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Abstract
The Philippines, as part of the Circum-Pacific belt, is considered as one of the most seismically active countries in the
world. Earthquake occurrence is frequent and its effects vary depending on its size. Understanding how the occurrences
happen is therefore important. Stochastic models of earthquake occurrence have been used to study seismic activities in
various active earthquake zones globally. In this paper, we apply Poisson hidden Markov models (PHMM) using the January
1, 1960 to January 20, 2019 earthquake data of Metro Manila, Philippines. The parameters in the models are estimated
using expectation-maximization (EM) algorithm. We determine using various statistical tests that the 5-state PHMM best
represents the earthquake data and implement bootstrap algorithm to validate the acceptability of its parameter estimates.
Moreover, we investigate the forecasting capability of the 5-state PHMM by comparing it to the ARIMA model. Using
unscaled mean bounded relative absolute error (UMBRAE), we find that the 5-state PHMM gives closer one-step ahead
forecasts and is a better forecasting model for the considered data.

Keywords Poisson hidden Markov model · EM algorithm · Earthquake prediction · Philippine earthquakes

Introduction

Earthquakes can be one of the most devastating natural
phenomena. The randomness of its occurrence as well as its
size make this event a potentially life-threatening disaster
that could affect thousands of people and infrastructures
(Kannan 2014). Analysis of earthquake data is therefore
important to better understand earthquake behavior and
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create mechanism in countering its probable effects (Yip
et al. 2017).

Stochastic modeling has been a traditional approach
to study earthquake occurrences. Models such as Poisson
(Utsu 1969; Lomnitz 1974; Dionysiou and Papadopoulos
1992) and negative binomial (Dionysiou and Papadopoulos
1992; Rao and Kaila 2010) models have been used to
describe earthquake occurrences. These models assume
that the previous occurrences do not affect the time for
which the next one will occur. However, earthquakes of
large magnitude could cause other large earthquakes to
occur consecutively in a short span of time (Kannan
2014). This means that the occurrences are self-exciting,
i.e, the previous occurrences make the future occurrences
more likely to happen. Some researches on modelling
the seismicity such as Bansal et al. (2012) and Spassiani
and Sebastiani (2016) used the epidemic-type aftershock
sequence (ETAS) model. ETAS model is a point process on
modelling seismicity that is based on three assumptions: (i)
the background seismicity follows the Poisson distribution,
(ii) the number of aftershocks is proportional to exp(αM),
and (iii) the decrease in the number of aftershocks follows
the modified Omori Law (Bansal et al. 2012). The ETAS
model would be impossible to apply on the available
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local data since it is difficult to determine which among
the earthquake occurrences are aftershocks or mainshocks.
Hence, Markov model would be a suitable alternative since
it uses information from the immediate past.

A hidden Markov model (HMM) is a stochastic process
that involves random variables characterized as either an
observed process or a hidden process. The hidden process
is a sequence of unobservable events that directly affects
the observed process. It is assumed to be a Markov process
that governs the distribution of the observed process. One
of the early works on the application of HMM was by
Rabiner (1989) where they used the model in advanced
speech recognition problems. Related studies also show how
HMM can be used in molecular biology (Krogh et al. 2001),
genetics (Pachter et al. 2002), engineering (Goh et al. 2012)
and notably, seismology (Doganer and Calik 2013; Yip et al.
2017). The study of Yip et al. (2017) developed a novel
HMM in modeling and predicting earthquakes. They used
HMM recognizing that while earthquake occurrences are
observable, the underlying underground dynamics, which
involves the stress level around faults, are not. Through
their model, they predicted the arrival time and magnitude
of future earthquakes simultaneously using the data from
the Southern California earthquake catalogues from 1981
to 2015. Meanwhile, Doganer and Calik (2013) focused on
the use of HMM with forward algorithm in estimating the
epicenter of many occurring earthquakes in East Anatolian
Fault Zone. The use of HMM aided them in considering
times of seismic inactivity. Their results showed a 0.73
chance of earthquake occurrence in Sincik- Lake Hazar.
Different distributions can be used as the state-dependent
probability distribution since HMM can be applied to
both discrete and continuous data. This paper will employ
Poisson distribution due to the discrete characteristic of
the seismic data. Moreover, using Poisson hidden Markov
model (PHMM) addresses the problem of over-dispersion of
the data which is typically the case in earthquake data (Can
et al. 2014).

Recent researches in PHMM include the application of
this model to studies in video traffic (Rossi et al. 2015),
infrastructure deterioration (Le Thanh et al. 2015), and
insurance (Paroli et al. 2002). The study of Orfanogiannaki
et al. (2011) introduced PHMM in modeling temporal
seismicity changes. According to them, a PHMM can
reveal unknown attributes of the earthquake mechanisms
that produced the seismic data by providing a way to
estimate the underlying hidden states of the system. Using
PHMM, they were able to model the earthquake frequencies
with local magnitude ML > 3.2 in the seismogenic
area of Killini, Ionian Sea, Greece, in the period 1990-
2006. They allowed them to capture short-term precursory

seismicity changes preceding strong mainshocks which
the traditional analysis failed to recognize in the 1997
mainshock. Meanwhile, Can et al. (2014) applied PHMM
to predict earthquake hazards in Bilecik, NW Turkey. They
considered the annual frequencies of earthquakes occurring
around the area from January 1900 to December 2012, with
magnitude M > 4, and forecasted earthquake hazards for
the years 2013-2047. In 2018, Orfanogiannaki et al. (2018)
considered two main earthquakes that occurred between
the Indo-Australian and the southeastern Eurasian plates,
and used PHMM in identifying the temporal patterns in
the time series of those two earthquakes. Their results
showed the low seismicity in the region 400 days prior
to the first earthquake, and a shift from low to high
seismicity in between the two main earthquakes. The work
of Orfanogiannaki and Karlis (2018) introduced the use of
multivariate Poisson hidden Markov models in modeling
earthquake occurrences. Each state of the multivariate
model is associated with a different multivariate discrete
distribution. They apply their model to the seismicity with
magnitude M > 5 in three seismogenic subregions in the
North Aegean Sea 1981 to 2008. Their results proved the
migration of seismicity in adjacent subregions that share
similar seismotectonic feature.

The Philippines is considered to have one of the most
complex regions of plate interaction in the circum-pacific
belt (Hopkins et al. 1991). This results to the high seismic
activity in the country. Some of the recent memorable
instances include the successive destructive earthquakes of
magnitude higher than 6 that occurred in Mindanao as
well as in other parts of the country in 2019 (Rappler.com
2019a, b; PHIVOLCS 2019a, b), the earthquake swarm
that happened in Batangas in 2017 (PHIVOLCS 2017),
and the 2013 Bohol earthquake that caused broken roads
and damaged buildings (Rappler.com 2013). While there
have been numerous studies on the use of PHMM in
understanding seismic activities, none of these have used
seismic data from the Philippines. This paper aims to apply
PHMM in examining earthquake occurrences using seismic
data of Metro Manila.

The paper is organized as follows: in “Poisson hid-
den Markov model”, we discuss the PHMM and how
the expectation-maximization (EM) algorithm is used to
estimate the model’s parameters. In “Numerical implemen-
tation”, we present the results of the parameter estima-
tions for PHMMs with different number of states. We use
these results to determine which PHMM best describes the
data. In “Benchmarking”, we perform short-term forecast-
ing using the PHMM and ARIMA model and compare the
results. Lastly, in “Conclusion and recommendation”, we
present our conclusions and recommendations.
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Poisson hiddenMarkovmodel

Let (�,F, P ) be the probability space such that zk is a
Markov chain in discrete time k = 0, 1, 2, ... . The Markov
chain evolves according to the dynamics

zk = Azk−1 + vk (1)

where vk is a martingale increment, that is,

E[vk|Fz
k ] = 0 (2)

where Fz
k is the filtration generated by {z0, z1, ..., zk}.

The Markov chain zk represents the state, so if we are
working with m states, then zk ∈ R

m. In addition, zk

is a linear combination from the set {e1, e2, ..., em} where
ei = (0, ..., 0, 1, 0, ..., 0)� ∈ R

m is a zero vector with 1 on
the ith component, which is the canonical basis of Rm. A

is the transition probability matrix with entries aij , i, j =
1, 2, ..., m which is the probability of transition from state i

to state j from time k − 1 to time k, that is,

aij = P(zk = ej |zk−1 = ei ) = P(z1 = ej |z0 = ei ). (3)

It is clear that
m∑

j=1
aij = 1 for i = 1, ..., m. Let ξ =

(ξ1, ..., ξm)� be the marginal distribution of the initial
Markov chain, z0, such that ξi = P(z0 = ei ). ξ represents

the initial distribution of the Markov chain and
m∑

i=1
ξi = 1.

Furthermore, let Yk, k = 0, 1, 2, ... be the distribution
of the observed process that depends only on zk . In other
words, {Yk} is a sequence of conditionally independent
random variables given the state process {zk}. In this study,
we assume that Yk given zk is a Poisson random variable,
thus we have the term Poisson hidden Markov model. The
state space zk determines the parameter of the Poisson
process used to generate Yk . See Paroli et al. (2002) for a
comprehensive discussion on PHMM.

Let λ = (λ1, ..., λm)� be the parameter space for the
observed process Yk , that is λi is the parameter of the
Poisson process at state i for i = 1, ..., m. Let ηyi be the
conditional probability of Yk given that the process is in state
i, that is,

ηyi = P(Yk = y|zk = ei ) = e−λi
λ

y
i

y! (4)

Note also here that
∞∑

y=0
ηyi = 1 for i = 1, ..., m.

The entire process given by {(zk, Yk)} is what we are
looking for. The Markov chain zk is the latent process
that has a semi-martingale representation given in (1). The
process Yk depends on the latent process zk and this is
depicted in Figure 1. The processes {zk} and {Yk} are
stationary processes, thus each Yk has the same distribution
for any value of k. Getting the probability mass function for
Yk , we have

P(Yk = y) =
m∑

i=1

P(Yk, zk = ei )

=
m∑

i=1

P(Yk = y|zk = ei )P (zk = ei )

=
m∑

i=1

ξiηyi

We can also observe that E[Yk] = 〈ξ, λ〉 where 〈·, ·〉 is the
usual inner product.

Let � be the parameter space containing the set of
plausible parameters for the process {(zk, Yk)}. If θ ∈ � is
the maximum likelihood estimate for the process {(zk, Yk)},
then

θ = (a11, a12, ...., amm, λ1, λ2, ..., λm)�. (5)

θ contains the entries of the transition probability matrix and
the elements of the parameter space of the Poisson process.
The transition probability matrix contains m elements but

we know that
m∑

j=1
aij = 1 for i = 1, ..., m, so we can

solve only for m2 − m entries of A. Setting the entries of
the diagonal of A dependent on other entries of A, that is,

aii = 1 −
m∑

j=1,j �=i

aij . So, we can reduce θ by

θ = (a12, a13, ..., am,m−1, λ1, λ2, ..., λm)� (6)

which contains m2 elements.
Suppose we have the observed process {y0, y1, ..., yK}

up to time K and {z0, z1, ..., zK} be the Markov chain
process of the state up to time K . Thus, the set
{z0, Y0, z1, Y1, ..., zK, YK} is the set of complete data. The

Fig. 1 Hidden Markov process
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likelihood function for this set, denoted by Lc(Y ; �) is
given by

Lc(Y ;�) = P(Y0 = y0, Y1 = y1, ..., YK = yK, z0 = ei0 , ..., zK = eiK )

= ξi0ηy0,i0

K∏

k=1

aik−1,ik ηyk,ik (7)

Since theMarkov process is a latent process, getting the sum
over all possible values of the state process, we obtain the
likelihood function of the incomplete data, given by

L(Y ; �) =
m∑

i0=1

m∑

i1=1

· · ·
m∑

iK=1

ξi0ηy0,i0

K∏

k=1

aik−1,ik ηyk,ik (8)

where ηyk,ik is the state-dependent probability of yk

conditioned on state zk given by

ηyk,ik = e−λik

λ
yk

ik

yk! . (9)

Solving for maximum likelihood estimates of the parame-
ters is finding θ such that

θ = argmax L(Y ; �) (10)

Optimizing (8) is analytically intractable so we implement
numerical method for estimating the parameters. We per-
form expectation-maximization (EM) algorithm to numeri-
cally estimate the parameters, see Ryden (1996) for a com-
prehensive discussion on this. EM algorithm is an iterative
process that involve two main steps: E-step, the expectation
step and M-step, the maximization step. Let

Q(θ; θ̂ ) = E
θ̂
[logLc

K(Y ; �)|y] (11)

where θ̂ ∈ � and y is a vector of realized process for Y . The
EM algorithm is described as follows:

1. Choose θ̂0 ∈ � such that θ̂0 is a good approximate for
the parameters.

2. E-step is calculating for (11), that is, finding Q(θ; θ̂0)

defined in (11).
3. M-step is finding θ̂n+1 such that Q(θ̂n+1; θ̂n) ≥

Q(θ; θ̂n) where

θ̂n+1 = argmaxθ∈� Q(θ; θ̂n). (12)

4. The E and M steps are repeated in an alternating way
until an optimal estimate is achieved, that is,
∣
∣
∣logLK(θ̂n+1) − logLK(θ̂n)

∣
∣
∣ < ε (13)

for some tolerance error ε.

Thus, we conclude that

θ̂n+1 =
(
a

(n+1)
12 , a

(n+1)
13 , ..., a(n+1)

m,m−1, λ
(n+1)
1 , λ

(n+1)
2 , ..., λ(n+1)

m

)�

(14)

is an optimal estimate for the process {zk, Yk}.
EM algorithm may be simplified by using forward and

backward probabilities, commonly known as Baum-Welch
algorithm (Baum et al. 1970; Baum and Petrie 1966).
We denote αk(i) be the forward probabilities of the past
observations up to the present with the current state, then it
is given by

αk(i) = P(Y0 = y0, Y1 = y1, ..., Yk = yk, zk = ei ) (15)

and the backward probabilities, βk(i), which is the
probabilities of the future observations conditioned on the
current state, that is,

βk(i) = P(Yk+1 = yk+1, ..., YK = yK |zk = ei ). (16)

It can be shown that forward probabilities may be derived
recursively as

α0(i) = ξiηy0,i for i = 1, ...,m

αk(j) =
m∑

i=1

αk−1(i)aij ηyk,j for k = 1, ...,K and j = 1, ...,m (17)

and backward probabilities as

βK(i) = 1 for i = 1, ..., m

βk(i) =
m∑

j=1

ηyk+1,j βk+1(j)aij for k=K−1, ..., 0 and j =1, ..., m (18)

Evaluating (11) at the nth iteration of the parameters, θ̂n, we
get

Q(θ, θ̂n) =
m∑

i=1

α
(n)
0 (i)β(n)

0 (i)

m∑

l=1
α

(n)
k (l)β(n)

k (l)

log ξi

+
m∑

i=1

m∑

j=1

K∑

k=0
α

(n)
k (i)a

(n)
ij η

(n)
yk+1,j

β(n)
k+1(j)

m∑

l=1
α

(n)
k (l)β(n)

k (l)

log aij

+
m∑

i=1

K∑

k=0
α

(n)
k (i)β(n)

k (i)

m∑

l=1
α

(n)
k (l)β(n)

k (l)

log ηyk,i

where η
(n)
yk,i

, α
(n)
k (i) and β(n)

k (i) are derived based on θ̂n

obtained at the nth iteration following EM algorithm. Thus,
the maximum likelihood estimate of the entries of transition
probability matrix derived at the (n + 1)th iteration via EM
algorithm is given by

a
(n+1)
ij =

K−1∑

k=0
α

(n)
k (i)a

(n)
ij η

(n)
yk+1,j

β(n)
k+1(j)

K−1∑

k=0
α

(n)
k (i)β(n)

k (i)

for i, j = 1, ...,m (19)
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and the parameter for the Poisson process is given by

λ
(n)
i =

K∑

k=0
α

(n)
k (i)β(n)

k (i)yk

K∑

k=0
α

(n)
k (i)β(n)

k (i)

for i = 1, ..., m. (20)

You may refer to Elliott et al. (1995) for a comprehensive
discussion on parameter estimation.

Numerical implementation

We examine the earthquake data of Metro Manila (12o -
17oN Latitude, 119o-123oE Longitude) obtained from the
DOST Philippine Institute of Volcanology and Seismology
(DOST-PHIVOLCS). In particular, we consider the earth-
quake occurrences of magnitude greater than or equal to
4. It should be noted, however, that the magnitude entries
in the data are either in local magnitude scale (Ml), body
wave magnitude scale (Mb), or surface wave magnitude
scale (Ms). We convert all the Ml and Mb entries to Ms

using the formulas given by Ms = Mb − 2.5

0.63
and Ms =

−3.2 + 1.45Ml (Tobyás and Mittag 1991).
We determine the frequencies of earthquake occurrences

over 30-day intervals from January 1, 1960 to January
20, 2019, and record 719 observed values whose summary
is shown in Figure 2. We infer from the data that there
is an over-dispersion of earthquake occurrences over 30-
day intervals since the value of the standard deviation,
5.57309, is greater than the average number of earthquake
occurrences, 1.64534.

The parameters of the model were estimated using MLE
as described in the previous section. We implemented EM
algorithm using a fixed set of states. Shown in Table 1 are
the estimated parameters with the corresponding transition
probability matrix from Poisson process to 6-state PHMM.

Based from the table, if we consider the Poisson process,
the mean number of earthquakes in every 30-day interval is
1.645341. In the two-state model, the estimated parameters
are 1.064042 and 21.212017, which shows two average

1960 1970 1980 1990 2000 2010 2020

0
40

80
12

0

date

fr
eq

ue
nc

y

Fig. 2 30-day frequencies of earthquake occurrences from January 1,
1960 to January 20, 2019

number of occurrences that are relatively far from each
other. Clearly, the estimated λ2 accounts for the 30-
day periods with high number of earthquake occurrences.
Shown in Figure 3 is the distribution of states under the two-
state regime. Based from the transition probability matrix,
there is a minute chance that the number of occurrences
on the next 30-day period is high. From 4-state to 6-state
model, notice that one state has an average of 87 earthquake
occurrences. From these three models, the probability that
the next 30-day period stays in the same state is 0.5 while
and the probability that it will shift to a lower state is also
0.5. The summary of state distributions under the two-state
up to the 6-state regimes is shown in the Appendix.

In order to choose the best model, we use two
metrics: Akaike information criterion (AIC) and Bayesian
information criterion (BIC). The quality of the model
relative to the other proposed model can be estimated by
AIC (Akaike 1974). BIC, on the other hand, is similar
to AIC that uses likelihood function to choose the most
suitable model for the given data sets (Schwarz 1978). The
formula for AIC and BIC are given by

AIC = 2p − 2 logL

BIC = p log n − 2 logL

where p is the number of parameters estimated in the model,
n is the number of data points considered and L is the
likelihood value.

Shown in Table 2 are the AIC and BIC for the various
models we implemented in this paper. AIC suggests that 5-
state PHMM is the most suitable model while BIC suggests
that 4-state suits the data sets.

Since these two metrics do not agree with model
selection, we use likelihood ratio test to determine the better
model. Let L0 and L1 be the maximum loglikelihood of
the 4-state and 5-state PHMMs, respectively. We obtain
the values L0 = −1029.098 and L1 = −1002.291. To
perform the likelihood ratio test, we consider the following
hypotheses:

H0: The 4-state PHMM is better than the 5-state PHMM.
Ha : The 4-state PHMM is not better than the 5-state

PHMM.

We calculate the χ2 test statistic as follows:

χ2 = −2 (L0 − L1) = 53.614

We choose α = 0.05 and set the degrees of freedom (df ) to
9, which is the difference in the number of parameters of the
two models. With α = 0.05 and df = 9, the corresponding
value from the chi square distribution table is 16.919. Since
χ2 = 53.614 > 16.919, we reject H0. Thus, at 95% level of
significance, we conclude that the 5-state PHMM is better
than the 4-state PHMM.
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Table 1 Estimated parameters and associated transition probability matrices

Model λ̂ Transition probability matrix

Poisson process λ̂ = 1.645341

2-state PHMM λ̂1 = 1.064042
[
0.9774 0.0226

0.7028 0.2972

]

λ̂2 = 21.212017

3-state PHMM λ̂1 = 0.2325329
⎡

⎢
⎣

0.9731 0.0099 0.0170

0.0478 0.4395 0.5128

0.0242 0.0191 0.9566

⎤

⎥
⎦λ̂2 = 2.0027568

λ̂3 = 23.2048761

4-state PHMM λ̂1 = 0.2195573
⎡

⎢
⎢
⎢
⎣

0.9797 0.0094 0.0110 0.0000

0.0145 0.9585 0.0241 0.0028

0.0525 0.5725 0.3750 0.0000

0.0000 0.0000 0.5000 0.5000

⎤

⎥
⎥
⎥
⎦

λ̂2 = 1.8471073

λ̂3 = 13.2795612

λ̂4 = 87.000000

5-state PHMM λ̂1 = 0.1744851
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.9927 0.0000 0.0032 0.0041 0.0000

0.0000 0.9156 0.0530 0.0314 0.0000

0.0055 0.0746 0.8973 0.0178 0.0048

0.0000 0.1354 0.5075 0.3571 0.0000

0.0000 0.0000 0.0000 0.5000 0.5000

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

λ̂2 = 0.851076600

λ̂3 = 2.463019200

λ̂4 = 13.948613400

λ̂5 = 87.000000000

6-state PHMM λ̂1 = 0.074634240
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.8650 0.1310 0.0000 0.0040 0.0000 0.0000

0.4814 0.4874 0.0000 0.0000 0.0312 0.0000

0.0000 0.0000 0.8519 0.1319 0.0162 0.0000

0.0000 0.0000 0.2494 0.7201 0.0238 0.0067

0.0000 0.1202 0.0000 0.5064 0.3734 0.0000

0.0000 0.0000 0.0000 0.0000 0.5000 0.5000

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

λ̂2 = 0.690675720

λ̂3 = 0.988455300

λ̂4 = 3.051946270

λ̂5 = 14.808549700

λ̂6 = 87.000000180

Fig. 3 State distribution under 2-state PHMM
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Table 2 Values of AIC and BIC

Model p AIC BIC

Poisson process 1 4249.852 4254.430

2-state PHMM 4 2801.154 2824.043

3-state PHMM 9 2341.429 2391.785

4-state PHMM 16 2096.197 2183.176

5-state PHMM 25 2062.582 2195.340

6-state PHMM 36 2071.253 2258.945

Acceptability of the 5-state PHMM parameter estimates To
investigate the acceptability of the parameters of 5-state
PHMM, we perform bootstrapping.We partition the original
data set into subintervals of 30 points and resample it with
replacement from each subinterval. From the resampled
data points, we perform estimation of parameters using
the algorithm presented. We select 10,000 set of bootstrap
samples; then, we calculate for the average value of each of
the parameter estimates (Xiong and Mamon 2017). Table 3
summarizes the values of each parameters obtained from
bootstrapping, and their corresponding confidence interval.
The mean, std dev, 95% lower cl and 95% upper cl represent
the average, standard deviation, 2.5% quantile and 97.5%
quantile of the 10,000 bootstrap samples, respectively.

Notice that as the estimated parameter increases, the
corresponding standard deviation from the bootstrap sample
increases as well. This indicates that the state with a
higher parameter would have larger fluctuations on the
number of earthquake occurrences over the 30-day period.
Also, all the parameters have values that lie inside their
corresponding confidence interval. This means that their
values are acceptable estimates of the average 30-day
earthquake occurrences.

5-state PHMMon theMetroManila earthquake data Shown
in Figure 4 are different portions of the graph of the 30-
day earthquake occurrences in Metro Manila. The graphs
also show the major earthquake occurrences and in which
30-day interval they are a part of. Take note that λ̂1 =
0.174485100, λ̂2 = 0.851076600, λ̂3 = 2.463019200,
λ̂4 = 13.948613400, and λ̂5 = 87.

We observe that most of the major earthquakes are part
of a 30-day interval that is currently in state 4, i.e., the

interval has an average of 13.95 earthquake occurrences. It
may be due to the occurrence of foreshocks and aftershocks.
A large earthquake is causally preceded by foreshock or
multiple-shock activities (Fukao and Furumoto 1975) and
the stress increase caused by the major earthquake could
result to the occurrence of subsequent minor earthquakes
(King et al. 1994). We also notice that the July 22 -
August 21, 1990 interval has the most number of earthquake
occurrences with 123, and the next interval has the second
most occurrences with 51. These are the only intervals
that are in state 5, i.e, the interval has an average of 87
earthquake occurrences. The major Luzon earthquake with
magnitude 7.8 that happened in July 16, 1990 could have
triggered many aftershocks. This major earthquake is also
considered to have a possible relation to the eruption of
Mt. Pinatubo in July 1991 (Bautista et al. 1996). Lastly,
we observe that whenever the 30-day interval is in state 4,
whether one-time or consecutive times, the next interval will
be in state 2 or 3 which means that the average number
of earthquake occurrences in the interval is 0.85 or 2.46,
respectively. This is consistent with the explanation in (Yip
et al. 2017) that the underground stress goes back to normal
after it builds up, reaches a certain threshold, and gets
released in the form of an earthquake.

Benchmarking

In forecasting time series, a common model is the Autore-
gressive integrated moving average (ARIMA) (Fattah et al.
2018) model. Several ARIMA models of varying time steps
have been used in forecasting large-scale earthquake occur-
rences through fitting the model and smoothing the data
with a sequence of empirical recurrence rates (ERR) time
series (Amei et al. 2012; Ho and Bhaduri 2015). In the
study of Ho and Bhaduri (2015), historical earthquake data
of Parkfield was modeled through applying ARIMA tech-
niques to an ERR time series. Such applications were also
done to similar time series data sets from hurricanes and vol-
canoes (Ho and Bhaduri 2017; Bhaduri and Ho 2019). For
our earthquake time series, ARIMA was applied to forecast
future occurrences.

Through the ARIMA R package (Hyndman and Khan-
dakar 2008), a best fit model was used for a one-step-ahead

Table 3 Results from bootstrap
sampling Estimated parameter Mean Std dev 95% lower cl 95% upper cl

λ̂1 0.174485100 0.115344 0.0794548 1.24 × 10−15 0.2519691

λ̂2 0.851076600 0.764185 0.3867902 0.1647585 1.7630368

λ̂3 2.463019200 1.809700 0.7982738 0.6349577 3.5338221

λ̂4 13.948613400 8.598575 5.281904 1.921417 16.299988

λ̂5 87.000000000 60.49747 41.77191 12.95755 123.000000
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Fig. 4 State distribution under 5-state PHMM of some portions of the Metro Manila data

forecast. We do 18 one-step-ahead forecasts, with each
training data set increasing by 1 as we include the real data
from a previously forecasted time interval. We then compare
these forecasts with the values of the one-step-ahead fore-
casts from the PHMM and the actual January 2019- June
2020 earthquake data as shown in Figure 5. The order of the
best ARIMA model that fits the data is (2, 3, 1).

Notice that both the 5-state PHMM and ARIMA(2, 3, 1)
forecast values are relatively close to each other, with the 5-
state PHMM having a better estimate in most forecasts in
terms of closeness to the actual value. There are three peaks
in the actual data (9/17/2019, 1/15/2020, and 5/14/2020)

that both models underestimate and fail to capture. In the
first two peaks, the ARIMA(2, 3, 1) forecasts has a slight
edge over those of the 5-state PHMM, while for the last
peak (and most of the other data points), the forecasts for
the 5-state PHMM are closer to the actual data than those of
ARIMA(2, 3, 1).

We also perform an analysis of the deviations of the
forecast values from both models to the actual using the
unscaled mean bounded relative absolute error (UMBRAE)
developed in (Chen et al. 2017). We find that the 5-
state PHMM performs roughly 15.35% better than the
ARIMA(2, 3, 1) model.
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Fig. 5 Plot of the 18 one-step-ahead forecasts of magnitude greater than or equal to 4 earthquakes in Metro Manila from January 2019 - June
2020 of the 5-state PHMM model and the ARIMA(2, 3, 1) model vs the actual data

Conclusion and recommendation

In this study, we modeled the earthquake activity in Metro
Manila using Poisson hidden Markov model. We considered
the 30-day earthquake occurrences (with magnitude 4 or
greater) data of Metro Manila from January 1960 to
January 2019. We identified the 5-state Poisson hidden
Markov model, with parameters λ1 = 0.174485100, λ2 =
0.851076600, λ3 = 2.463019200, λ4 = 13.948613400, and
λ5 = 87, as the best fit for the earthquake data. In addition,
we investigated the forecasting capability of this model by
comparing its 18 one-step-ahead forecasts to those of the
ARIMA. Using various error metrics, the 5-state PHMM
gave closer forecast values.

Our study has shown that the number of earthquake
occurrences in Metro Manila can be modeled using PHMM.
The model can help researchers to further understand the
seismic behavior in the area. In particular, it can provide
insights on how earthquakes of magnitude 4 or greater
behave by observing the patterns of the states for which
the 30-day intervals are in. We recommend the use of
PHMM on the earthquake occurrences in other areas of the
country. Also, the model can be used to develop an early
warning signal by identifying trigger points that suggest
an upcoming period with high number of occurrences or
an occurrence of a major earthquake. It can be used to

alert disaster risk management agencies so they can be
prepared for a possible calamity. We also recommend the
use of some modifications to PHMM such as through
empirical recurrence rates relations similar to Bhaduri
(2020). If possible, use an earthquake data with moment
magnitude (Mw) since it is a more accurate measurement
of the earthquake size and try to benchmark against other
methods depending on the data set. This data, however, is
not available in the earthquake catalogue that the DOST-
PHIVOLCS can provide.

Appendix: State distributions
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Fig. 6 State distributions under 2-state PHMM
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Fig. 7 State distributions under 3-state PHMM
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Fig. 8 State distributions under 4-state PHMM
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Fig. 9 State distributions under 5-state PHMM
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Fig. 10 State distributions under 6-state PHMM

Supplementary Files The R Code for PHMM model and ARIMA
model, as well as the data, can be found online at: Codes and
DOST-PHIVOLCS Data.
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