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Abstract
Land subsidence is mainly caused by excessive groundwater abstraction from aquifers. This study introduces Dynamic
Subsidence Vulnerability Index (DSVI) by estimating possible land subsidence time variations by considering changes in
groundwater level based on the ALPRIFT framework in Iran’s Hadishahr Plain, which is summarized in three modules. (i)
Module I: mapping Subsidence Vulnerability Index (SVI) utilizing the ALPRIFT framework and optimization its weights by the
Multiple Artificial Intelligence Models (MAIM) strategy; (ii) Module II: predicting groundwater level by Group Method of Data
Handling (GMDH); and Module III: mapping DSVI by combining the results fromModules I and II. A two-pronged strategy is
employed in MAIM: In Level 1, multiple models are derived from Sugeno Fuzzy Logic (SFL) and Support Vector Machin
(SVM); and in Level 2, the outcomes of Level 1 models are combined by Artificial Neural Networks (ANN). According to the
results: (i) ALPRIFT exhibits a correlation coefficient (r) of about 0.55 with corresponding measurements of land subsidence; (ii)
using SVM and SFL to optimize the weights, r is raised to 0.83 and 0.74, respectively; (iii) the use of multiple models at Level 2
results in better performance than that of a single model at Level 1; and (iv) on the DSVI map, the central part of the plain is
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Highlights
Dynamic Subsidence Vulnerability Indices (DSVI) is summarized in
three Modules.
Module I: setting up an SVI and optimizing it by Multiple Artificial
Intelligence Models (MAIM) strategy.
Module II: predicting groundwater level by Group Method of Data
Handling (GMDH) model.
Module III: mapping DSVI by integrating the results fromModules I and
II in Iran’s Hadishahr Plain aquifer.
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vulnerable at hotspot areas where groundwater is being improperly withdrawn from the Hadishahr Plain aquifer, increasing the
risk of subsidence.

Keywords ALPRIFT Framework . Dynamic subsidence vulnerability indices (DSVI) . Multiple Artificial Intelligence Models
(MAIM)

Abbreviations
SVI Subsidence Vulnerability Indices
TSVI Dynamic SVI
GWL Groundwater Level
FL Fuzzy Logic
SFL Sugeno Fuzzy Logic
InSAR Interferometric Synthetic Aperture Radar
GPR Ground-Penetrating Radar
OW Observation well
CSVI Conditioned SVI
MF Membership Function
BAF Basic ALPRIF framework
RMSE Root Mean Squared Error
r Correlation coefficient
SVM Support Vector Machine
MMs Multiple Models
GMDH Group Method of Data Handling
ANN Artificial Neural Networks
AUC Area Under Curve
MAIM Multiple Artificial Intelligence Models
GPS Global Positioning System
SC Subtractive Clutering
MLP Multi layer perceptron
SLC single look complex
NSGA-II Non-dominated Sorting Genetic Algorithm-II
R2 Coefficient of determination
ROC Receiver Operating Characteristics

Introduction

A novel approach for mapping Subsidence Vulnerability
Indices (SVIs) is developed by Nadiri et al. (2018). Three
modules are used in this study to evaluate ALPRIFT’s useful-
ness for studying land subsidence in plains with sparse data.:
Module I maps SVI using Multiple Artificial Intelligence
Models (MAIM); Module II predicts groundwater levels
(GWLs) based on Group Method of Data Handling
(GMDH)- type neural networks; and subsidence evolution in
Module III is based on the combined results from Modules I
and II. There are seven data layers including Aquifer media
(A), Land use (L), Pumping of groundwater (P), Recharge
(R), Impacts induced by aquifer thickness (I), Fault distance
(F) and water Table decline (T) in ALPRIFT framework,
some of which are time-variant, while others are time-invari-
ant. A novel aspect of this research is introducing Dynamic

SVI (DSVI) mapping problems in order to enhance the accu-
racy of mapping. The three T, P, and R data layers could be
changing during next 10-20 years or so. Based on the avail-
able data for study area, there is not enough evidence for
variations in R; the P values for agricultural activities from
the 1990 s are sparse; nevertheless, this layer plays an impor-
tant role for DSVI mapping because it affects T values.

As an anthropogenic hazard, land subsidence has become a
major environmental issue all around the world (Galloway et al.
1999; Hayashi et al. 2009; Saatsaz et al. 2013; Ye et al. 2015;
Jafari et al. 2016; Nadiri et al. 2018; Rahmani et al. 2019;Malmir
et al. 2021; Gharekhani et al. 2021). Land subsidence can result
in the collapse of withdrawal wells, the need to divert rivers
because of changes in elevation, and the damage to foundations,
drainage systems, transportation networks, and underground
pipelines caused by land subsidence (Kihm et al. 2007). In spite
of extensive research on land subsidence, there are few studies on
land subsidence triggered by over abstraction as an anthropogen-
ic phenomenon. (Anumba and Scott 2001; Wang et al. 2018).
These studies are also fragmented as land subsidence occurs in
response to several causes such as: (i) the abstraction of ground-
water, as happened in Thailand and Spain (Lorphensri et al.
2011); (ii) degrading organic soils, e.g. Venice, Italy (Tosi et al.
2013); (iii) dissolving limestone by karstification, e.g. Tampa in
Florida (Beck 1986); (iv) extracting fossil fuel resources from
underground reservoirs, e.g. Wilmington oil reservoir,
California (Colazas and Strehle, 1995); (v) mining at subsurface,
e.g. Bethlehem Mines Corporation in central Pennsylvania
(Sossong, 1973); and (vi) meeting increased water demand from
household, industry and agriculture.

Geogenic and anthropogenic activities inducing land subsi-
dence can be categorized as follows: (i) variations in the thick-
ness of compressible alluvium and distance from faults, as a
result of geogenic activities (Avila-Olivera and Garduño-
Monroy, 2008; Gu et al. 2018); and (ii) changes in land use
caused by increasing groundwater abstraction because of anthro-
pogenic activities (Galloway and Burbey 2011). Subsidence is
controlled by one or more dimensions in each process which is
effective in subsidence. In the state of the art, there are diverse
techniques for different fields of studywith no common concepts
to bridge the gap; this is a flaw for SVI mapping, outlined below.

As a result of the lack of cross-cutting techniques, re-
searchers used various methods to study and monitor subsi-
dence and settlement, including field evidence and historical
data (Psimoulis et al. 2007); (Interferometric Synthetic
Aperture Radar (InSAR) (Ciampalini et al. 2019); Ground-
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Penetrating Radar (GPR) (Avila-Olivera and Garduño-
Monroy 2008); Global Positioning System (GPS) (Sato et al.
2007). ALPRIFT, proposed by Nadiri et al. (2018), is also
applicable for evaluating subsidence events triggered by both
geogenic and anthropogenic processes. In this scoring system,
the rate serves as a proxy for local variation, and the weight
serves as a proxy for the importance of the underlying layer.
As such, the scoring system is inherently subjective; however,
a MAIM strategy is employed to minimize the level of
subjectivity.

Previous studies on land subsidence using ALPRIFT have
focused on reducing inherent subjectivities (e.g. Nadiri et al.
2018; Sadeghfam et al. 2020a) and indexing vulnerability into
risk (e.g. Sadeghfam et al. 2020a, b). This research shows how
MAIM practices can reduce subjectivity and integrate DSVI
problems. In order to reduce subjectivity, modeling strategies
have been developed; however, they are wide in choice with-
out achieving any meaningful results. The MAIM modelling
strategy used by the paper is an identical two levels of model-
ing as follows: at Level 1, multiple models are included
Sugeno FL (SFL), and Support Vector Machine (SVM); (ii)
at Level 2, the models at Level 1 are combined by Artificial
Neural Networks (ANN); and (iii) each model involves learn-
ing from an appropriate set of target values.

The paper highlights a set of novelties as follows: (i) dy-
namic vulnerability mapping by developing DSVI; (ii) formu-
lating a three module strategy, in which Module I for SVI
mapping employ MAIM practices and Module II for a predic-
tive groundwater model employ Group Method of Data
Handling (GMDH)-type neural networks. The formulated
modelling strategy is applied in the Hadishahr Plain, a region
in northwest Iran that is part of the East Azerbaijan province.
The following reasons reveal the necessity for identifying
hotspots in the study area: (i) East Azerbaijan’s GWL has
dropped by more than 4 m at a rate of 31 cm/year on average
for the past 14 years (from 2004 to 2018) based on the East
Azerbaijan Regional Water Authority (ERWA) reports. (ii)
This region has had a strong agricultural economy, but it has
also undertaken changes without any management plan since
the availability of abstraction wells in 2000, resulting in an
over-extraction of aquifer. The Hadishahr Plain is one of the
sub-basins of the Aras river basin with extensive groundwater
storage, all of which are declining.

Study area

The study area extends over 55.5 km2 (Fig. 1) and
contains Hadishahr Plain in East Azerbaijan province.
The aquifer lies in the Dareh Diz basin, which lies
south of the Kiamaki Mountain and drains to the Aras
River. The main tributaries of Dareh Diz include

Livarjan and Gargar rivers. As of 1986-2017, the mean
annual precipitation and temperature are 192.1 mm and
14.2 °C, respectively, based on data from Jolfa Synoptic
Station.

(Hydro)geological setting of the study area

Hadishahr Plain (see Fig. 1) is mainly covered with
alluvium made up of sand, silt and clay, causing subsi-
dence in an over-extraction region. Different geological
formations are detected in the basin. The regional igne-
ous rocks as the oldest rock (Devonian) located in
the southern part and Red sandstone, marl limestone
and red shale formation mostly occurred in the
Permian period, and associated with dolomite and lime-
stone formations (Triassic) located in the southern and
western parts. Most of the area’s southeast is covered
by conglomerate (Eocene) and sandstone (Jurassic) for-
mations, while the region’s north is covered by
Quaternary alluvium.

Due to the northwest-southeast faults running along the
southern part of the region, the Triassic and Eocene deposits
are driven on separate units in this part of the region.
Additionally, in this part of the region Paleozoic deposits were
exposed in the fault direction that formed the Qaragoz-
Divandaghi Mountains, as well as several long terraces in
the southeast. The faults in the area include the Hadishahr fault
along the direction of northwest to southeast and it is covered
by bedded dolomite in the surface.

Hadishahr aquifer is an unconfined type, and it has ten
observation wells (OWs), which allow GWLs to be monitored
continuously. Figure 1 illustrates the distribution of their lo-
cations across the plain. As a result of high withdrawal rates
aroundHadishahr city because of the agricultural and drinking
water demands, this region produces the highest cone of de-
pression. According to the records in the Hadishahr observa-
tion wells, GWLs have declined at a rate of roughly 31 cm/
year (between 2004 and 2018). The thicknesses of alluvium in
the plain are often low at the margins, but become greater
towards its middle. Thus, the thickest deposition is typically
found in the middle and western parts. The groundwater in the
aquifer is extracted from 65 withdrawal wells, 10 natural
springs, and 38 qanats.

Land use

With a population of 34 thousand, Hadishahr is the largest city
in the study area. In this region, agricultural activity is the
main economic activity, due to its fertile soil. The next section
discusses the classification of land use.
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Materials and methods

Figure 2 presents the flowchart of the developed method-
ology and some details of the three modules. Module I
includes mapping SVI for Hadishahr Plain by applying a
strategy at two Levels based on the ALPRIFT framework
and constricting a model for predicting water table at a

specified time in Module II. Finally, Module III presents
the evolution maps of SVI during next years by combin-
ing the results from Modules I and II. Notably, the
Multiple Artificial Intelligence Modelling (MAIM) strate-
gy is constructed at two levels. Multiple models, such as
Sugeno FL (SFL) and Support Vector Machin (SVM), are
used at the first level in order to optimize the weights of

Fig. 1 Geological and geographic location of Hadishahr sub-basin
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ALPRIFT, and at the second level, the models at Level 1
are combined using the GMDH algorithm.

Module description

Module I

The modelling strategy for Module I is presented in Fig. 2 and
the various models/algorithms used by the module are
outlined below.

Basic ALPRIFT Framework (BAF) ALPRIFT was developed
to calculate Subsidence Vulnerability Indices (SVIs)
within the context of any aquifer or plain system
(Nadiri et al. 2018). The framework brings together sev-
en data layers and processes them through a scoring and
weighting system. The data layers comprise: Aquifer
media (A), Land use (L), Pumping of groundwater (P),
Recharge (R), Impacts induced by aquifer thickness (I),
Fault distance (F) and water Table decline (T). Even

though the variations in these layers are presumed to
be independent of one another, correlative relationships
between them should be expected. Thus, BAF (Basic
ALPRIFT Framework -BAF) does not help in identify-
ing in-built correlations in the data. It merely evaluates a
set of predetermined values, resulting in subjectivity
issue.

In order to estimate SVI by BAF, the following steps
are taken: (i) Utilize the GIS tool to divide the study
domain into grid cells (pixels); (ii) Array each pixel with
seven corresponding raw data layers, each of which con-
tains the prescribed value, as per raw data; (iii) assign rate
values at each pixel to the raw values; (iv) and give each
data layer a weighting value. SVI can be described as
follows:
SVI ¼ ArAwþ LrLwþ PrPwþ RrRwþ IrIw

þ FrFwþ TrTw ð1Þ

Where, a subscript ‘r’ denotes rate and a subscript ‘w’
refers to weight; SVI stands for Subsidence Vulnerability

Fig. 2 The flowchart of methodology used in this study
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Index while ALPRIFT data layers are represented by upper-
case acronyms. Data layers are based on weights and rates
used by Nadiri et al. (2018).

An insight into ALPRIFT data layers A single ALPRIFT data
layer provides detailed information about soil texture and
structure within a study area as a function of the physical
characteristics of aquifer area. However, closer attention to
the data layers shows that a set of them are time invariant
and these comprise ALRIF which is intrinsic characteristics
of study area for subsidence process. The P data layer, the time
variability of which is driven by water abstraction due to an-
thropogenic activities and the T data layer, the time variability
of which is driven by complex hydrogeological processes.

Using InSAR data The study uses interferometric synthetic
aperture radar (InSAR) technique and Sentinel-1 A images
for the detection of land subsidence. The period under inves-
tigation is from April 2016 to April 2017. We have used two
single look complex (SLC) Sentinel-1 images (interferometric
wide mode) from ascending orbit 174 (2016.04.16 and
2017.04.16) to produce a deformation map of the region.
Due to the short vegetation of the study area and semi-arid
to arid climate of Iran, differential InSAR (DInSAR) analysis
can produce acceptable deformation maps for land subsidence
(An example of simple DInSAR for long temporal baselines
are given in http://utie.ir/en/2019/11/07/land-deformation-
maps-in-tehran-detected-by-synthetic-aperture-radar-sar-
interferometry/). We can obtain further information about the
subsidence behavior of land by incorporating further analyses,
such as SBAS (small baseline subset) or PS-InSAR (perma-
nent scatterer); however, there is less uncertainty inherent in
such approaches. The required procedures to InSAR process-
ing include as follows: coregistration; forming an interfero-
gram and estimating coherence; topographic phase removal;
phase filtering; phase unwrapping; terrain correction; taking
line-of-sight displacement and converting it to vertical dis-
tance and absolute distance. Further information about these
procedures is available by Hanssen (2001).

The measured subsidence by InSAR data used to condition
the SVI, as:

CSVI ¼ Si � Smax
Smin � Smax

� 24

� �
þ Si � Smin

Smax � Smin
� 240

� �
ð2Þ

Where, CSVI represents Conditioned SVI at pixel i; Si is
subsidence at grid cell i (in cm), Smax denotes maximum of
subsidence value; and Smin is minimum of subsidence value. It
is noteworthy that the minimum and maximum SVI indices
are 24 and 240, respectively.

Multiple Artificial Intelligence Models (MAIM) A sufficient
level of accuracy should be achieved in mapping SVIs for
both Module I and Module II to be incorporated into an
analysis of land subsidence variation in a plain. Nadiri et al.
(2014) critique the use of advanced artificial intelligence
modeling methods for constructing innovative models, but
existing practices are criticized for accepting one from multi-
ple models as “superior” and eliminating the rest. They pro-
posed Multiple Artificial Intelligence Modeling (MAIM) ap-
proach so that many modelling strategies can be unified in
order to improve accuracy through learning from multiple
models. As per Nadiri et al. (2019); Khatibi et al. (2020),
Khatibi and Nadiri (2021), models used through MAIM prac-
tices are defensible for enhancing their accuracy through strat-
egies. To achieve defensible models, the strategies are needed
and the paper uses the following procedure for Module I. The
modelling strategy processes at different levels are as follows:

Level 1: Modules I construct multiple models using
the following Sugeno Fuzzy Logic (SFL) (Nadiri et al.
2013; 2020) and Support Vector Machine (SVM)
models (Nadiri et al. 2017a). The fuzzy sets theory
assigns partial membership ranging from 0 to 1 to
input and output data sets by selecting an appropriate
Membership Functions ðMF e.g. trapezoidal, Z-
shape, S-shape, sigmoid, triangular, and Gaussian,).
It is possible to extract membership functions and
clustering functions from inputs utilizing clustering
algorithms, like the Subtractive Clustering (SC) meth-
od (Chiu 1994; Li et al. 2001), which makes use of
SFL modeling to eliminate redundant clustering and
provide if-then rules. By using a trial-and-error meth-
od to select the radius of the ideal number of clusters
and fuzzy if-then rules, the ideal cluster radius is de-
termined. Clustering radius varies from 0 to 1, as does
the number of rules, and it determines how many clus-
ters there are in the SC method. Based on the
ALPRIFT scoring system site data, SFL calculates
the weight values using the SC method (Li et al.
2001). Support Vector Machine (SVM) is a highly-
established kernel-based machine learning approach
and the paper uses its regression capabilities. In the
feature space, the kernel functions for prediction are
derived by utilizing linear high dimensional hypothe-
sis spaces. SVM in the paper further uses the Least-
Squares method to learn the values of two of its train-
ing parameters (i.e. σ and γ).

Level 2: The Artificial Neural Network (ANN) is used
to incorporate the models including SFL and SVM at
Level 1. In other words, the ANNmodel as a combiner
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model reuses outputs of both models at Level 1 as its
inputs at Level 2 forModule I. A class of ANN namely
multilayer perceptron (MLP) network is used in this
study which is made up of an input layer, one or more
hidden layers, and one output layer. MAIM is
expressed mathematically as follows:

SVIMI :1�SFL ¼ SFL A; L; P; R; I ; F; Tð Þ ð3aÞ
SVIMI :1�SVM ¼ SVM A; L; P; R; I ; F; Tð Þ ð3bÞ
SVIMI :2 ¼ ANN SVIMI :1�SFL; SVIMI :1�SVMð Þ ð3cÞ
Where, SVIMI :1�SFL and SVIMI :1�SVM are the output from
Module I at Level 1 and both SFL and SVM are used in the
sense of: “is a function of.” where, SVIMI :2 is the output from
Module I at Level 2 and ANN is used in the sense of: “is a
function of.”

Module II

Module II is implemented to predict GWL using Group
Method of Data Handling (GMDH)- type neural net-
works. It is one brand of implementing neural networks,
developed by Ivakhnenko (1978), which uses Volterra-
Kolmogorov-Gabor polynomial (Ivakhnenko 1968).
Generally, GMDH can typically be applied for modeling
complicated systems and its topography utilizes feed-
forward connections between layers of neurons with
similar spatial alignment arranged in pairs connected
by quadratic polynomials, producing new neurons with-
in the layer following. As part of GMDH, the direct
relationship between multiple inputs and outputs is rep-
resented by a Volterra series, as follows (Ivakhnenko
1968):

y ¼ a0 þ
Xn
i¼1

aixi þ
Xn
i¼1

Xn
j¼1

aijxixj

þ
Xn
i¼1

Xn
j¼1

Xn
k¼1

aijkxixjxk þ ð4Þ

Where, X = (x1, x2, …, xn) are the inputs data, _y is the
output of model and A = (a0, a1, …, an) are the values of
polynomial coefficients. A polynomial of the second degree
with two variables such as the Volterra series can be analyzed
using Eq. 4.

y¼ Gðxi; xjÞ ¼ a0 þ a1xi þ a2xj þ a3xi2 þ a4xj2 þ a5xixj ð5Þ

Where, A = (a0, a1,…, an) are unknown coefficients in the
Volterra series.These coefficients are estimated by the least
squares method by using a set of input and output values.
General steps required for implementation of GMDH-type
neural networks are available in the literature, see for example:
Ivakhnenko (1978); Farlow (1984); Hiashi and Tanaka
(1990]) Kim and Park (2005); Ebtehaj et al. (2015) and
Sfidari et al. (2018).

As shown in Fig. 1, the model structure employs time-series
as an input variable. The lagged values of GWL selected by
Non-dominated Sorting Genetic Algorithm-II (NSGA-II) that
presented in Table 2. NSGA-II is a widely usedmulti-objective
optimization algorithm that provides three advantages, includ-
ing fast sorting that does not dominate, a fast comparison pro-
cedure, and an easy way to estimate the distance between two
objects that are crowded. (Deb et al. 2002). An overview of
NSGA-II can be summed up as follows: (i): Step 1: Establish a
population and constraint based on the problem domain, ii)
Sorting based on the initial population’s nondomination
criteria, iii) As soon as the sorting is completed, the crowding
distance value is allocated and ranking and crowding distance
determine which individuals in the population are selected, iv)
Binary tournament selection using a crowded comparison is
used to select individuals, v) Using simulated binary cross-
overs and polynomial mutations for real-coded GA, vi)
Combined with the current generation, the new generation is
selected based on the offspring of the current generation. After
selecting delay of input data, the GMDH is constructed which
is expressed mathematically as follows:

GWLGMDH ¼ GMDH GWLt0�1;GWLt0�3;GWLt0�24;GWLt0�30;GWLt0�35;GWLt0�45ð Þ ð6Þ

Where, GWLGMDH is the output from the GMDH model;
GWL t0-1 is GWL at the before one-time step at OWs; GWL
t0-3 is GWL at the before three-time step at OWs and so on.

Module III

The results fromModules I and II are combined in Module III
to produce DSVI maps. Module III use prediction of the water
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table for future time as a results of the prediction model at
Module II to provide a map for a particular time, expressed as:

DSCI ¼ SVIMI:2 butusing GWLMII ð7Þ

Where, DSVI is Dynamic Subsidence Vulnerability Index;
SVI MI.2 is the output fromModule I at Level 2; GWLMII is the
output from Module II.

Dataset preparation

GWLs are monitored with 10 observation wells, and
geological logs are recorded in 15 wells. Besides, there are
65 pumping wells in the Hadishahr palin. The data preparation
processes and formulation by Basic ALPRIFT Framework are
presented in detail by Nadiri et al. 2018, 2020. In this section,
we will provide some details to ensure reproducibility.

Data layers for Module I

In detail, Nadiri et al. (2018) describe seven data layers in
ALPRIFT, including best practices associated with them. A
description of the data layers is provided in Fig. 2 and
Appendix A (Table A1), as well as the sources of data.

Validation

In definition, a framework cannot be subjected to theory, em-
pirical analysis or measurement. However, measuring perfor-
mance with quantitative data should be carried out in order to
set a quantitative basis for its evaluation. Using a local global
positioning system (GPS) dataset can be used to measure sub-
sidence as has been shown (Moiwo and Tao, 2015); however,
GPS is unavailable due to financial limitations for the study
area. Land subsidence can be assessed by using satellite

images taken by remote sensing. In this research, satellite
images are used to employ a technique designed to detect
ground subsidence by using Interferometric Synthetic
Aperture Radar (InSAR) images. InSAR results were obtained
for April 2016 to April 2017 to meet this goal. The data proc-
essed from April 2016 to April 2017 illustrated maximum
subsidence of 16 cm (Fig. 5c), with an accuracy of about
10 mm associated with deformation. In the absence of more
info, this information indicates that the area is facing increased
concerns about subsidence.

Training and testing data for Module I

A grid of 200 m × 200 m was generated from the ALPRIFT
spatial models, thus discretizing the spatial data into 903
pixels. Each pixel is represented by a set of fields comprising
7 ALPRIFT data layers, a measured value, and one field for
each modelled SVI value. There was no measurement for all
of the pixels, so the Condition Subsidence Vulnerability
Indices (CSVI) were applied according to Eq. 2. A total of
903 pixels were generated with CSVI values and are used
during the training and testing stages of the model. Data
for training and testing phases is divided randomly, where
data points from 80% of the dataset are used for developing
model in training stage and the remaining 20% are used for
testing the developed model.

Data requirements for Module II

There are ten OWs in Hadishahr Plain. An available report
from EARWA, Unknown (2018), reported 16 years (2002-
2018) of recorded GWLs. In Fig. 3, the annual average of
GWLs in ten OWs is shown from 2002 to 2018. 198 GWL
values for each OW were used as raw data for this module. In

Fig. 3 Annually average of GWL in the Hadishahr Plain aquifer from 2002 to 2018
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terms of data sets, 80% of the GWL data was used for training,
and 20% about testing.

Performances creterion

Root Mean Squared Error (RMSE), coefficient of determina-
tion (R2), correlation coefficient (r) and Receiver Operating
Characteristics (ROC) (Swets 1988) are used to measure the

performance of the model. R2 and RMSEmetrics determine the
overall goodness-of-fit between the simulated and observed
values. If the RMSE value is close to 0, then it means the

prediction is more accurate. Coefficient of determination (�1
� R2 � 1 ) is the proportion of variance explained by a model
in the observation data. The high R2 values indicate that the
predictions and the observed values agree better (Legates and
McCabe 1999). The correlation coefficient range is between +1

Fig. 4 Rated BAF data layers; (a) Aquifer media; (b) Land use; (c) Pumping of groundwater; (d) Recharge; (e) Impacts in terms of thickness; (f) Fault
distance; (g) water Table decline, (h) predicted water Table decline
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and −1. Zero value represents no correlation, 1 value is a total
positive correlation, and −1 is a total negative linear correlation.

Receiver Operating Characteristic (ROC) is an analysis
tool based on the “Signal Detection Theory” and is used for
spatial goodness-of-fit for correlation of two images. As mea-
sured by the Area Under Curve (AUC), the ROC curve accu-
racy represents the probability of correct diagnosis when the
value is 1, however, when it is 0.5, it represents a strong cor-
relation between two images.

Results

The results for Modules 1, 2 and 3 are presented in this
section.

Module I results

Module I: ALPRIFT data layers

Each data layer are shown in Fig. 4 which indicates that they
are largely independent of each other but some correlation
between the data layers may be expected at individual pixels.

These are the basis for formulating modelling strategies to
learn inherent correlations.

Module I: Basic ALPRIFT Framework (BAF)

The ALPRIFT data layers, shown in Fig. 3, are arranged in a
geospatial database in ArcGIS software to index its spatial
vulnerability by the Basic ALPRIFT Framework (BAF) using
Eq. 1 through the procedure illustrated in Fig. 1. The level of
SVI varies from 24 to 240, and its range can be categorized
into four classes (class 1: 24-78, class 2: 78-132, class 3: 132-
186, and class 4: 186-240). In Fig. 5a, rates and weights are

Fig. 5 Subsidence mapping to identify hotspots: (a) BAF; (b) MAIM-ANN; (c) measured subsidence; (d) AUC/ROC performance metrics (BAF,MI.1-
SFL, MI.1-SVM and MI.2-ANN)

Table 1 Performance metrics for SFL, SVM and MAIM-ANN models
in their training and testing phases

Level Models Training Testing

RMSE R2 r RMSE R2 r

Level SFL 0.109 0.744 0.86 0.29 0.688 0.82

Level 1 SVM 0.1 0.839 0.91 0.156 0.787 0.88

MAIM – Level 2 ANN 0.085 0.877 0.93 0.1 0.852 0.92

SVM parameters in training phase: σ = 3.9 and γ = 1.97
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mapped to SVI values from Nadiri et al. (2018). The SVI
values range between 78 and 186 for Hadishahr Plain;
According to the above-mentioned classifications, the per-
centage area of each class is as follows: class 1 — 0%; class
2 — 55.6%; class 3 — 44.4%; class 4 — 0%.

BAF performances are measured by the comparison of its
SVI values (Fig. 5a) with measured subsidence (Fig. 5c).
Clearly, convergences and divergences between the results
can be seen, which is to be expected. A statistical test at a
95% level demonstrates the significance of this performance
metric, which is established by r for BAF of 0.55. The above
findings are strikingly similar to those presented in the au-
thors’ DRASTIC vulnerability index studies (Nadiri et al.
2017a, b, c) and in the BAF study (Nadiri et al. 2018). The
MAIM strategy highlighted above thus proves to be a neces-
sary tool for improving correlation values.

Module I - Level 1: Sugeno Fuzzy Logic (SFL) and Support
Vector Machine (SVM)

Level 1 models (SFL and SVM) are created based on their
clustering radii and the if-then rules they use, which are set as
they increase from 0 to 1. Using the lowest RMSE as an
indicator, a clustering radius of 0.9 was found to generate 27
‘if-then’ rules. The SVM type of Least Square (SVM-LS) is
used at Level 1. The model has two training parameters σ and
γ, the values of which are presented in Table 1. Both SFL and
SVM are compared using three metrics, r, R2 and RMSE,
during both the training and testing phases, which indicate
whether the results are fit-for-purpose.

Module I - Level 2: MAIM model combiner using Artificial
Neural Networks (ANN)

ANN, the combiner model at Level 2, incorporates the outputs
from SFL and SVM models at Level 1 as inputs, and uses
CSVI as its target value. In the ANNmodel, theMLP structure
is used in conjunction with the Levenberg–Marquardt (LM)
training algorithm. In this structure, an input layer
is composed of two neurons and an output layer

is composed of one neuron. The hidden layer consists of four
neurons. Neurons of the hidden layer use the tangent sigmoid
(TANSIG) transfer function whereas those in the output layer
use a linear PURELIN function. Following 1500 epochs, the
RMSE is 0.085 based on the LM algorithm. The r value for
MAIM-ANN prediction in the test step is 0.92.

In addition to its training and testing phases performance
given in Table 1, MAIM-ANN’s mapping can also be seen in
Fig. 5b. Based on the results obtained, a value increment of
0.37 was observed for the performance metrics, making the
results of this study tenable. Figure 5b delineates the propor-
tion of vulnerable of areas within each class (class 1—70.9%;
class 2 —12.6%; class 3 —11.8%; class 4 —4.2%; class 3
—0.5%).

Overview of Module I

With learning from Level 1 models, the paper aims not to rank
models based on their performance but to increase accuracy at
Level 2 by applying what was learned from Level 1.
Nonetheless, better performance of MAIM-ANN against
BAF and SFL and SVM is evident from Table 1. For instance,

Table 2 The selected lagged times of GWL by NSGA-II for OW1-
OW10

Piezometer Delays

OW 1 t0�1 t0�3 t0�24 t0�30 t0�35 t0�45

OW 2 t0�1 t0�3 t0�12 t0�22 t0�30 t0�43

OW 3 t0�1 t0�9 t0�13 t0�20 t0�23 t0�26

OW 4 t0�1 t0�5 t0�11 t0�18 t0�24 t0�28 t0�36 t0�44

OW 5 t0�1 t0�3 t0�8 t0�11 t0�24 t0�25

OW 6 t0�1 t0�8 t0�35 t0�38

OW 7 t0�1 t0�4 t0�7 t0�23 t0�41

OW 8 t0�1 t0�6 t0�10 t0�17 t0�28 t0�38 t0�39

OW 9 t0�1 t0�2 t0�10 t0�45

OW 10 t0�1 t0�2 t0�10 t0�29 t0�30

Fig. 6 Structure of generalized
GMDH neural network for OW1
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the r = 0.55 of BAF is enhanced to r = 0.92 by MAIM-ANN.
The inter-comparison of the performance of BAF andMAIM-
ANN in terms of ROC/AUC, are 0.871 and 0.893, respective-
ly, which shows that the signal in BAF is quite strong in the
first place but this is quite enhanced by MAIM-ANN.

Module II: GWL prediction

Based on the GMDH neural network, GWLs in the Hadishahr
aquifer were predicted in the study. NSGA-II is applied for
delay selection of input GWL data. The optimal delay selec-
tion for each OW is given in Table 2. Utilizing the GMDH-
type neural network, 198 input–output datasets were em-
ployed for the development of a polynomial meta-model.
GWLs at various lag times were considered as inputs and
the GWL at t0 (present time) was predicted by GMDH neural
networks. 80% of the data out of 198 input–output data pairs
is used for training the model and the remaining 20% for
testing the prediction abilities of GMDH-type neural
networks.

The designed structure of the evolved 4-hidden layer
GMDH-type neural network for OW1 is depicted in Fig. 6.
The structure of GMDH model in other OWs is similar to
OW1 but the inputs are different for each OW. The perfor-
mance of GMDH model in both training and testing phases is
presented in Table 3 for OW1- OW10 in terms of RMSE and
R2 metrics. The results of GWL simulation using GMDH

model show that the model has acceptable performance.
Therefore, GMDH model was carried out to forecast
the monthly GWL. In addition to the GWL, the decline in
groundwater is calculated according to the forecast for the
one-year period (from 2016 to 2017). A glance through
Table 3 indicates that GMDH performs remarkably well at
OW1 in terms of RMSE.

Module III: mapping dynamic SV

Dynamic Subsidence Vulnerability Indices (DSVI) frame-
work construct using the results of models at both Modules I
and II. As per decision support system, the results of Modules
I and II are combined for mapping DSVI (Fig. 7) in Module
III. Therefore, in DSVI mapping, the decline in water table is
predicted by simulating the results of the GMDH model of
Module II in a future year (from 2017 to 2018), which is
substituted in the procedure for Module I to render its DSVI
map given in Fig. 7. This figure also gives the proportions of
areas within each class (class 1 —40.1%; class 2 —37.5%;
class 3 —11.3%; class 4 —8.6%; class 5 —2.4%). Evidently,
for any period, the T data layer can be predicted and this can
potentially serve as a tool to map out the evolution of land
subsidence of a study area. The SVI maps in Fig. 8 show the
SVI for 2008, 2013, 2018 (simulated), and 2023 (simulated).
As the GWL in Hadishahr Plain has declined over the last 15
years, subsidence’s likelihood has increased.

Table 3 Performance measures
for the GMDH model at OW1-
OW10

Criteria Observation Wells – Training

OW1 OW2 OW3 OW4 OW5 OW6 OW7 OW8 OW9 OW11

RMSE (m) 0.126 0.233 0.152 0.056 0.761 0.470 0.449 0.269 0.073 0.145

R2 0.996 0.968 0.999 0.956 0.993 0.981 0.966 0.996 0.979 0.994

Criteria Observation Wells – Testing

OW1 OW2 OW3 OW4 OW5 OW6 OW7 OW8 OW9 OW10

RMSE (m) 0.140 0.318 0.175 0.065 0.838 0.673 0.553 0.283 0.083 0.192

R2 0.996 0.954 0.999 0.953 0.992 0.962 0.907 0.996 0.976 0.986

Fig. 7 Dynamic subsidence
vulnerability mapping to identify
hotspots in the future
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Discussion

Using the research results, one can understand how land sub-
sidence takes place as GWLs decline. In light of these results,
the proof-of-concept can be considered valid. Subsidence of
land in plains has been the focus of last year’s studies. There is

a great deal of research on land subsidence and simulations of
its effects (see, Chen et al. 2020; Nappo et al. 2021; Luo and
Zeng 2011; Galloway and Burbey 2011). Main focus is often
on the identification of location and values of land subsidence
in plains. Several studies have used GPS and remote sensing
data to identify land subsidence. Also, other research used

Fig. 8 Subsidence vulnerability
mapping from 2008 to 2023 (The
average water table decline in
2008, 2013, 2018 and 2023 years
is 0.37, 0.39, 0.46 and 0.58 m,
respectively)
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numerical models in the aquifers to predict/forecast of land
subsidence (Gambolati 1975; Ye et al. 2016; Wu et al. 2010;
Candela et al. 2020). In these studies, the goal is to manage the
impacts of subsidence, mitigate its effects, and recover the
impacted lands before further physical, social, cultural, and
economic damage occurs. Groundwater resource overuse for
agricultural activities is often responsible for subsidence in
plains. Artificial recharges of aquifers and basin
management plans are the most commonly used remediation
methods. The use of sustainable drainage systems to recharge
aquifers has also become an option in the last few decades.
The BAF method applied by Nadiri et al. (2018, 2020) can
also be used for subsidence management by creating an accu-
rate map of Hadishahr Plain subsidence, as given in
Fig. 5a. By adopting a management plan, the dual objective
of equitable water allocations and protecting the GWL would
be more economically and environmentally feasible. On the
other hand, without a plan, permanent damage can almost be
guaranteed. According to Fig. 7, there is an increased risk of
land subsidence for the coming year based on the DSVI map.
The main limitations of DSVI include limited data and in-
creased noise as prediction into the future time span increases
which is a well-known problem of prediction problems. It is
confirmed that MAIM model is better suited to forecast the
outcome of a BAF-MAIM model than using prescribed
weight values.

Conclusions

We present a methodology to map Dynamic Subsidence
Vulnerability Indices (DSVI) in plains. We developed the
methodology by using ALPRIFT (Nairi et al. 2020) and ap-
plied it to Hadishahr Plain, in the province of East Azerbaijan,
situated in northwest Iran, where GWLs dropped by approx-
imately 4 m during 2004-2018. The objectives of this research
are done in three Modules: (i) Module I, mapping Subsidence
Vulnerability Indices (SVI) by applying the basic ALPRIFT
framework and optimization weights by Multiple Artificial
Intelligence Models (MAIM); and (ii) Module II, predicting
GWLs by GMDH model; Module III: combining the results
from Modules I and II to generate dynamic DSVI maps.
Module I employs a single modelling strategy at two levels:
at Level 1, multiple models are constructed by Sugeno Fuzzy
Logic (SFL) and Support Vector Machine (SVM) models. (ii)
At Level 2, the outputs of models at Level 1 are combined by
Artificial Neural Network (ANN).

Although the ALPRIFT framework produces a statistically
significant signal, it is not sufficiently convincing to be used to
produce land subsidence maps of the Hadishahr Palin.
Modelling results from module I indicate that the MAIM ac-
curacy is defendable. DSVI's module III indicates that the

Hadishahr Plain is vulnerable to subsidence. The greater the
decline of GWL, the more subsidence occurs.

Supplementary Information The online version contains supplementary
material available at https://doi.org/10.1007/s12145-021-00760-w.
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