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Abstract
We performed several machine-learning algorithms on a geochemical dataset including whole-rock (n = 1656) and glass (n =
1092) compositions of lavas and pyroclastics belonging to 8 volcanic fields along the South Aegean Active Volcanic Arc
(SAAVA). We did not only test our trained model with the unknown distal tephras, but also controlled its performance using
some known distal tephras (e.g., Nisyros-Kyra) from the easternmost part of the SAAVA. The different metrics and kappa values
revealed that Naïve Bayes, Linear Discriminant Analysis, Artificial Neural Network, and Support Vector Machine (both prob-
abilistic and non-probabilistic models) were the least performing algorithms; while the Random Forest and the gradient boosting
algorithms (e.g., CatBoost, LightGBM) together with their average ensemble (Voting Classifier) were the best for the volcanic-
source predictions of tephras. This also indicates that the latter algorithms give better results for the machine-learning applications
on an imbalanced geochemical dataset, which was the main artifact in our training model. Despite the accurate prediction and
training models especially for those having larger datasets (i.e., Santorini and Nisyros volcanoes), we here would like to express
that the machine-learning can be as yet a time-saving tool (not an automatized decision-maker) in the tephrochronology studies
providing a more efficient and rapid way of finding the possible volcanic sources for unknown tephras. In this regard, our freely-
available Python codes would be easily implemented in further “tephra-hunting” studies in and around the SAAVA. However,
there is a need for increasing the available geochemical (e.g., mineral chemistry) and also other interrelated datasets (e.g.,
geochronology) that should be as yet evaluated manually by the tephrochronologists to be able to improve the performances
of machine-learning algorithms in the volcanic-source predictions.

Keywords Tephrochronology . Machine-learning . Gradient boosting algorithms . Imbalanced data . South Aegean Active
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Introduction

The supervised machine-learning algorithms have become a
helpful tool by providing an efficient way to better understand
the complex processes in different aspects of earth sciences.
Some examples can be given from the studies of seismology
(e.g., DeVries et al. 2018; Corbi et al. 2019; Hulbert et al.
2019; Park et al. 2020), volcanology (e.g., Anzieta et al.

2019; Ren et al. 2020; Watson 2020; Witsil and Johnson
2020a, b), and petrology (e.g., Petrelli and Perugini 2016;
Petrelli et al. 2020; Ouzounis and Papakostas 2021;
Pignatelli and Piochi 2021; Valetich et al. 2021).

Tephrochronology is an interdisciplinary field where both
proximal and distal tephra (i.e., ash in Greek) deposits are
characterized and used as powerful remarks for various geo-
logical and environmental processes (e.g., Sarna-Wojcicki
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2000; Lowe and Hunt 2001; Turney and Lowe 2002; Lowe
2011). Together with the recent analytical developments, geo-
chemistry (glass, mineral, or whole-rock compositions) comes
in possession of a widely used method in tephrochronology,
especially when the geochronological data are missing or
problematic. The conventional way of using geochemistry
data for tephra correlation is mostly to draw a variety of binary
diagrams including major oxides, trace elements, and their
ratios. However, this can turn into a challenging task for the
tephras of some geographic locations that have an identical
geochemical affinity (e.g., South Aegean Active Volcanic Arc
“SAAVA”; Francalanci et al. 2005). At this point, the multi-
variate statistical methods (e.g., principal component analysis)
together with some of the machine-learning algorithms (e.g.,
support vector machine) serve as a more efficient and discrim-
inating approach (Lowe et al. 2017) to not only better handle
the geochemical datasets, but also better correlate the tephras
using their compositions. Of those, the machine-learning ap-
plications have been significantly increasing for
tephrochronology in recent years (e.g., Petrelli et al. 2017;
Bolton et al. 2020).

In this study, we applied several machine-learning algo-
rithms (e.g., random forest, gradient boosting decision tree)
on a geochemical dataset representing 8 volcanic fields within
the SAAVA to provide a case study for the usage of this
approach in tephrochronology considering both known (con-
trolling group) and unknown (test group) tephras around the
eastern Mediterranean (Satow et al. 2015; Gençalioğlu-Kuşcu
and Uslular 2018; Vakhrameeva et al. 2018). Our primary aim
is to elucidate the performance of machine-learning on an
easily handled geochemical dataset in comparison to widely
used conventional binary plots that require various manually
determined combinations and thereby high effort. Here we
also discuss the pros and cons of the various machine-
learning algorithms applied for an imbalanced compositional
dataset to provide further insights into their usage in
tephrochronology and related fields.

South Aegean active volcanic arc (SAAVA)

The volcanism along the SAAVA (Fig. 1) started at the lower
Pliocene around the Sousaki in line with slab rollback of the
Hellenic arc and continued until the present day with the his-
toric activities of Methana, Milos, Santorini, and Nisyros vol-
canoes (e.g., Fytikas et al. 1984; Francalanci et al. 2005; Pe-
Piper and Piper 2005; Francalanci and Zellmer 2019;
Vougioukalakis et al. 2019). The western parts of the
SAAVA are mostly represented by small volume monogenet-
ic volcanism, while the central and eastern parts consist pre-
dominantly of composite volcanoes (e.g., Santorini and
Nisyros calderas; Francalanci et al. 2005). The volcanics with-
in the SAAVA display typical arc-related geochemical

compositions mostly characterized by the calc-alkaline to
high-potassium calc-alkaline affinity (e.g., Francalanci et al.
2005; Pe-Piper and Piper 2005) (Table 1) together with the
influences of Aegean slab tear through the eastern to central
parts of the arc (Klaver et al. 2016). The volcanological his-
tory of each volcanic sector is rather complex and the details
are beyond the scope of our study. Hence the readers can refer
to the comprehensive reviews in the literature (Innocenti et al.
1982; Fytikas and Vougioukalakis 2005; Francalanci and
Zellmer 2019; Vougioukalakis et al. 2019) for further detailed
information.

The products of explosive volcanism (aka tephra) along the
SAAVA have been one of the important research aspects for
both the understanding of volcanological evolution, the future
risk assessment, and the paleoenvironmental/climatological
construction of the eastern Mediterranean (e.g., Hamann
et al. 2010; D'Antonio et al. 2016; Koutrouli et al. 2018;
Wulf et al. 2018; Vakhrameeva et al. 2021). The distal tephras
of Santorini (e.g., Minoan and Cape Riva), for example, have
a widespread distribution found in the lake cores (e.g., Pearce
et al. 2002) and the terrestrial settings of western Anatolia
(Sulpizio et al. 2013) and marine cores of Aegean, Marmara,
and even the Black Sea (e.g., Guichard et al. 1993; Wulf et al.
2002; Aksu et al. 2008; Satow et al. 2015). Nisyros volcano is
another example that has mid-distal tephra records within the
surrounding regions (e.g., Datça peninsula, Gençalioğlu-
Kuşcu and Uslular 2018; Tilos island, Keller et al. 1990;
Sterba et al. 2011). However, the distal tephra record of other
volcanic fields along the SAAVA is almost absent and hence
any evidence of non-correlated (or unknown) tephra layers
within the eastern Mediterranean (documented and/or to be
correlated) (e.g., Satow et al. 2015; Korkmaz et al. 2018;
Vakhrameeva et al. 2018) needs some extra attention for the
sake of better volcanological and paleoenvironmental recon-
struction models.

Methodology

Source dataset

A substantial part of the geochemical dataset including the
whole-rock (n = 1656) and glass (n = 1092) compositions
of Plio-Quaternary volcanics along the SAAVAwas compiled
from the GEOROC (Geochemistry of Rocks of the Oceans
and Continents) database (Fig. 1; Supplementary Data S1).
Data from some unpublished studies were also included
(e.g., Bohla 1986; Rehren 1988). Here, the main idea of com-
piling all geochemical data including both lava flows and
pyroclastics was that they could represent the main geochem-
ical characteristics of each volcanic field. Otherwise, only
available data for the tephra around the studied volcanic fields
would not be enough for the application of machine-learning
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algorithms. A similar approach was followed by the relevant
studies in the literature (e.g., Petrelli et al. 2017).

We classified the compiled geochemical dataset into 8
groups based on the spatial distribution of the volcanic fields
(Table 1) and filtered the dataset by selecting the major oxides
(SiO2, TiO2, FeOT, MgO, CaO, Al2O3, K2O, Na2O, MnO,
and P2O5 in weight percentage–wt.%) and selected trace ele-
ments (Zr, Ba, Sr, Rb, Nb, La, and Ce in parts per million–
ppm). The main reason for such a selection of trace elements
was that these are the default elements in the whole-rock anal-
ysis (i.e., X-ray fluorescence–XRF and inductively coupled
plasma mass spectrometry–ICP-MS) and the most common
in glass (i.e., shard or inclusion) geochemistry analysis (e.g.,
electron microprobe–EPMA and laser ablation inductively
coupled plasma mass spectrometry–LA-ICP-MS). Although
our approach in selecting the distinct trace elements resulted in
an optimum number of data (especially for trace element
values), there were still some missing data in the dataset (see
the descriptive statistics in the Supplementary Data S1). Thus,
we applied one of the data imputing methods by replacing the
blank parts with zero as the machine-learning algorithms re-
quire numerical inputs. Here, we did not calculate the mean/
median values of the column to replace them with the missing
values as the trace element compositions of different volcanic
fields in the SAAVA can be unique for each specific volcanic
field, and hence any generalization may create a bias for fur-
ther interpretations. The data with a sum of the major oxides
below 95 wt.% and high loss on ignition values (LOI >
5 wt.%) were removed from the dataset. In addition, we did
not perform any further filtering to the dataset (e.g., age
constraint).

Modelling

Preprocessing and experiments

Before the training step, the possible duplicates in the
dataset were removed by comparing all the features with
one another (Fig. 2). We then used the RobustScaler
tool of the Scikit-learn Python library (Pedregosa et al.
2011; Kramer 2016) to scale the data based on the
quantile range. The values outside of the 0.95-quantile
(i.e., outliers) were extracted since they could potential-
ly affect the performance of the model or corrupt the
measurements (Fig. 2). The Box-Cox transformation
(Box and Cox 1964) was applied to the data (Fig. 2).
We performed feature engineering and did selection on
the data using the SMOTE (synthetic minority
oversampling technique; Chawla et al. 2002) since the
dataset can be considered as imbalanced (Table 1;
Supplementary Data S1).

Hyper-parameter tuning is a common process in machine
learning used to maximize the algorithm’s performance (e.g.,
Bardenet et al. 2013). The hyper-parameters can parameterize
the learning algorithms that construct a training model with a
given dataset (e.g., Claesen et al. 2014). To obtain the best
hyper-parameters that yield the optimal model, we here em-
ployed the RandomizedSearchCV (Bergstra and Bengio
2012), which is better for the high-dimensional datasets with
a larger extend in grid search (Paper 2020). The optimized
tuning configurations for each algorithm can be found in our
Python codes (https://github.com/guslular/ML_for_
tephrochronology.git).

Table 1 General characteristics of volcanic fields around the SAAVA

Volcanic field # of data Age Geochemical characteristics* Reference

Aegina 38 4.70–0.72 Ma Basaltic andesites to dacites with CA and HK-CA affinity (1)

Antiparos 24 5.40–4.00 Ma Rhyolite with an alkaline affinity (2)

Kos Island 128 3.00–0.16 Ma Rhyolitic Quaternary volcanics, and both rhyolitic and dacitic
Pliocene volcanics with HK-CA affinity

(3)

Methana 101 3.60 Ma - 230 BCE Andesites, dacites, and rare basaltic andesites with CA affinity (4)

Milos 131 3.50–0.09 Ma Andesites, dacites, rhyolites, and rare basaltic andesites with
mainly CA and rare HK-CA affinity

(5)

Nisyros 554 0.16–0.02 Ma Basaltic andesite and andesite with CA affinity, dacites, and
rhyolites amongst the CA and HK-CA affinity

(6)

Santorini 1744 1.60 Ma - present Basalt to rhyolite with mainly CA and rare tholeiitic and HK-CA
affinity

(7)

Yali 28 0.04–0.02 Ma Rhyolite, rare andesite and dacite with CA affinity (8)

CA: calc-alkaline; HK-CA; high-potassium calc-alkaline; * Francalanci et al. 2005; (1)—Pe 1973; Pe-Piper et al. 1983; Morris 2000; Van Hinsbergen
et al. 2004; Elburg and Smet 2020; (2)—Innocenti et al. 1982; (3)—Smith et al. 1996; Allen et al. 1999; Pe-Piper and Piper 2005; Bachmann and
Schnyder 2006; Bachmann et al. 2010; (4)— Pe-Piper and Piper 2013; Popa et al. 2020; (5)—Fytikas et al. 1986; Stewart andMcPhie 2006; Francalanci
et al. 2007, Zhou et al. 2021; (6)—Francalanci et al. 1995; Vanderkluysen et al. 2005; Volentik et al. 2005; Guillong et al. 2014; Gençalioğlu-Kuşcu et al.
2020; (7)—Druitt et al. 1999, 2019; Buettner et al. 2005; Vespa et al. 2006; Parks et al. 2012; Popa et al. 2019; (8)—Allen and McPhie 2000; Guillong
et al. 2016; Popa et al. 2019
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Classifiers

We implemented 10 different learning algorithms (Fig. 2 and
Table 2) using the optimum tuning configurations in the
Scikit-learn Python library (Pedregosa et al. 2011; Kramer
2016). These are Support Vector Machine (SVM) with the
both probabilistic and non-probabilistic (raw) model (Cortes
and Vapnik 1995; Li et al. 2010), Random Forest (RF;
Breiman 2001), k-Nearest Neighbors (KNN; Laaksonen and
Oja 1996), Naïve Bayes (Complement NB; Rennie et al.

2003), Artificial Neural Network (ANN, multi-layer
perceptron; e.g., Gardner and Dorling 1998), Linear
Discriminant Analysis (LDA; e.g., Balakrishnama and
Ganapathiraju 1998; Izenman 2013), XGBoost (eXtreme
Gradient Boosting; Chen and Guestrin 2016), LightGBM
(Light Gradient Boosting Machine; Ke et al. 2017),
CatBoost (Category Gradient Boosting; Prokhorenkova et al.
2017), and Voting Classifier (VC; the ensemble of XGBoost,
LightGBM, and CatBoost) (Table 2). Most of the algorithms
are all tree-based ensemble classifiers (except for the SVM)

Fig. 1 Digital elevation model (15 arc-second global relief, SRTM15 +
V2.1) displaying the volcanic fields along the South Aegean Active
Volcanic Arc (SAAVA) used in this study for the application of

machine-learning algorithms. Trench locations are from Jongsma
(1977). The map was created using the PyGMT tool (Uieda et al. 2021)
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Fig. 2 Flowchart of machine-learning processing performed in this study
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consisting of both averaging (e.g., Voting Classifier) and
boosting (e.g., CatBoost) methods, which are widely consid-
ered as the most efficient classifiers for the tabular data due to
their higher performance even in more complex algorithms
(e.g., Dietterich 2000). However, the gradient boosting algo-
rithms (e.g., XGBoost) were not much preferred in the litera-
ture of machine-learning applications on tephrochronology
due to their rather long computational time (Bolton et al.
2020). The further details related to the algorithms are beyond
the scope of this study and hence can be found in Python
scikit-learn documentation (Pedregosa et al. 2011; Garreta
and Moncecchi 2013) and the well-established literature.

Evaluation

We assessed the trained models with both accuracy (e.g., the
accuracy score, Compute Area Under the Receiver Operating
Characteristic Curve, ROC-AUC) and the Precision-Recall
(F1 macro and weighted scores) metrics (Table 3). We also

calculated the Cohen’s kappa (Cohen 1960) values (Table 3),
which are used to express the degree of agreement between
the algorithms and the training dataset (Altman 1990). For all
metrics, the models were cross-validated with 10-folds of
stratified splits (all contain 10% of total samples from each
group) (Fig. 2). The goal of cross-validation was to evaluate
and see how the model was generalized to unseen data. As the
different splits can vary in the results, this might introduce bias
to the predictions. The cross-validation divides the data into
10 equal parts and allows the model to train on all splits except
one, then evaluates the model on this split. In order not to
bring any bias to the splits and to use all available data, this
method was repeated n-times, and the average was considered
(https://github.com/guslular/ML_for_tephrochronology.git).

We also implemented a feature sensitivity analysis to un-
derstand the impacts of used major oxides and trace elements
on our machine-learning model. We used the “shap” function
in the Scikit-learn library, which is based on the Tree SHapley
Additive exPlanations (SHAP) method (Lundberg and Lee

Table 2 Summary table for the machine learning algorithms (classifiers) used in this study

Name (Abbreviation) Scikit-Learn Library Method Approach

Naïve Bayes (NB) sklearn.naive_bayes Complement NB Generative, multiclass

Linear Discriminant Analysis (LDA) sklearn.discriminant_
analysis

Singular value decomposition Generative, multiclass

Artificial Neural Network (ANN) sklearn.neural_network Multi-layer perceptron classifier Discriminative, multiclass

K-Nearest Neighbors (KNN) sklearn.neighbors Uniform weighting with “auto” algorithm Discriminative, multiclass

Support Vector Machine (SVM) sklearn.svm Probabilistic and non-probabilistic (raw) with
the radial basis function

Discriminative, one-vs-one
scheme

Random Forest (RF) sklearn.ensemble Ensemble of decision tree (extension of bagging) Discriminative, multiclass

Light Gradient Boosting Machine
(LightGBM)

lightgbm Gradient boosting decision tree (gbdt) Discriminative, multiclass

eXtreme Gradient Boosting (XGBoost) xgboost Gradient boosting decision tree (gbdt) Discriminative, multiclass

Category Gradient Boosting (CatBoost) catboost Gradient boosting decision tree (gbdt) Discriminative, multiclass

Voting Classifier (VC) sklearn.ensemble Average ensemble (CatBoost, XGBoost, and
LightGBM)

Meta-classifier, multiclass

Table 3 The mean accuracy
scores and kappa values for each
algorithm used in this study

Algorithm Accuracy F1 weighted ROC-AUC Kappa Training Time (s) Testing Time (s)

NB 0.69 0.66 0.87 0.43 0.03 0.01

LDA 0.81 0.81 0.94 0.65 20.70 0.01

ANN 0.93 0.93 0.98 0.87 0.01 0.01

KNN 0.91 0.91 0.95 0.83 0.01 0.08

SVM (prob) 0.89 0.89 0.97 0.80 1.12 0.03

SVM (raw) 0.89 0.89 – 0.80 1.12 0.03

RF 0.94 0.93 0.99 0.88 1.38 0.30

LightGBM 0.94 0.94 0.99 0.89 1.83 0.01

XGBoost 0.94 0.94 0.99 0.89 2.05 0.01

CatBoost 0.94 0.94 0.99 0.89 3.54 0.01

VC 0.94 0.94 0.99 0.89 7.22 0.01
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2017). This function allows a fast and exact computation of
SHAP values, especially for the gradient boosting algorithms
(e.g., XGBoost), owing to excluding sampling and back-
ground datasets (Lundberg and Lee 2017).

Test dataset

We used the model to predict the original test dataset (not used
in the training model) consisting of the whole-rock and glass
geochemistry data of known and unknown Quaternary tephra
(n = 439) from the eastern Mediterranean (Supplementary
Data S2). The example of known tephra was selected as a
controlling group from Datça peninsula (southwestern
Anatolia, Turkey) where the distal deposits of the Nisyros
Kyra unit (133.5 ± 3.4 ka; U-Th/He, Ar-Ar) were document-
ed (Gençalioğlu-Kuşcu and Uslular 2018; Gençalioğlu-Kuşcu
et al. 2020). Here, the idea was to validate our machine-
learningmodel that will be used for the prediction of unknown
tephras (test group), which were chosen from the studies of
Satow et al. (2015) and Vakhrameeva et al. (2018). In addition
to the Kyra tephra as a controlling group, we also used the
known tephra samples from the aforementioned studies.

Results and discussion

Classification performance

The mean training accuracy of each algorithm used in this
study was above 0.89 (except for the NB and the LDA) based
on the results of both accuracy and Precision-Recall metrics
(Table 3; Figs. 3a-c). The SVM performed the least accurate
training results (0.89–0.97) among the other algorithms (e.g.,
RF, XGBoost) that have relatively higher accuracy scores
(0.93–0.99; Table 3). In addition, the accuracy values of
KNN and ANN have higher ranges revealed by their larger
quartile intervals in the box plots (Figs. 3a-c). The mean
Cohen’s kappa values for each algorithm were above 0.80,
again except for the NB and LDA (Fig. 3d). Similar to the
results of the accuracy metrics, the kappa values were the
lowest in the SVM (0.80) and the highest in the gradient
boosting algorithms (0.89; Fig. 3d) that correspond to the
scale of “very good” agreement (Altman 1990) with the train-
ing dataset. The processing times (in seconds) of each algo-
rithm for the training and testing models were also listed in
Table 3, revealing that the computational cost of these algo-
rithms is rather reasonable.

The RF, which is also known as a reliable probabilistic
algorithm especially for the compositional data (Bolton et al.
2020 and references therein), and the gradient boosting algo-
rithms with their average ensemble (VC) provided the best
accuracy results and hence will be considered in further inter-
pretations throughout the manuscript. Other than NB and

LDA, the SVM (both probabilistic and non-probabilistic)
has the lowest accuracy and kappa values among the algo-
rithms (Fig. 3 and Table 3). There are different claims on the
accuracy/performance of the different versions of the SVM
algorithm for the labeled compositional data within the litera-
ture (e.g., Petrelli and Perugini 2016; Petrelli et al. 2017;
Bolton et al. 2020). The non-probabilistic model of this algo-
rithm was successfully performed to predict the possible tec-
tonic regimes of the volcanic fields (Petrelli and Perugini
2016), or to discriminate the volcanic fields within the same
province using the major, trace, and isotope geochemistry data
(Petrelli et al. 2017; Ouzounis and Papakostas 2021).
However, its probabilistic model provided the poorest perfor-
mance in the source correlation of some Alaskan tephras
(Bolton et al. 2020). The latter study, which applied several
machine learning algorithms using the R package “caret”
(Kuhn et al. 2020), highlighted this discrepancy and indicated
the problematic parts of this algorithm in the probabilistic
model, especially for the multi-class datasets as in the case
of our study. However, we could not detect any difference
between different versions of the SVM implemented using
the Python Scikit-learn library. This might be related to the
possible distinctions in the machine learning libraries of dif-
ferent programming languages (i.e., R and Python) or the
optimization configurations. However, it is at least clear that
the performance of the SVM algorithm is relatively lower than
the RF and the gradient boosting algorithms (Table 3; Fig. 3).
In addition, as stated byBolton et al. (2020), we here like to re-
express the imbalanced behavior of geochemical datasets in
terms of both data distributions among the volcanic fields and
also within the data itself (i.e., the abundance of major element
data compared to the trace elements, especially for the glass
geochemistry).

Classification scores of the machine learning algorithms
applied on a geochemical dataset representing 8 volcanic
fields along the SAAVA are shown in Fig. 4. The ANN with
the optimum final architecture (100 hidden layers) failed in the
training model and predicted all groups as either Nisyros or
Santorini that have larger datasets (Fig. 4). However, other
algorithms provided successful predictions in the confusion
matrices (Fig. 4). The classification scores were above 0.80
for half of the volcanic fields that can be explained mostly by
the imbalanced behavior of the data (Table 1) together with
the geochemical similarities between some groups (e.g., the
significant portions of Yali volcanics were predicted as
Nisyros). Santorini, Nisyros, Kos, and Antiparos were the
well-trained volcanic fields predicted by most of the algo-
rithms (Fig. 4). Of these, Santorini and Nisyros that have the
largest number of data in our dataset have also the highest
classification scores (> 0.94; Fig. 4). This also highlighted
the importance of the total amount of data in a geochemical
dataset for the successful application of machine learning al-
gorithms. In addition to these volcanic fields, Milos and
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Methana have also higher classification scores in some algo-
rithms (up to 0.76 and 0.84, respectively) (Fig. 4).

On the other hand, we applied a feature sensitivity analysis
to one of the gradient boosting algorithms that gave the best
results (i.e., XGBoost; Fig. 5). The summary box plot indi-
cates that the Sr seems to be the most prominent element
(except for Antiparos) affecting the predictions in all volcanic
fields (especiallyMethana and Santorini, Fig. 5). Furthermore,
the major/minor elements have a dominant impact on the
machine-learning models. The possible explanations would
be either the higher numbers of major-element data compared
to the trace elements in our compiled dataset, or any petrolog-
ical implications (e.g., magma affinity). For example, the K2O
contents are especially important for the Antiparos and Kos
volcanic fields (Fig. 5) that could not be definitely discrimi-
nated in our predictions (Fig. 4).

The main problem in the training model was the effect of
larger datasets (i.e., Santorini and Nisyros) on the classifica-
tion of other volcanic fields (Fig. 4). That is especially obvious
in the ANN algorithm in which all the groups were correlated
either by Nisyros or Santorini (Fig. 4). In addition, there are
some strong similarities between the geochemical affinities of
volcanic fields, such as between Nisyros and Yali (Fig. 4),
which was also stated by a petrology-oriented study (Popa
et al. 2019). This might show that the machine learning

algorithms could help us to determine such geochemical sim-
ilarities among the volcanic fields (if exist) in a more efficient
and less time-consuming way than the manually created geo-
chemical diagrams.

The source predictions of unknown Tephras:
Conventional vs. machine learning approach

We report an example of binary discrimination plots used for
the correlation of known and unknown tephras from the east-
ern Mediterranean (Satow et al. 2015; Gençalioğlu-Kuşcu and
Uslular 2018; Vakhrameeva et al. 2018) with the volcanic
fields in our dataset in Fig. 6. These diagrams can be varied
using the different combinations of major oxides and trace
elements, but the most common ones in our dataset were il-
lustrated in Fig. 6. More detailed information can be found in
the original studies.

Tephra-fall deposits found in Datça peninsula and correlat-
ed with the Nisyros Kyra unit (Gençalioğlu-Kuşcu and
Uslular 2018; Gençalioğlu-Kuşcu et al. 2020) mostly plot
with the Nisyros and Yali samples in Fig. 6. As the age
(133.5 ± 3.4 ka) and other characteristics (e.g., depositional,
glass and mineral chemistry) of the Kyra tephra are well doc-
umented, it is relatively easy to link these with the Kyra erup-
tions of Nisyros volcano occurred before Yali volcanism (e.g.,

Fig. 3 Box and whisker plots of model performance (mean values) on cross-validations a. Accuracy score; b. F1 score (average weighted); c. Compute
Area Under the Receiver Operating Characteristic Curve (ROC-AUC) score; d. The Cohen’s kappa values

1174 Earth Science Informatics (2022) 15:1167–1182



Fig. 4 Classification scores of machine-learning algorithms applied for the SAAVA volcanics. Algorithms from upper left to the lower right: ANN,
KNN, SVM (probability), RF, CatBoost, LightGBM; XGBoost, and Voting Classifier
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upper pumice unit, 45 ± 10 ka, Guillong et al. 2014). In our
machine learning model (Table 4 and Supplementary Data
S2), we could predict the Datça distal tephras as Nisyros teph-
ra with the higher scores of various algorithms (65 to 100%).

On the other hand, it is notable that the significant amounts
of tephra samples found in the sediment cores around the SE
Aegean Sea (Satow et al. 2015) are mainly correlated with
Santorini (Fig. 6). However, it is a challenging task to ensure
that they are only correlated with the Santorini as there are some
similarities with other volcanic fields in some diagrams (e.g.,
Kos, Milos, and Antiparos). The ones that were already corre-
lated with Santorini (Satow et al. 2015) were also predicted as
Santorini in our machine learning model with the higher scores
ranging from 68% to 100% (Table 4; Supplementary Data S2).
Here, except for the RF algorithm, other higher accuracy algo-
rithms have scores greater than 90% (up to 100%;
Supplementary Data S2). Our machine learning model can sug-
gest some supporting corrections for the distal tephras, which
were correlated using the conventional geochemical plots. For
example, Satow et al. (2015) claimed that the tephra layer of
LC21–2005 is mostly correlated with the Santorini, except for
three samples that do not resemble within the geochemical
plots. However, the results of our machine learning model re-
vealed that all the samples belonging to this tephra are well
correlated with the Santorini (Table 4; Supplementary Data
S2). A similar example can be given for the following tephra
layers named LC21–3225 and LC21–3775. The former is
mostly correlated with Santorini as suggested by Satow et al.
(2015) apart from one sample that did not plot together with
others. Here, we suggest that there might be more samples that
are not correlated with Santorini, and Nisyros would be a can-
didate for these tephras based on our machine learning model

(Supplementary Data S2). Satow et al. (2015) provided an age
interval for this sample between 21.7 ± 0.6 ka and 21.8 ±
0.6 ka that might result in the reconsideration of the available
ages of the youngest Nisyros tephra (upper pumice, < 70 ±
24 ka; Guillong et al. 2014). As for the sample of LC21–3775
that could not be correlated with any volcanic source by Satow
et al. (2015), we here proclaim that Santorini can be the best
candidate for the volcanic source of this tephra layer based on
our model (Supplementary Data S2).

Besides, Satow et al. (2015) could not exactly correlate some
of the tephras (e.g., LC21–12625, LC21–13485 with the age of
>128–121 ka) and marked them with a question mark (i.e.,
Kos- Nisyros-Yali?) in their study (Supplementary Data S2)
even after using various geochemical combinations and other
proxies (e.g., geochronological data). Despite the relatively
lower performance scores compared to the predictions for
Santorini, the source predictions of these uncorrelated tephras
obtained by our model seem to be promising (Table 4;
Supplementary Data S2). The five higher accuracy algorithms
with various scores mostly address either Kos or Antiparos as a
possible volcanic source (Table 4; Supplementary Data S2).
However, since the last known volcanic activity in Antiparos
was around the Pliocene (Innocenti et al. 1982; Hannappel and
Reischmann 2005), these tephras could be correlated with the
Kos Plateau Tuff (or Kos ignimbrite), which is one of the most
voluminous ignimbrite deposits in the region with the age of
160–165 ka (Smith et al. 1996; Bachmann et al. 2010).

There are also some unknown tephras/cryptotephras together
with those that have mostly correlated with the Santorini in the
sediment core around Tenaghi Philippon (SE Balkan Peninsula;
Vakhrameeva et al. 2018). The conventional binary plots also
indicated that some of the tephras were correlated with the

Fig. 5 Summary box plots of feature sensitivity analysis applied on XGBoost algorithm
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Santorini samples (Fig. 6). However, some tephras could not be
correlated with any volcanic field around the Aegean arc (e.g.,
POP4 and POP5). or example, POP4 was geochemically corre-
lated with either Kos or Milos (Vakhrameeva et al. 2018).
However, our machine learning model predicted the volcanic
source of this tephra as either Kos (up to 47%) or Yali (up to
100%). Here, two important geological facts falsify our predic-
tion of Yali for this tephra dated as 358 ka: the first one is that the
age of Yali volcanism significantly postdated the formation of
this tephra; and the second one is that our machine learning
model did not successfully train the Yali volcanics (Fig. 4) due
to their similarities with some of the Nisyros volcanics, which
have been stated in the literature as well (e.g., Popa et al. 2019).
Therefore, we suggest that the older volcanics onKos Island (i.e.,
Kefalos Tuff; Dalabakis and Vougioukalakis 1993) would be the
best candidate for the possible volcanic source of POP4 tephra.
Certainly, this claim desires some further analysis (e.g., mineral
chemistry, etc.) and also the integration of different volcanic
fields from the eastern Mediterranean (e.g., central Italy, central
Anatolia) into the machine learning models to provide a better
constraint on this prediction.

Tephra layers called POP5 could also not be corre-
lated with the volcanic fields around the eastern
Mediterranean even after employing various geochemi-
cal plots with the datasets of different volcanic fields
(e.g., central Anatolia). Vakhrameeva et al. (2018) stat-
ed that an unknown eruption of Campanian volcanoes
could be the possible candidate for these so-called un-
known tephras mostly based on their identical age data
(> 128–121 ka). Considering that the Campanian or
other volcanoes around the eastern Mediterranean were
not included in our machine learning model, we corre-
lated POP 5 tephras of Vakhrameeva et al. (2018) most-
ly with the Kos (up to 77%), Milos (up to 98%), and
Yali (up to 93%) (Table 4, Supplementary Data S2). As
mentioned above, the temporal evolution of Yali volca-
nism is not appropriate for these tephras that have ages
ranging from 419 ka to 438 ka (Vakhrameeva et al.
2018). Therefore, we here assert that Kos (i.e., Kefalos
Tuff; Dalabakis and Vougioukalakis 1993) and Milos
would be the best candidates for the possible volcanic
sources of these tephras (Supplementary Data S2).

Fig. 6 Conventional binary geochemical plots generated by the compiled geochemical datasets corresponding to 8 volcanic fields of the SAAVA
(Supplementary Data S1). a Gençalioğlu-Kuşcu and Uslular 2018; b Vakhrameeva et al. 2018; c Satow et al. 2015

1177Earth Science Informatics (2022) 15:1167–1182



Ta
bl
e
4

T
he

se
le
ct
ed

m
ac
hi
ne

le
ar
ni
ng
-b
as
ed

es
tim

at
io
ns

of
vo
lc
an
ic
so
ur
ce
s
fo
r
th
e
kn
ow

n
an
d
th
e
un
kn
ow

n
te
ph
ra
s
in

th
e
A
eg
ea
n
re
gi
on

Sa
m
pl
e
N
o.

#
L
oc
at
io
n

A
ge

(k
a)

V
ol
ca
no

So
ur
ce

R
ef
er
en
ce

E
st
im

at
ed

V
ol
ca
no

(M
ea
n
C
la
ss
if
ic
at
io
n
Sc
or
es
)

R
F

X
G
B

L
G
B
M

C
A
T

V
C

T
D
P
6–
21

18
D
at
ça

Pe
ni
ns
ul
a,
T
ur
ke
y

13
3.
5
±
3.
4

N
is
yr
os

K
yr
a

a,
b

N
is
yr
os

(9
5%

)
N
is
yr
os

(9
8%

)
N
is
yr
os

(7
8%

)
N
is
yr
os

(9
8%

)
N
is
yr
os

(1
00
%
)

L
C
21
–2
00
5

34
SE

A
eg
ea
n
M
ar
in
e

Se
di
m
en
tC

or
e-
L
C
21

12
.0
±
0.
4

12
.1
±
0.
4

Sa
nt
or
in
i

c
Sa
nt
or
in
i

(9
0%

)
Sa
nt
or
in
i

(9
0%

)
Sa
nt
or
in
i

(6
8%

)
Sa
nt
or
in
i

(9
7%

)
Sa
nt
or
in
i

(1
00
%
)

L
C
21
–1
26
25
*

27
Sa
m
e
ab
ov
e

>
12
8–
12
1

K
os
-N

is
yr
os
-Y

al
i?

c
K
os

(4
1%

)
A
nt
ip
ar
os

(6
6%

)
K
os

(8
6%

)
A
nt
ip
ar
os

(5
1%

)
K
os

(5
5%

)

L
C
21
–1
34
85
*

24
Sa
m
e
ab
ov
e

>
12
8–
12
1

S
am

e
ab
ov
e

c
K
os

(4
6%

)
A
nt
ip
ar
os

(6
6%

)
K
os

(9
6%

)
A
nt
ip
ar
os

(5
4%

)
K
os

(6
3%

)

PO
P4

1
T
en
ag
hi

Ph
ili
pp
on
,S

E
B
al
ka
n
Pe
ni
ns
ul
a

35
8

A
eg
ea
n
A
rc
,K

os
,o
r
M
ilo

s?
d

Y
al
i

(4
0%

)
K
os

(4
7%

)
Y
al
i

(1
00
%
)

Y
al
i

(5
5%

)
Y
al
i

(5
5%

)

P
O
P
3–
63
.0
15
b,
67
.0
5,
68
.9
5

3
S
am

e
ab
ov
e

33
6,
36
8,
38
2

Sa
nt
or
in
i

d
Sa
nt
or
in
i

(9
8%

)
Sa
nt
or
in
i

(1
00
%
)

Sa
nt
or
in
i

(1
00
%
)

Sa
nt
or
in
i

(1
00
%
)

Sa
nt
or
in
i

(1
00
%
)

P
O
P
5–
77
.3
5

1
S
am

e
ab
ov
e

43
6

U
nk
no
w
n

d
M
ilo

s
(5
1%

)
M
ilo

s
(4
2%

)
M
ilo

s
(7
7%

)
M
ilo

s
(5
2%

)
M
ilo

s
(5
0%

)

P
O
P
5–
76
.7
5

1
S
am

e
ab
ov
e

43
3

U
nk
no
w
n

d
N
is
yr
os

(3
0%

)
K
os

(5
8%

)
K
os

(7
7%

)
Sa
nt
or
in
i

(3
8%

)
K
os

(5
6%

)

P
O
P
5–
75
.8
5

1
S
am

e
ab
ov
e

42
8

U
nk
no
w
n

d
M
ilo

s
(4
4%

)
Sa
nt
or
in
i

(3
4%

)
M
ilo

s
(9
8%

)
M
ilo

s
(4
5%

)
M
ilo

s
(5
7%

)

a
G
en
ça
lio

ğl
u-
K
uş
cu

an
d
U
sl
ul
ar

(2
01
8)
;
b
G
en
ça
lio

ğl
u-
K
uş
cu

et
al
.
(2
02
0)
;
c
S
at
ow

et
al
.
(2
01
5)
;
d
V
ak
hr
am

ee
va

et
al
.
(2
01
8)
.
*R

ep
re
se
nt
in
g
th
e
m
ea
n
va
lu
e
of

an
al
ys
es

fr
om

sa
m
e
sa
m
pl
es

(s
ee

Su
pp
le
m
en
ta
ry

D
at
a
S2

fo
r
th
e
en
tir
e
re
su
lts
)

1178 Earth Science Informatics (2022) 15:1167–1182



Concluding remarks

Our recent findings in this study enabled us to conclude that:

& The Random Forest together with the gradient boosting
algorithms (e.g., XGBoost, LightGBM) provided the best
performance for the imbalanced geochemical dataset,
while the Naïve Bayes, Linear Discriminant Analysis,
Support Vector Machine, and the Artificial Neural
Network were the poorest performing algorithms.

& According to the feature sensitivity analysis on XGBoost
algorithm, the Sr and some major elements (e.g., K2O,
MnO) have higher impacts on the prediction models that
can be linked with the petrological characteristics of the
volcanic fields. However, this needs some further investi-
gations for a better clarification.

& Despite the recent developments and various configura-
tions of the machine learning algorithms, the imbalanced
behavior of a dataset, which is a common problem in earth
sciences, is still one of the important debugs for successful
training and testing models.

& The testing model was successful to predict the known or
unknown tephras when they corresponded to the volcanic
field that has larger data in our dataset (e.g., Nisyros,
Santorini). However, there is no clear difference between
the conventional plotting and the machine learning appli-
cation for the source prediction of unknown tephras that
possibly correlate with the volcanic fields including rela-
tively less amount of geochemical data.

& The idea of geochemical similarity between some volca-
nics of Yali and Nisyros was also supported by our ma-
chine learning model. Despite a need for further analyses
and corrections, we here suggested possible volcanic
sources for POP4 (as Kefalos tuff) and POP5 (as Kos or
Milos) samples of Vakhrameeva et al. (2018) and also for
some samples (e.g., LC21–12625, LC21–13485) of
Satow et al. (2015), which are correlated mostly with the
Kos ignimbrites.

& Our freely accessible Python code established in this study
together with the extensible geochemical dataset to imple-
ment the machine learning algorithms can be easily used
for further tephrochronology studies around the eastern
Mediterranean as a regular tool to predict or at least to
decrease the number of possible volcanic sources before
elaborating the common correlation methods.

& The machine learning applications in tephra correlation
can be as yet considered as a fast and helpful tool (not a
decision-maker) that eliminates the possible candidates
and suggests a quantitatively best correlation. Here, there
is still a need for an expert opinion to decide the possible
volcanic sources for the unknown tephras considering the
available geological and geochronological data. The accu-
racy of such applications will possibly be improved in the

future together with the integration of region-based cur-
rent tephra databases (e.g., Lowe et al. 2015; Tomlinson
et al. 2015), the increasing amount of geochemical and
interrelated datasets (e.g., mineral chemistry, geochronol-
ogy), and the recent analytical and statistical develop-
ments on the tephra correlations (e.g., Lowe et al. 2017).

Supplementary Information The online version contains supplementary
material available at https://doi.org/10.1007/s12145-022-00797-5.
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