtained from previous studies 
databases
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used to estimate UCS for diverse rock types based on lithol-
ogy. As a result, the current research is quite crucial.

Previous studies

A number of researchers have studied the relation-
ship between mechanical properties and ρ of the rocks 
(Tugrul and Zarif 1999; Singh and Dubey 2000; Kahra-
man (2001); Chatterjee and Mukhopadhyay 2002; Mora-
dian and Behnia 2009; Anikoh and Olaleye 2013; Awang 
and Naru 2015; Rahman and Sarkar 2021 etc.) (Table 1). 
Some researchers have provided the dataset for UCS and 
ρ but did not propose a correlation between these two 
parameters. Therefore, all the 26 previous studies datasets 

were analysed in bivariate regression analysis in Fig. 1. 
Tugrul and Zarif (1999) collected 19 granitic rock sam-
ples from different parts of Turkey and correlated the 
UCS with the dry and saturated unit weight, where they 
suggested good  R2 values. Kahraman et al. (2000) used a 
new drillability index to estimate the penetration rate of 
rotary blast-hole drills, where they have provided differ-
ent physical and mechanical properties, including UCS 
and ρ of 22 different rock types. Singh and Dubey (2000) 
used eight coal measure sandstone samples to suggest 
a correlation between UCS and ρ with an excellent  R2 
value of 0.96. Kahraman (2001) used 27 samples of coal 
measure rocks and suggested an exponential correlation 
to estimate UCS as a function of  Rn and ρ with an average 
 R2 value of 0.78. Chatterjee and Mukhopadhyay (2002) 

Table 1  Previous studies with their proposed regression equation, rock types, and database identifier

Sl. No References Equations Rock types Database 
Identifier

1 Tugrul and Zarif (1999) UCS = 57.72ƴd -1347 19 granitic rock samples T1
2 Kahraman et al. (2000) No equation 22 samples of different rock types T2
3 Singh and Dubey (2000) UCS = 0.2078ρ10.853 8 samples of sandstone T3
4 Kahraman (2001) UCS = 6.97 e0.014�Rn 27 different rock samples T4
5 Chatterjee and Mukhopadhyay (2002) UCS = 55.57ρ – 100.75 12 rock samples of K-G basin T5

UCS = 37.47ρ – 63.11 12 rock samples of Cauvery basin T6
6 Yasar and Erdogan (2004) No equation 13 samples of carbonate rock T7
7 Karakuş et al. (2005) No equation 9 samples of 4 different rocks T8
8 Agustawijaya (2007) No equation 12 samples of soft rocks T9
8 Moradian and Behnia (2009) UCS = 142.47exp[-9560.57/ρVP] 64 different rock samples T10
10 Sarkar et al. (2010) No equation 40 samples of 4 different rock types T11
11 Kurtulus et al. (2010) No equation 12 samples of Andesite rocks T12
12 Sarkar et al. (2012) No equation 94 samples of 13 rock types T13
13 Mishra and Basu (2013) UCS = 3680ln(ρ) – 3548 20 samples of granite T14

UCS = 0.00000043e6.53ρ 20 samples of schist T15
UCS = 287.7ρ – 615.9 20 samples of sandstone T16

14 Anikoh and Olaleye (2013) UCS = 16.075ρ – 4.3046 5 shale samples T17
15 Wyering et al. (2014) No equation 131 samples of hydrothermally altered rocks T18
16 Majeed and Bakar (2016) No equation 46 samples of different rock types T19
17 Momeni et al. (2015) No equation 66 samples of limestone and granite T20
18 Awang and Naru (2015) UCS = 133.14ρ – 290.3 29 samples of granite T21

UCS = 198.11ρ – 483.38 44 samples of limestone T22
19 Kurtulus et al. (2016) No equation 32 samples of limestones T23
20 Ince and Fener (2016) No equation 10 samples of pyroclastic rocks T24
21 Madhubabu et al. (2016) No equation 19 samples of carbonate rocks T25
22 Broome and Lee (2018) No equation 9 samples of granite T26
23 González et al. (2019) No equation 13 samples of limestone T27
24 Teymen and Mengüç (2020) No equation 93 samples of different rock types T28
25 Rahman et al. (2020) No equation 32 samples of shales T29

No equation 39 samples of sandstones T30
26 Rahman and Sarkar (2022) UCS = 0.2303e2.0735ρ 42 samples of sandstone T31

UCS = 149.44ρ—303.57 39 samples of shale T32
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suggested separate linear correlations between UCS and 
ρ for K-G basin and Cauvery basin rocks of India with 
excellent  R2 values of 0.92 and 0.96, respectively. Yasar 
and Erdogan (2004) studied the carbonate rocks of Turkey 
to suggest correlation equations between sound veloc-
ity and UCS, ρ and Young’s modulus (E). Karakuş et al. 
(2005) used index tests to estimate the elastic properties 
of 9 rock samples by multiple regression modelling. With 
a good  R2 value of 0.84, Agustawijaya (2007) developed a 
linear correlation to estimate the UCS from ρ. Moradian 
and Behnia (2009) performed basic regression analysis 
to estimate the static elastic modulus using dynamic elas-
tic modulus. Sarkar et al. (2010) employed an artificial 
neural network to estimate the strength characteristics 
from 40 samples of four different rock types. Kurtulus 
et al. (2010) collected 12 andesitic rock samples Cape 
Kaskaval location of Turkey and suggested a correlation 
between  VP and ρ. Sarkar et al. (2012) used 94 samples 
of 13 rock types to develop regression models for estimat-
ing the UCS from  VP. They also proposed equations to 
estimate the ρ from  VP. For sandstone, schist, and granite 
rocks, Mishra and Basu (2013) proposed a correlation 
equation between UCS and ρ. Based on the lithology, 
their predicted regressions differ from one another. For 
shale samples, Anikoh and Olaleye (2013) proposed a 
linear regression equation. The mechanical and physical 
properties of hydrothermally altered volcanic rocks from 
New Zealand were investigated by Wyering et al. (2014). 
Majeed and Bakar (2016) studied the dependence of CER-
CHAR Abrasivity Index on the petrography and mechani-
cal properties of 46 rock samples from Pakistan. Momeni 
et al. (2015) used hybrid particle swarm optimisation 
based artificial neural network to estimate the UCS from 
4 indirect tests, including dry ρ. Awang and Naru (2015) 
studied 29 samples of granite and 44 samples of lime-
stone and suggested linear regression equations between 
UCS and ρ separately. Kurtulus et al. (2016) studied 32 
samples of limestone and suggested regression equa-
tions between ρ and  VP, UCS and  VP, etc. Ince and Fener 
(2016) developed a predictive model for UCS using sev-
eral different parameters, including ρ for ten pyroclastic 
rock samples. Madhubabu et al. (2016) trained an artifi-
cial neural network to estimate the UCS and elastic modu-
lus using five different parameters, including ρ. Broome 
and Lee (2018) obtained results for different physical and 
mechanical properties for granites, including UCS and ρ. 
González et al. (2019) employed regression analysis to 
calculate the UCS of 13 saturated limestones based on  VP 
and porosity, as well as suggesting ρ and S-wave velocity 
values. Teymen and Mengüç (2020) estimated the UCS 
using 93 samples of various rock types and performed a 
comparitive investigation of different estimation mod-
els. The dynamic elastic characteristics and mechanical 

properties of coal measure rocks in India were connected 
orrelated with the  VP by Rahman et al. (2020). For sand-
stone and shale samples individually, Rahman and Sarkar 
(2022) proposed a correlation equation between UCS and 
ρ in dry and saturated conditions.

Data processing

The data points collected by earlier researchers for various 
rock types have been disintegrated and categorised into six 
rock types based on lithology (Fig. 2). A total of 800 data 
points were used in the analysis. With an R-value of 0.731, 
a general overall trend was provided that included all rock 
types. Equation 1 is an exponential regression equation that 
was proposed.

The data points were categorised into six rock types after 
data disintegration from prior investigations on the basis of 
lithology (pyroclastic, sandstone, shale, carbonate, plutonic 
and volcanite).

Result and discussion

Regression analysis

A basic regression analysis was used in this study to classify 
six different rock types. On the basis of the best R-value, the 
best fit curve was determined as linear (y = mx + c), expo-
nential (y =  mex), or power (y =  mxc). The independent vari-
able is x, the dependent variable is y, and the constant is c. 
The many lithological groups discovered by data processing 
are discussed below. For different correlations between UCS 
and ρ, an overall regression equation has been proposed to 
compare it with the lithology-based regression equations 
with respect to strength and accuracy.

Pyroclastic

A total of three previous study datasets were analysed in 
order to propose a general regression equation for pyroclas-
tic rocks, and an exponential regression equation with an 
excellent R-value of 0.86 was developed (Fig. 3a).

All the three previous studies' databases complement 
each other. The obtained regression for the T18 database 
is almost parallel and overlaps with the overall trend. The 

(1)UCS = 0.536e1.8238ρ

(2)UCS = 0.1216e3.1116ρ
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trendline obtained for the T24 database lies above and 
parallel to the overall trend, while the trendline for the T28 
database overlaps the overall trendline.

Sandstone

To produce a characteristic regression trendline for sand-
stone rocks, 11 previous study datasets were employed 
(Fig. 3b). With an R-value of 0.87, an exponential regres-
sion equation was found.

The trendline obtained for databases T3, T14 and T28 
are parallel to each other and steeper than the overall trend 

(3)UCS = 0.3007e1.9927ρ

plotted at higher ρ values, respectively. The trend lines 
for databases T4. T5, T6, T9, T10, T13, T30 and T31 lie 
almost parallel to the obtained overall trend.

Shale

An exponential overall trendline was obtained using four 
previous studies databases with an excellent R-value of 
0.89 (Fig. 3c).

The regression trendline for T29 and T32 databases 
lies parallel and close to the overall regression trendline 
obtained. Gentler gradient trend lines were obtained for 
T13 and T17 databases than the overall trend.

(4)UCS = 0.0333e3.05ρ

Fig. 2  Lithology based clas-
sification of data-points with an 
overall regression trendline for 
the correlation between UCS 
and ρ
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Carbonate

This rock group contains all the carbonate group rocks such 
as limestone, marlstone, marble and dolostone. To propose a 
characteristic regression to estimate the UCS from ρ for car-
bonate rocks, a total of 13 prior studies databases were used 
(Fig. 3d). With a moderate R-value of 0.63, an exponential 
overall regression trendline was formed.

The derived overall regression trendline is gentler than 
the trendlines for databases T10, T22, T27, and T27. The 
T4 and T11 trendlines are nearly parallel to the general 

(5)UCS = 0.1896e2.1225ρ

trendline, but they predict greater UCS values for corre-
sponding ρ values; the T25 trendline, on the other hand, 
predicts lower UCS values for comparable ρ values. The 
derived overall regression trendline is quite near to the T2, 
T7, T8, T20, and T23 database trendlines.

Plutonic

Granite and other plutonic rocks from the T28 prior study 
database, such as diorite, granodiorite, syenite, and gabbro, 
make up this rock group. An exponential regression curve 
with a moderate R-value of 0.70 was proposed using data 
from seven prior research (Fig. 3e).

Fig. 3  Correlation between 
UCS and ρ for a pyroclastic, b 
sandstone, c shale, d carbonate, 
e plutonic, and f volcanite rocks
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The T1, T14, and T26 regression trendlines have a steeper 
gradient than the overall regression curve, while T19, T20, 
T21, and T28 regression trendlines have more gentle gradi-
ents than the overall trendline.

Volcanites

The rock group consists of different volcanic rocks such as 
basalt, andesite, dacite, rhyolite etc. A power overall regres-
sion trendline has been proposed using five previous studies 
databases with a good R-value of 0.80 (Fig. 3f).

All the previous studies' regression trendlines (T8, T13, 
T18, and T28) follow the overall regression trendline except 
the T12 database, which has a steeper regression trendline.

Comparative analysis

Table 2 and Fig. 4 illustrate all of the regression equations 
and trendlines based on lithology that were obtained using 
prior studies' databases. Figure 4 shows the lithological 
control on the correlation between UCS and ρ. Each of the 
rock types addressed in this paper has its own characteris-
tic regression trendline. This lithological control was also 
observed between the correlation of UCS and  VP by Rahman 
and Sarkar (2021). Similar to Rahman and Sarkar (2021), 
the principal component analysis (PCA) has been applied 
to the present dataset. The PCA is an unsupervised machine 
learning technique which is used to classify datasets. It is 
used to simplify datasets or reduce its dimension or features 
such that minimum number of features can explain the maxi-
mum amount of variance. Here, we have only two features, 
i.e. UCS and ρ, and the PCA has reduced the dimension of 
the dataset from 2 to 1 (Fig. 5). The linear results of PC1 
have been plotted for each rock type, and it can be observed 
that each rock type has been classified as per the lithology. 
Hence, we can conclude from this analysis that there is a 

(6)UCS = 0.0046e3.7241ρ

(7)UCS = 2.3131ρ4.0974

clear control of the lithology on the relationship between 
UCS and ρ.

The regression for pyroclastic rocks exists in the very 
low-ρ zone but estimates the highest UCS for the corre-
sponding ρ values. Sandstone and carbonate have similar 
regression trendlines, however sandstone regression esti-
mates higher UCS values for the corresponding ρ values. 
At a ρ of 2.8 g/cc, their regression trendline converges. The 
shale and plutonic rocks regressions have the highest gra-
dients and are parallel to one another. For similar values 
of ρ, the regression for shale predicts greater UCS values 
than the regression for plutonic rocks. Volcanite rocks have 
a regression trendline that is parallel to that of carbonate 
rocks, but it estimates substantially higher UCS values for 
the corresponding ρ values. At a ρ of 2.8 g/cc, the volcanite 
and plutonic trendlines converge and cross-cut each other.

Statistical evaluation

Descriptive statistics were used to deduce the lithologi-
cal control on the UCS and ρ of 6 different rock types. In 
Tables 3 and 4 for UCS and ρ, respectively, the statistical 
parameters such as mean, median, mode, standard deviation, 
variance, skewness and kurtosis give us a clear idea that 
each rock type which has been classified in this study have 
its own characteristics.

In Fig. 6, the maximum frequency for UCS was observed 
to be in the range of 50 to 60 MPa, while the maximum 
frequency for ρ was observed to be in the range of 2.7 to 
2.8 g/cc for all the data points used in this study. The mean 
UCS for overall rock type was 61.43 MPa, and the mean 
ρ was 2.43 g/cc (Tables 3 and 4, respectively). Pyroclastic 

Table 2  Lithology-based regression equations with their R values for 
6 different rock types

Sr. no Rock type Overall trend equation R value

1 Pyroclastic UCS = 0.1216e3.1116ρ 0.8581
2 Sandstone UCS = 0.3007e1.9927ρ 0.8662
3 Shale UCS = 0.0333e3.05ρ 0.8928
4 Carbonate UCS = 0.1896e2.1225ρ 0.6280
5 Plutonic UCS = 0.0046e3.7241ρ 0.6990
6 Volcanite UCS = 2.3131ρ4.0974 0.7993

Fig. 4  Obtained regression curves for six rock types in the present 
study



1396 Earth Science Informatics (2023) 16:1389–1403

1 3

rocks were observed to be the weakest, with a mean UCS 
of 24.31 MPa, while volcanite rocks were observed to be 
strongest, with a mean UCS of 113.04 MPa. Similarly, 
pyroclastic rocks were also observed to be the least dense 
rock with a mean ρ of 1.59 g/cc, while plutonic rocks were 
observed to be the densest with a mean ρ of 2.64 g/cc.

The frequency distribution plot for UCS was shown in 
Fig. 7a for six different lithology groups. The distribution 
was observed to be positively skewed, which is character-
istic of the UCS of the rocks. The main distinguishing cri-
teria for different rock types were observed to be the mean 
and standard deviation (Table 3). Conversely, the frequency 

Fig. 5  The lithological clas-
sification of the dataset using 
the PCA

Table 3  Descriptive statistical 
parameters for UCS of overall 
and individual rock types

Rock type Statistical parameters

Count Mean Median Mode Standard 
Deviation

Sample Variance Kurtosis Skewness

Overall 800 61.43 49.80 38.00 44.54 1983.96 1.28 1.23
Pyroclastic 46 24.31 25.94 2.10 16.73 279.94 0.46 0.68
Sandstone 179 38.44 31.48 48.00 28.92 836.63 4.08 1.74
Shale 86 49.19 45.90 44.00 15.82 250.36 -0.93 0.23
Carbonate 295 55.84 51.30 38.00 35.16 1236.07 2.97 1.21
Plutonic 121 100.73 92.28 102.99 53.96 2911.97 -0.94 0.42
Volcanite 73 113.04 117.13 146.20 42.18 1779.40 -0.57 0.19

Table 4  Descriptive statistical 
parameters for ρ of overall and 
individual rock types

Rock type Statistical parameters

Count Mean Median Mode Standard 
Deviation

Sample 
Variance

Kurtosis Skewness

Overall 800 2.43 2.53 2.70 0.35 0.12 3.56 -1.62
Pyroclastic 46 1.59 1.72 1.75 0.27 0.07 -0.89 -0.69
Sandstone 179 2.28 2.35 2.25 0.37 0.14 2.87 -1.57
Shale 86 2.38 2.39 2.31 0.10 0.01 0.71 -0.46
Carbonate 295 2.56 2.63 2.70 0.24 0.06 1.90 -0.54
Plutonic 121 2.64 2.64 2.62 0.11 0.01 3.11 0.57
Volcanite 73 2.54 2.56 2.69 0.20 0.04 1.13 -0.70



1397Earth Science Informatics (2023) 16:1389–1403 

1 3

distribution plot for ρ of the six lithology groups showed a 
negatively skewed characteristic (Fig. 7b).

There are numerous classifications of rocks and rock 
masses on the basis of different rock properties, such as 
UCS, ρ, φ, and  VP. The most significant and widely used 
parameter is the UCS. The classification of rocks on the 
basis of UCS has been suggested by many international 
standard agencies and groups, such as the Geological Soci-
ety Engineering Group Working Party (1977), the Com-
mission of Engineering Geological Mapping of the IAEG 
(1979), ISRM Commission on the Classification of Rocks 
and Rock Masses (1981). The classification of rocks pro-
posed by IAEG on the basis of UCS and ρ has been given 
in Tables 5 and 6. The IAEG (1979) classification scheme 
was applied to the dataset of dry UCS and ρ obtained in 
the present study for six rock types from 26 previous stud-
ies. It was observed from the box chart in Fig. 8, the mean 
UCS of sandstone, shale, and pyroclastic rocks lie in the 
‘moderately weak’ class, while the mean UCS of carbonate, 
volcanite, and plutonic rocks are classified in the ‘strong’ 
class. The box chart for ρ in Fig. 9 showed that the mean ρ 
of pyroclastic rock lies in the ‘very low’ ρ class. The mean 
ρ of sandstone, volcanite, and shale lie in the ‘moderate’ ρ 
class, while the mean ρ of carbonate and plutonic rocks lie 
in the ‘high’ ρ class.

Artificial neural network (ANN)

Artificial neural network is a robust supervised machine 
learning technique. This soft computing technique has been 
used since 1940’s in different fields of science and technol-
ogy which mimics the functioning of a biological brain. The 
method has also been used widely in the field of Engineering 

Geology by many researchers (Ghabousi et al. 1991; Singh 
et al. 2001; Sharma et al. 2017).

In this study, a two-layered feed-forward network with 
hidden sigmoid neurons and linear output neurons was used 
to estimate the UCS using the ρ and rock-type information. 
The ANN-1 network consists of two neurons of input param-
eter (800 × 2), a single neuron of target parameter (800 × 
1), and three hidden neurons (Fig. 10a), while the ANN-2 
network consists of one neuron of input parameter (800 × 
1), a single neuron of target parameter (800 × 1), and three 
hidden neurons (Fig. 10b).

The Bayesian regularization (trainbr) algorithm was used 
to train the network using the neural fitting application of 
MATLAB, which is effective for such datasets (Rahman and 
Sarkar 2021). The performance of a trained network was 
obtained to be 715.71 at epoch 37 for the ANN-1 model. The 
regression for training and testing of the ANN-1 model pro-
duced an R-value of > 0.8 (Fig. 11). The R-value for training, 
testing and all the dataset, and the performance and epoch 
of the ANN-2 models for each rock type has been given in 
Table 7.

Assessment of the predictive performance 
of the ANN and SR models

The relationship between the measured and estimated UCS 
from ANN and SR models for six different rock types have 
been shown in Fig. 12. The performance of the relationship 
was assessed using the statistical tools such as, mean absolute 
percentage error (MAPE), root mean square error (RMSE), 
and correlation coefficient (R). The MAPE is the measure of 
the accuracy of a predictive model which is defined by the 
given Eq. 8. Generally, the MAPE value range from 0 to 100%, 

Fig. 6  Overall frequency bar graph including all rock types for a UCS, and b ρ
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Fig. 7  Lithology based frequency bar graph including different rock types for a UCS, and b ρ

Table 5  IAEG (1979) 
classification on the basis of 
UCS

Class 1 2 3 4 5

Description Weak Moderately weak Strong Very strong Extremely strong
UCS (MPa) 1.5—15 15–50 50–120 120–230  > 230
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but it can exceed above 100% for high estimated values, indi-
cating low error in estimation with values closer to 0.

The RMSE is used to measure the differences between 
the measured and estimated values, which it calculated 

(8)MAPE =
1

n

∑n

i=1

{|
|Mi

− P
i
|
|

M
i

× 100

}

using the following Eq. 9. The RMSE values range from 0 
to ∞ , indicating low error in estimation with values closer 
to 0.

where Mi is the measured ith value, Pi is the ith predicted 
value and n is the total number of iteration.

The precise metric used in a correlation analysis to 
quantify the strength of the linear relationship between 
two variables is the correlation coefficient (Eq. 10). The 
values of R range from -1 to + 1 indicating the strength and 
the direction of the slope of the correlation. The R value 
closer to 1 indicate a good correlation, while the R value 
closer to 0 indicate a poor correlation.

(9)RMSE =

√
1

n

∑n

i=1

(
M

i
− P

i

)2

Table 6  IAEG (1979) classification on the basis of ρ

Class 1 2 3 4 5

Descrip-
tion

Very low Low Moderate High Very high

ρ (g/cc)  < 1.80 1.80 – 
2.20

2.20 – 
2.55

2.55 – 
2.75

 > 2.75

Fig. 8  Box-plot for the 6 rock 
types studied in this paper and 
the IAEG (1979) classification 
on the basis of UCS

Fig. 9  Box-plot for the 6 rock 
types studied in this paper and 
the IAEG (1979) classification 
on the basis of ρ
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where cov is the covariance, X and Y are measured and esti-
mated values respectively, and σ is the standard deviation.

The performance of the SR and ANN models was ana-
lyzed in a 1:1 measured vs estimated UCS scatter plot in 
Fig. 11. The MAPE values for ANN models for all rock 
types were observed to be greater than the MAPE values 
obtained for the SR model. On the other hand, the RMSE 
and R values were observed to be better for the ANN model 
than the SR model. The RMSE values were better for ANN 
models than the SR model in all rock types except pyro-
clastic and shale, and the R values were also better for the 
ANN-1 model for all rock types except pyroclastic and sand-
stone (Table 8). The results of the analyses indicated that 
the ANN model was much better in the fitting of the data-
set, while the SR model was better in predictive accuracy. 
The inaccuracy in the prediction of UCS using the ANN-1 
model can be explained by the lithological control on the 
correlations. The simple neurons of the ANN-1 model were 
unable to deduce the lithological control on the estima-
tion of UCS using the ρ and rock type data, whereas, in the 
ANN-2 model, the accuracy was maximized. Since the SR 
model was developed for each lithology separately, it shows 
a greater accuracy in the prediction of the UCS. Hence, the 
regression equations provided in this section are of great sig-
nificance and importance in the field of prediction of UCS.

(10)R =
cov(X, Y)

�
X
�
Y

Fig. 10  The neural structures of a ANN-1, and b ANN-2 models to 
predict the UCS using ρ and rock type information

Fig. 11  Showing the obtained R-values for training, test, and all dataset, and the performance of the ANN-1 model to predict the UCS using the 
ρ and rock type information
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Conclusion

The study aimed to establish characteristic regression equa-
tions for six rock types between UCS and ρ. The lithologi-
cal control on the correlation between UCS and ρ has been 
evaluated using simple regression analysis and descriptive 
statistics.

The six rock types studied are pyroclastic, sandstone, 
shale, carbonate, plutonic, and volcanite. It was observed 
from the simple regression analysis that the regression for 
each rock type is characteristic of that particular lithology. 
Hence, six different regression equations were obtained for 
each rock type with a better R-value (except carbonate and 
plutonic rocks) than the R-value obtained for the overall 
regression, including all the rock types. The PCA was also 
used to classify the datasets on the basis of lithology, where 

Table 7  Showing the obtained R-values for training, test, and all data-
set, and the performance of the ANN-2 models to predict the UCS 
using the ρ for each rock type

Rock type R-values Performance Epoch

Training Test All

Pyroclastic 0.87 0.84 0.86 65.66 15
Sandstone 0.72 0.76 0.72 413.22 4
Shale 0.87 0.96 0.89 55.63 17
Carbonate 0.64 0.68 0.64 764.51 71
Plutonic 0.75 0.55 0.72 1312.26 34
Volcanite 0.70 0.85 0.73 812.45 47

Fig. 12  The comparison in a 
1:1 scatted plot of the measured 
UCS values with the estimated 
UCS values obtained from ANN 
and SR models. a pyroclastic, b 
sandstone, c shale, d carbonate, 
e plutonic, and f volcanite rocks
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it was observed that the PC1 components show characteristic 
trends on the basis of lithology.

Descriptive statistics were used as a robust tool to sim-
plify the datasets of UCS and ρ in a meaningful and under-
standable way. The statistical parameters of central tendency 
(mean, median, and mode), standard deviation, sample vari-
ance, kurtosis, and skewness were used to classify the data-
sets into different rock types. The box plots for UCS and ρ 
with reference to the IAEG classification of rocks have also 
been shown to understand the statistical significance of the 
dataset for different lithological groups.

An ANN model was also developed using the BR algo-
rithm to estimate the UCS using the ρ and rock types as 
inputs. The models of SR and ANN were compared in a 
1:1 scatter plot and statistically tested, it was observed that 
the SR model was much better in terms of accuracy while 
the ANN model showed greater strength of the correlation 
between measured and estimated UCS values.
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