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Abstract
Rock mass deformation modulus  (Em) is a key parameter that is needed to be determined when designing surface or under-
ground rock engineering constructions. It is not easy to determine the deformability level of jointed rock mass at the labora-
tory; thus, researchers have suggested different in-situ test methods. Today, they are the best methods; though, they have their 
own problems: they are too costly and time-consuming. Addressing such difficulties, the present study offers three advanced 
and efficient machine-learning methods for the prediction of  Em. The proposed models were based on three optimized cas-
caded forward neural network (CFNN) using the Levenberg–Marquardt algorithm (LMA), Bayesian regularization (BR), 
and scaled conjugate gradient (SCG). The performance of the proposed models was evaluated through statistical criteria 
including coefficient of determination (R2) and root mean square error (RMSE). The computational results showed that the 
developed CFNN-LMA model produced better results than other CFNN-SCG and CFNN-BR models in predicting the  Em. 
In this regard, the R2 and RMSE values obtained from CFNN-LMA, CFNN-SCG, and CFNN-BR models were equal to 
(0.984 and 1.927), (0.945 and 2.717), and (0.904 and 3.635), respectively. In addition, a sensitivity analysis was performed 
through the relevancy factor and according to its results, the uniaxial compressive strength (UCS) was the most impacting 
parameters on  Em.

Keywords Rock mass deformation modulus · Cascaded forward neural network · Prediction models · Optimization

Introduction

To design and execute the rock engineering constructions 
successfully, it is of a high importance to predict the rock 
mass deformation modulus  (Em) since it best represents the 
pre-failure mechanical behaviors of rock mass (Gholamnejad 
et al. 2013; Fattahi 2016; Fattahi and Moradi 2018). Litera-
ture is consisted of a number of approaches proposed by 
different researchers to directly predict the  Em using in-situ 
tests; they include plate loading test (PLT), pressure meter 
(Chun et al. 2009), cable jack, plate jacking, radial jack-
ing, flat jack, and add to the list the geophysical methods. 
Nowadays, such techniques are the best for this purpose; 
though they are costly and time-consuming, and only after 
the excavation operation, they can be done (Gholamnejad 
et al. 2013). Recently, an increasing number of empirical 
approaches have been proposed in literature for the predic-
tion of the  Em. Bieniawski (1973) pioneered the empirical 
equations for this purpose; in his model, only rock mass 
rating (RMR) was considered as the input parameter. The 
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most important drawback of Bieniawski’s approach was 
that it could be applied to rock masses with RMR > 50. On 
the other hand, attempting to remove this problem in the 
Bieniawski’s equation, Serafim and Pereira (1983) intro-
duced an equation for rock masses with RMR < 50. In addi-
tion, an empirical equation was introduced by Hoek and 
Brown (1997) on the basis of the geology strength index 
(GSI) and the uniaxial compressive strength (UCS) of intact 
rock. In two other studies, Nicholson and Bieniawski (1990) 
and Mitri et al. (1994) made the use of two modulus of the 
intact rock (Ei) in accordance with the value of RMR. Bar-
ton (2002) introduced a formula that included both UCS and 
tunneling quality index (Q) system. In another project, con-
sidering three parameters of rock quality designation (RQD), 
UCS, and weathering degree (WD) of rock, Gokceoglu et al. 
(2003) offered an empirical equation to literature. Kayabasi 
et al. (2003) discussed the relation on the basis of WD, Ei, 
and RQD. The empirical equation of Zhang and Einstein 
(2004) was based on Ei and RQD. On the other hand, the 
classification system of rock mass index (RMI) was a basis 
for Palmström and Singh (2001) to propose relations. In the 
Hoek and Diederichs’s (2006) study, formulas were offered 
on the basis of GSI and D (factor of disturbance), while in 
Sonmez et al.’s (2004) research, they were on the basis of 
Ei, GSI, and D parameters.

In recent years, the use of computational intelligence 
methods have been highlighted in different engineering 
fields (Ray et al 2020; Hasanipanah and Amnieh 2020a, 
2020b; Armaghani et al. 2020a, 2020b; Asteris et al. 2020, 
2021a, b, 2022a, b; Zhou et al. 2021; Zhu et al. 2021; Du 
et al. 2022). For instance, Sonmez et al. (2006) utilized 
the artificial neural networks (ANNs) and Majdi and Beiki 
(2010) employed a hybrid system of ANNs and genetic algo-
rithms (GA) for the prediction of  Em. On the other hand, 
an adaptive network-based fuzzy inference system (ANFIS) 
model was introduced by Gokceoglu et al. (2004) to effec-
tively predict the  Em of jointed rock masses. Alemdag et al. 
(2016) predicted the  Em using ANN, ANFIS, and genetic 
programming (GP) models. According to their findings, 
the performance of GP was better than ANN and ANFIS 
models. A Monte Carlo simulation (MCS) was employed to 
predict  Em in the study conducted by Fattahi et al. (2019). 
They demonstrated that the MCS was an acceptable tool in 
this field. In another study, Majdi and Beiki (2019) used a 
fuzzy c-means clustering (FCM) method optimized by parti-
cle swarm optimization (PSO) and GA for the same purpose. 
Their results confirmed an acceptable performance of PSO 
and GA in optimizing the FCM model.

The present study investigates the use of three 
op t imized  ca scaded  fo r ward  neu ra l  ne twork 
(CFNN) for predicting the  Em. For this work, the 

Levenberg–Marquardt algorithm (LMA), Bayesian 
regularization (BR), and scaled conjugate gradient 
(SCG) procedures are used to optimize CFNN model. 
In other words, these algorithms were used in the 
training phase which consisted in the optimization of 
the weights and bias terms of CFNN. The rest of this 
paper is organized as follows. Material and Methods 
are provided in the next section. In the Material sec-
tion, more explanations about the database is men-
tioned. Also, in the Methods section, the predictive 
models are explained. Then, in the next sections, we 
discussed the performance of the developed models 
in predicting the  Em, and finally the conclusions are 
stated.

Material and methods

Material

To develop the models proposed in this study, the require-
ment datasets were borrowed from Chun et al. (2009). In 
this database, sixty sets of data were prepared using several 
independent parameters and one dependent parameter  (Em).

Data pre-processing one of the most important steps 
before providing computational intelligence methods 
which is significantly vital in selecting the properly data-
driven model for yielding the favourable accuracy. In this 
research, eight variables including depth of the measure-
ment of  Em, UCS, RQD, discontinuity density (DD), RMR, 
ground water Condition (GC), discontinuity orientation 
adjustment (DOA), and discontinuity condition (DC) were 
used as inputs and  Em was used as the output. Table 1 
listed the descriptive statistics of all variables. The statis-
tical properties of all the inputs show that the diversity of 
datasets except depth and DOA parameters are at a suit-
able level. Of all the input variables, UCS and RMR are 
the closest to the normal distribution due to having the 
smallest distance between the mean and median. Figure 1 
demonstrates the normalized values probability distribu-
tion of all datasets. According to Fig. 1 and results of 
Table 1, the depth and DOA have the highest skewness 
(2.333 and -1.664, respectively) and kurtosis (5.127 and 
3.481, respectively) among all datasets and consequently 
both of them deviate more from the normal distribution 
than the other variables. The statistical analysis of used 
datasets acknowledges the need for a robust AI model for 
modelling the  Em.

Figure 2 demonstrates the correlogram of all utilized vari-
ables. Clearly, it can be seen that the DD, UCS, and RMS 
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variables due to having the highest Pearson correlation coef-
ficients (0.727, 0.716, and 0.694, respectively) are identified 
as the most influential parameters and GC by lowest Pearson 
correlation coefficient (0.035) has the least impact on the 
 Em modelling.

Methods

Cascaded forward neural network (CFNN)

Further rigorous paradigms of ANN called CFNN is largely 
used as it ensures reliable results when modelling highly 
complicated systems. The topology of the aforementioned 
model belongs to the feedforward kind, which is based 
highly on back-propagation (BP) strategy to refurbish the 
weights during the learning process (Nait Amar 2020). 
Three kinds of layers can be considered in a CFNN para-
digm, i.e., input, output, and hidden layers. The feature of 
this model is that the hidden layers are developed in a cas-
cade structure by generating more neurons and interactions 
along with the whole of inputs and previous hidden neurons 
(Nait Amar 2020). The CFNN cascade form lets every neu-
ron of the prior layer to be relied upon with the neurons of 
the next layers (Abujazar et al. 2018). The preferable number 
of hidden layers, their numbers of neurons and their activa-
tion functions in a CFNN model are frequently examined 
using trial and error method.

The learning phase of CFNN model focuses to achieve 
suitable values of weights and bias that lead to minimize 
the quadratic error outlining the gap between the predic-
tions and the true values. To this end, back-propagation (BP) 

Table 1  Secretive statistics of 
implemented datasets for the  Em 
prediction

Statistics Inputs Output

Depth UCS RQD DD RMR GC DOA DC Em

Minimum 4.000 12.100 3.000 5.000 21.000 4.000 -25.000 9.000 3.920
Q25% 14.250 98.500 13.000 8.000 54.500 7.000 -10.000 20.000 8.085
Median 22.800 141.600 17.000 10.000 64.000 10.000 -5.000 24.000 10.890
Q75% 33.850 172.800 20.000 13.000 72.000 10.000 -5.000 27.000 19.960
Maximum 166.000 254.800 20.000 20.000 92.000 15.000 0.000 30.000 45.620
Mean 33.870 138.100 15.520 10.840 62.230 9.267 -7.133 22.880 14.590
Std. Dev 36.620 58.610 4.660 3.990 14.590 2.449 5.543 5.396 9.114
Skewness 2.333 -0.156 -0.953 0.803 -0.636 0.547 -1.664 -0.766 1.301
Kurtosis 5.127 -0.547 -0.027 -0.030 0.410 0.572 3.481 -0.032 1.581

Fig. 1  Distribution of normal-
ized values of all implemented 
variables in the modelling

Fig. 2  Correlogram of all variables used in  Em prediction
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algorithms are the most widespread used thanks to their 
excellent results provided. In this paper, three alternative 
approaches namely, Levenberg–Marquardt (LM) algorithm, 
Bayesian regularization (BR), and scaled conjugate gradient 
(SCG) are applied, and which will be explained in the next 
section.

Optimization techniques

Levenberg–Marquardt algorithm (LMA)

The LMA represents one of the most advantageous optimi-
zation techniques which are applied to find solutions to the 
nonlinear least square issues. The stated method has the abil-
ity to locate the ultimate solution even from an unsuitable 
initial hypothesis, but it does not conduct to global minimi-
zation. For this technique, the optimization procedure refers 
to that of Newton’s method, but they differ fairly in their 
conceptions. In LMA, the Hessian matrix is approximated, 
in addition to the introduction of a regularization parameter 
that ameliorates the calculation procedure. The approxima-
tions of the Hessian matrix and the gradient are shown in the 
formulas below (Kişi and Uncuoglu 2005):

with J and e denote the Jacobian matrix and the error vector, 
respectively, whereas T stands for the transposition operator. 
The LMA step can be updated as mentioned in Eq. (3) by 
replacing the approximated Hessian and gradient matrixes 
and by inserting the regularization parameter in the funda-
mental formula of Newton’s technique:

where i and � represent the iteration and the regularization 
parameter, respectively, otherwise, x denotes the weights.

Bayesian regularization (BR)

The optimization of weights and bias using Bayesian regu-
larization (BR) technique is inspired from LMA approach 
(MacKay 1992; Foresee and Hagan 1997). Indeed, the con-
cept of BR algorithm is to minimize an objective function, 
which involves a weighted summation of squared error and 
squared network weights (Yue et al. 2011). The network 
weights for the objective function in BR is determined as 
shown below:

(1)H = JTJ

(2)g = JTe

(3)xi+1 = xi − (H − �I)−1 × g

(4)F(w) = �Ew + �ED

In the above-equation, Ew and ED indicate the sum of 
squared network weights and the sum of network errors, 
correspondingly, however � and � denote the objective 
function F(w) parameters. The two aforementioned param-
eters are provided from the theorem of Bayes. To this 
end, a Gaussian type distribution is relied to choose the 
training set and determine the weight vector. The train-
ing sets selection with some manipulation of algebraic 
operations lead to the optimum values of � and � . After 
that, a minimization of F(w) and an updating of weights 
is realized by using the LM algorithm. This calculation 
steps are repeated until reaching a stopping criterion (Yue 
et al. 2011).

Fig. 3  Workflow of the implementation procedure
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Scaled conjugate gradient (SCG)

One of most discussed issues of the conventional back-prop-
agation technique that uses the negative descent direction 
approach to update the weights is the shortage of convergence 
speed (Yue and Songzheng 2011). The conjugate gradient 
represents an alternative strategy to remedy this issue, and 
the error minimization acquired previously is kept as follows:

with P0 represents the conjugate direction and −g0 means the 
search direction. In this algorithm, the purpose of the best 
distance determination is for optimizing the actual search 
direction. The following equation leads to calculate the 
proper distance (Kişi and Uncuoglu 2005):

Then, the search direction is determined using the next for-
mula (Kişi and Uncuoglu 2005):

A variety of conjugate algorithm versions can be appre-
hended according to the � determination steps (Kişi and Unc-
uoglu 2005). It should be noted that the line search is a compu-
tational method but it is expensive, thus, it is preferable to use 
other cheaper techniques such as the scaled conjugate gradient 

(5)P0 = −g0

(6)xi+1 = xi + �igi

(7)P0 = −g0 + �iPi−1

(SCG). The latter technique incorporates the CG algorithm 
with trust region technique (Møller 1993).

Development procedure

The database compiled from the published literature was 
divided into training and testing sets for utilizations in the 
training and test phases of CFNN model, respectively. The 
training set involved 80% of the collected measurements, while 
20% of the points were devoted for the test set. It is worth 
mentioning that the different variables of this amassed data-
base were normalized between -1 and 1 using the following 
formula:

where Varmax and Varmin represent the maximum and mini-
mum values of a specified variable, respectively, and Varn 
points out its normalized value.

The prediction reliability of CFNN model depends greatly 
on the appropriate selection of its control parameters, such 
as its topology, the activation functions of the hidden layers, 
as well as the techniques applied for optimizing the weights 
and bias terms of the network. To this end, the trial and 
error technique was applied for investigating the suitable 
numbers of hidden layers, their number of neurons, and their 

(8)Varn =
2
(

Vari − Varmin
)

(

Varmax − Varmin
) − 1

Fig. 4  Cross plots of the sug-
gested CFNN models
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activation functions. Besides, and as mentioned in the pre-
vious section, three rigorous back-propagation based tech-
niques, including LMA, BR, and SCG were implemented for 
optimizing the weights and bias of the CFNN model. The 
gained models were denoted CFNN-LMA, CFNN-BR, and 
CFNN-SCG, respectively. The workflow of Fig. 3 summa-
rizes the steps of the implementation using these aforesaid 
algorithms.

Results and discussion

After carrying out the described implementation steps, 
it was found that the three paradigms, i.e., CFNN-LMA, 
CFNN-BR, and CFNN-SCG involved two hidden layers with 
12 and 9 neurons in each of them, respectively. The most 
suitable activation function in the hidden layers of these 
CFNN models was Tansig.

The models were evaluated statistically and graphically 
using various criteria. The graphical evaluation was carried 
out through cross plot for examining the integrity of the 
developed paradigms and histogram of error distribution, 
which aimed at detecting any likely error trend. Coefficient 
of determination (R2) and Root mean square error (RMSE) 
were the main statistical indexes that were used in the assess-
ment of the prediction performance of the gained models. 
These indexes are expressed as follows (Hasanipanah et al. 
2015; Nikafshan Rad et al. 2019; Hasanipanah et al. 2020a, 
b, c; Armaghani and Asteris 2021; Parsajoo et al. 2021; Li 
et al. 2021; Ly et al. 2021; Karir et al. 2022):

1. Coefficient of Determination (R2).

2. Root Mean Square Error (RMSE).

In the above-equations, the subscripts exp and pred 
denote the real and estimated values of  Em, respectively, 
Em is the average value of  Em, and N  represents the num-
ber of samples.

Cross plots of observed  Em values and those predicted 
by the implemented CFNN paradigms are exhibited in 
Fig. 4. For a given model, it can be said that it gener-
ates good prediction performance if a light cloud of its 
predictions is noticed near the line X = Y (unit-slope 

(9)R2 = 1 −

∑N

j=1

�

Emjexp
− Emjpred

�2

∑N

j=1

�

Emjpred
− Em

�2

(10)RMSE =

√

1

N

∑N

j=1

(

Emjexp
− Emjpred

)2 line). As shown in the cross plots of Fig. 4, the predic-
tions of the suggested paradigms are well-distributed 
around the reference line X = Y for both training test-
ing phases. Deviations of the  Em values estimated by 
the newly proposed models from the real data during 
the training and testing phases are also illustrated in 
subplots a-c of Fig. 5, for CFNN-LMA, CFNN-BR, and 
CFNN-SCG, respectively. According to this figure, a 
satisfactory agreement exists between  Em predicted by 
CFNN-LMA, CFNN-BR, and CFNN-SCG and the real 
values of the database.

In another kind of evaluation, the distributions of 
the noticed errors between the estimations of the three 

Fig. 5  Comparison between the observed  Em values and the predic-
tions of the suggested CFNN models versus data index during the 
training and test phases
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paradigms and actual data are demonstrated in histogram 
diagrams of Fig. 6. As can be seen, a normal distribution of 
the associated errors with a centre equal to or very close to 
zero-error value is achieved in all of the models. This kind 
of distribution indicates the high reliability of the newly pro-
posed CFNN models.

For a detailed assessment of the global integrity of the 
suggested paradigms, Table 2 states the statistical indexes, 
namely R2 and RMSE, of these models for training, test, and 
overall data sets. As indicated in this table, the reliability of 
CFNN models is clearly deemed for the different data sets as 
these paradigms achieved high R2 and small RMSE values 
for these sets. By taking a deeper look to the performance 
evaluation reported in Table 2 and Figs. 4, 5 and 6, it can be 
said that although the good prediction performance of the 
proposed models, CFNN-LMA showed a higher ability and a 
more reliability compared with CFNN-BR and CFNN-SCG 
when estimating  Em values of the different cases included 
in the database.

Fig. 6  Histogram diagrams of 
the errors associated with the 
predictions of the suggested 
CFNN models

Table 2  Statistical evaluation of 
the suggested CFNN models

Sorting of data Statistical indexes CFNN-LMA CFNN-BR CFNN-SCG

Training data RMSE 1.6605 1.8276 2.0985
R2 0.9623 0.9516 0.9399

Test data RMSE 1.927 3.6358 2.7175
R2 0.9842 0.9042 0.9448

Fig. 7  The probability density function of observed and predicted  Em 
values
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Figure 7 illustrates the probability distribution func-
tion (PDF) of observed and predicted  Em values for better 
models validation. This Fig demonstrated the PDFs with 
corresponding each optimized CFNN models for all data 
sets (training and testing stages). The comparing the PDF 
of each model demonstrated that the CFNN-LMA yielded 

better agreement with the observed datasets. Besides, the 
quartiles values  (Q25%, median, and  Q75%) of three provided 
models showed that the CFNN-LMA on account of clos-
est quartile  (Q25% = 7.908 and  Q75% = 19.75) is more con-
sistent with the observational datasets ((Q25% = 8.085 and 
 Q75% = 19.96) in comparison with CFNN-CG  (Q25% = 8.538 

Fig. 8  The cumulative fre-
quency of relative deviation (%) 
for three models

Fig. 9  Evaluation of the impor-
tance of the input parameters on 
 Em using the relevancy factor
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and  Q75% = 19.35) and CFNN-BR  (Q25% = 7.96 and 
 Q75% = 18.53) models. Thus, I can be conclude that the 
CFNN-LMA yields more promising results than other two 
models for prediction of  Em values.

In the last error validation of model, the cumulative fre-
quency of relative deviation (CFRD) values for three models 
were examined and depicted in Fig. 8. The results indicated 
that in the CFNN-LMA, more than 68% of whole datasets 
have ( RD ≤ 10% ) and only 7% of all data sets yielded to 
( RD > 30% ) whereas in CFNN-SCG model, 51% and 10% 
of all data sets led to ( RD ≤ 10% ) and, ( RD > 30% ) respec-
tively. Besides, the CFNN-BR model is introduced as the 
worst performance among three presented methods because 
it caused 70% of the data sets to lead to more than 30% rela-
tive deviation.

In the last step of this work, a sensitivity analysis was car-
ried out on our best paradigm, i.e., CFNN-LMA, to determine 
the impact of each of the included variables on  Em. To gain 
this, the relevancy factor (r) (Shateri et al. 2015; Nait Amar 
and Jahanbani Ghahfarokhi 2020; Nait Amar et al. 2021) was 
computed. It is worth mentioning that the value of this factor 
demonstrates the impact degree of a given variable, while its 
sign exhibits the positive or the negative effect of a variable 
on the output. The relevancy factor is calculated using the fol-
lowing formula:

In the above-equation, the data index is specified by the 
subscript i; Ij and Ij point out the  jth variable and its average 
value, respectively, and O and O refer to the estimated value 
of the output and its average, respectively.

Figure 9 displays the evaluation of the impact of the vari-
ables using the relevancy factor. As can be seen, only dis-
continuity orientation adjustment has a negative effect on  Em 
values, while the other input parameters have positive impact 
on  Em. From the degree of importance perspective, UCS and 
discontinuity density are the most impacting parameters on 
 Em with r values of 0.7491 and 0.7437, respectively, while 
groundwater condition has the weakest effect on  Em with an 
r value of 0.0478.

Conclusions

The main purpose of this study is to develop three opti-
mized models, i.e. CFNN-LMA, CFNN-BR and CFNN-
SCG to predict  Em. When designing surface or underground 
rock engineering constructions, the prediction of  Em is a 

(11)

r
�

Inpj,O
�

=

∑N

i=1

�

Inpj,i − Inpj

��

Oi − O

�

�

∑N

i=1

�

Inpj,i − Inpj

�2
∑N

i=1

�

Oi − O

�2

significant subject, and using the advanced machine learning 
methods can be useful in this field. Therefore, the authors of 
this study have tried to propose efficient models to accurately 
predict  Em. To develop the proposed models, we adopted the 
datasets formerly presented by Chun et al. (2009). Totally, 
eight effective parameters on  Em were used as the input 
parameters by using sixty sets of data. Then, R2 and RMSE, 
as two common error indexes, were computed to check the 
accuracy of the developed models. The following findings 
can be drawn from the analysis and results:

• According to the obtained results, the CFNN-LMA 
model predicted the  Em with the RMSE of 1.927 and 
R2 of 0.984. These values for CFNN-SCG models were 
0.945 and 2.717, and also for CFNN-BR model were 
0.904 and 3.635. Therefore, the lowest RMSE and the 
highest R2 were obtained from CFNN-LMA model. This 
indicates the superiority of the CFNN-LMA model in 
comparison with CFNN-BR and CFNN-SCG models for 
predicting  Em.

• Comparing the probability distribution function (PDF) 
of each developed model showed that the CFNN-LMA 
yielded better agreement with the observed datasets. 
Furthermore, based on the cumulative frequency 
of relative deviation (CFRD), the best results were 
obtained from CFNN-LMA model. The above results 
confirm the effectiveness of CFNN-LMA model in 
this field.

• In this study, a sensitivity analysis was also performed 
through the relevancy factor and according to the calcu-
lations, only discontinuity orientation adjustment had 
a negative effect on  Em values, and other input param-
eters had positive impact on  Em. Also, it was found 
that the UCS and discontinuity density were the most 
impacting parameters on  Em.
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