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Abstract
Earthquake Prediction has become a field of seismology concerned with the specification of time, location, and magnitude of earth-
quakes to take preventive measures that could help in worst-case scenarios, i.e., destruction of homes and lives. Short Term Earthquakes 
depends on anomalous events known as precursors that occur before an Earthquake. Precursors are considered a warning before an 
earthquake. This prediction system uses Earth’s Electric Field Signal (EEFS) from Athens, Pyrgos, and Hios. Some examples are 
Ground Uplifting, Tilting, Emission of Radon Gas, Radio Waves, Magnetic Waves, and Earth’s Electric. The EEFS can be considered 
a precursor to estimate the magnitude and time of a possible earthquake. A minute-by-minute reading of the Earth’s Electric Field 
was taken, and few computations, models like ANN, SVM-ANN, and SVM-KNN, were applied. Few other models were created to 
estimate the time and magnitude of the earthquake. To discover an ideal model, results are compared without any constraints such 
as overfitting. The paper presents directions for estimating time and is directing for researchers to analyze in multiple dimensions.
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Introduction

Prediction of earthquakes can be classified into Short Term 
(SHT), Immediate Term (IMT), Long Term (LT). SHT 
requires non-seismic precursors for predicting earthquakes. 
It has been said that SHT is not achieved yet, according to 
Ghaedi and Ibrahim (2017) (Ghaedi et al. 2018). On the 
other hand, IMT uses CN, MSc, M8, M8S combined with 
precursors and seismicity monitoring. The standard proce-
dure for these different algorithms uses generic concepts of 
pattern identification that allow dealing with several sets of 
EQ precursors and authorizes for regular seismicity monitor-
ing and extensive testing of predictions, according to Uyeda 
et al. (2011). But based on the study mentioned by Ghaedi 
and Ibrahim (2017) and (Mallouhy et al. 2019). IMT estima-
tions cannot prevent all damages that could be caused and 
further protect all human life. However, they may undertake 
specific affordable actions to decrease damage and losses 
and modify the post-disaster relief. Despite the strenuous 
efforts taken and the several models developed, no prosper-
ous technique has been detected yet. Because of the rand-
omization of EQs, it may not be possible to determine the 
exact location, magnitude, and time of the following fatal 
EQ. Concerning LT, though several models were designed, 
there isn’t any prosperous technique discovered yet. An 
Machine Learning (ML) / Artificial Intelligence (AI) branch 
has proven some accuracy and is used in earthquake estima-
tion. Yet, there isn’t any beneficial approach to precisely 
detect Earthquakes yet. So, ML/AI can study the accuracy 
and predict the Earthquakes from existing data.

(Cicerone et al. 2009) listed a compilation of earthquake 
precursors that could potentially be used to predict earth-
quakes. They mentioned that electric and magnetic fields, 
gas emissions such as radon ultrasonic vibration models, 
could be used to predict earthquakes. (Hattori 2004) studied 
the Ultra-Low-Frequency (ULF) and cited that short-term 
earthquake prediction could be possible using ULF. (Ghosh 
et al. 2009) gave a brief review of the progress made in 
radon measurements in earth sciences in predicting earth-
quakes. Radon anomalies have been observed in the soil 
or spring before earthquakes had been studied. They even 
proposed models that tried to relate precursor time, epicen-
tral distance, and earthquake magnitude. (Varotsos et al. 
1986) came up with the VAN method, which measures the 
low-frequency electric signals. i.e., Seismic Electric Sig-
nals (SES). The idea of implementing the earth’s electric 
field before an EQ for short-term EQ prediction was used 
in Greece by P. Varatsos. This is done by noting the poten-
tial change between the electric fields in East–West (E-W) 
and North–South (N-S) polarity gradients. Earthquake size 
can be described by intensity or magnitude. Distance from 
the hypocenter, intensity, and duration of the vibrations, the 

varying characteristics are associated with new observa-
tions of earth behaviour together with other planets. Hence 
it becomes hard to use approaches like distance-based. The 
paper hence uses a Support vector machine for the analysis.

This study applied the same knowledge and calculated the 
potential change between the Electric fields in the E-W and 
N-S polarity gradients and further used it to design various 
models to estimate the earthquake's magnitude and time. 
Furthermore, it was used as a comparative study, which 
noted the accuracy and precision across the various models 
developed.

Related works

Earthquake prediction could be made with the help of the 
calculation of magnitudes. Asim et al. 2017) studied earth-
quake prediction using ML techniques such as pattern rec-
ognition neural network, recurrent neural network, Random 
Forest (RF) and Ensemble of trees using LP Boost, which 
is a linear combination of many tree classifiers where each 
classifier was added iteratively to the set of selected clas-
sifiers until no tree was needed to be added (Adeli and 
Panakkat 2009). (Panakkat and Adeli 2009) tried to pre-
dict earthquakes with a probabilistic neural network. Their 
paper has applied Bayesian statistics and non-parametric 
density approximation to calculate and make a neural net-
work model. There was accuracy for earthquakes in their 
model with a magnitude between 4.5 and 6.0, but they did 
not yield accurate results for magnitudes greater than 6.0. 
Zarou et al. (Zarour et al. 2012) used Earthquake Predic-
tion using an artificial neural network, where they predicted 
earthquake magnitudes in the northern Red Sea region, such 
as the Gulf of Aqaba, Gulf of Suez, and the Sinai Peninsula. 
They used other forecasting methods such as moving aver-
age, standard distributed random predictor, and uniformly 
distributed random predictor (Freund et al. 2017).

They even used different statistical methods and data fit-
ting, such as linear, quadratic, and cubic regression. The 
results showed that the neural network model provided a 
higher forecast accuracy than other proposed methods. The 
Neural network model was at least 32% better than other pro-
posed methods. The neural network can capture non-linear 
relationships than statistical methods and other proposed 
methods (Varotsos et al. 1986).

(Vasti and Dev 2020) applied ML algorithms to analyze 
the earthquake data. (Zhou et al. 2019) analyzed earth-
quake detection using dictionary learning. (Galkina et al. 
2019) surveyed to predict an earthquake using ML methods. 
Earthquake prediction could also be made using non-seismic 
precursors, which helped in Short-term earthquake predic-
tion. (Sgrigna and Conti 2012) tried to find a deterministic 
approach to investigate earthquake predictions. They studied 
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the methodological aspects of damage prevention and pre-
diction approaches. They also came up with an empirical 
approach to deterministic earthquake prediction based on 
medium-term and short-term ground and space precursory 
phenomena that have been given. (Moustra et al. 2011b) 
tried using Artificial Neural Networks (ANN) to predict the 
Earthquakes in Greece's region on different input data types. 
The model tried to predict the magnitude of the earthquake 
of the following day. (Xu et al. 2010) made use of a series 
of physical quantities measured by the DEMETER satellite, 
including Electron density, Electron temperature, ions tem-
perature, and oxygen ion density, together with seismic belt 
information and then made sample sets for a back-propaga-
tion neural network. The neural network model was then to 
be used to conduct the prediction. (Jánský and Pasko 2018) 
tried to use Earthquake Lights as a precursor to predicting 
earthquakes. According to them, an Earthquake light occurs 
before, during, or after an earthquake((Alarifi et al. 2012; 
Moustra et al. 2011a)) (Mallouhy et al. 2019).

(Grisoni 2017) theorized “Peroxy Defect Theory” to be 
capable of providing explanations for the multitude of pre-
earthquake phenomena. They further examined different 
types of precursory signals that claim to have noticeable 
changes before an earthquake. (Ghosh et al. 2019) stud-
ied the possibility of lower ionospheric anomalies in very 
low-frequency earthquakes. However, they couldn’t find 
a reason why lithospheric variabilities relate and result 
in ionospheric irregularities. Furthermore, using analyti-
cal theory, they created a simulation for their study and 
found that the possible setup for explaining EQL would 
be when the source current dipole's upper pole is shifted 
close to the Earth’s surface. They also found that the VLF 
(Vasti and Dev 2020) wave propagation study could help 
understand the cause-and-effect scenario of seismo iono-
spheric coupling. The polarity gradients primarily relate 
to the earth parameters for associating the magnitude. 
Algorithms are available for finding the fractional varia-
tion in the magnitude. The classification is also related to 
the gradients.

Another way for earthquake prediction is using a hybrid 
technique, i.e., combining different earthquake prediction 
methods. (Astuti et al. 2014) came up with an earthquake 
prediction technique involving a combination of the Singular 
Value Decomposition (SVD) technique for feature extraction 
and then used Support Vector Machines (SVM) to classify 
the EQ. (Zhou et al. 2017) proposed a system that combined 
SVM and neural networks. Its experimental results showed 
that the combined SVM and a neural network algorithm 
showed better predictability than the traditional SVM or 
neural network. The neural network, on its own, resulted in 
overfitting or underfitting. But the combination of SVM and 
neural networks improved that disadvantage.

(Saba et al. 2017) proposed an earthquake prediction 
technique using Bat Algorithm and Feed Forward Neural 
Network (FFNN). The Bat algorithm was used to train the 
weights, and the FFNN was used to predict future earth-
quakes based on past input data. Their experiment results 
showed that the proposed approach was comparable and 
more stable than the Back Propagation Neural Network. 
(Asim et al. 2018) proposed an earthquake classification 
system that combined Support Vector Regressor and Hybrid 
Neural Network to predict the earthquake. The HNN was a 
combination of three different Neural Networks, supported 
by an Enhanced Particle Swarm Optimization (EPSO), 
which offered weight optimization at each layer. Their 
numerical result showed improved prediction performance 
for all the considered regions than previous prediction stud-
ies (Jánský and Pasko 2018).

The reason for choosing the classifiers and algorithms is 
outlined below:

a)	 Since the earthquake data can be time-varying, Neural 
Networks is chosen

b)	 The features are numeric, and hence K-Means approach 
is chosen. It is better as it provides scope for choosing 
the value of K using the Elbow method.

c)	 The approaches are mainly chosen to result in outliers, 
and hence the performance will not degrade to a new 
dataset.

Implementation

This section elaborates on implementing the system's mag-
nitude estimation and time estimation design with Earth’s 
Electric Field.

Preprocessing of the electric field signals

In this study, EEFS are taken from Athens (ATH) for the 
years 2004–2011, Pyrgos (PYR) for the years 2004–2011, 
and Hios (HIO) for the years 2007–2008 as the data to be 
preprocessed for the designing of the dataset. The years 
2003 (for ATH), 2003 and 2012 (for PYR), and 2006 and 
2009 (for HIO) is preprocessed and is kept separately for 
additional testing (Validation testing dataset) model after 
the model has been designed to get an unbiased estimate of 
the accuracy and precision. The usage of these testing data 
will be further elaborated in the subsequent sections. These 
datasets were collected from www.​earth​quake​predi​ction.​gr, 
which collected the EEFS from the three sites for research 
purposes.
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In the files used for training, each year has 365/366 days. 
Therefore, there is a total of 365/366 files for each year. Each 
file represents a day in a particular year. The file's data con-
tains a minute-by-minute reading of the electric field signal, 
which counts to a total of 1440 samples per file. There are 
five columns in each file, which is described as shown below 
(as explained by www.​earth​quake​predi​ction.​gr):

1)	 First Column – Time in the hour: minute format (hh: 
mm)

2)	 Second Column – EEFS data along the E-W direction
3)	 Third Column – Ignored
4)	 Fourth Column – EEFS data along the N-S direction
5)	 Fifth Column – Ignored

So, the first step to the preprocessing is to calculate the 
EEFS 

(
|
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�⃗E
|
||

)
 each minute by adding the EEFS squares, E-S 

polarity, and N-S polarity and square rooting the summation. 
The formula is as shown below EQU (1):

Once this formula is applied to all the data, the EEFS 
(GfDiff) difference is calculated each day. The formula for 
the same is as shown below EQU(2):

After applying the formula, there would be a total of 1439 
readings per day. The GfDiff of a day can be seen in Fig. 1. 
From these data, the peak value is found from each day, 
and the highest value and the date are recorded for further 
processing to create the Earthquake Dataset with which the 
various models are created for estimating the magnitude and 
time separately.
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(2)ΔE = E[n] − E[n − 1]

Fig. 1   GfDiff of January 1, 2005, from the Athens monitoring site

Table 1   The Earthquake Dataset retrieved after the necessary extrac-
tion

Date Latitude Longitude Magnitude

7/2/2004 36.04 26.91 5
1/3/2004 37.19 22.14 5
4/8/2004 36.92 27.7 5.4
4/8/2004 36.98 27.69 5.1
7/10/2004 36.5 26.81 5.2
4/11/2004 35.86 23.23 5
11/1/2005 37.01 27.85 5
31/1/2005 37.41 20.11 5.7
17/10/2005 38.13 26.59 5.5
17/10/2005 38.14 26.59 5.4
18/10/2005 37.58 20.86 5.6
20/10/2005 38.15 26.63 5.6
25/11/2005 35.02 23.32 5.2
8/1/2006 36.21 23.41 6.4
4/4/2006 37.58 20.93 5.2
11/4/2006 37.64 20.92 5.2
11/4/2006 37.68 20.91 5.4
12/4/2006 37.61 20.95 5.4
3/2/2007 35.8 22.58 5
25/3/2007 38.34 20.42 5.5
29/6/2007 39.25 20.26 5.2
23/9/2007 35.27 27.12 5.1
9/11/2007 38.77 25.77 5.1
6/1/2008 37.11 22.78 6.1
4/2/2008 38.09 21.94 5
14/2/2008 36.5 21.78 6.2
14/2/2008 36.22 21.75 6.1
19/2/2008 36.19 21.77 5.1
20/2/2008 36.18 21.72 6
26/2/2008 35.96 21.7 5.2
19/3/2008 38.92 24.17 5
28/3/2008 35.01 25.33 5.1
10/5/2008 36.3 22.24 5.1
8/6/2008 37.98 21.51 6.5
12/6/2008 35.11 26.19 5
18/6/2008 37.67 22.78 5.1
21/6/2008 36.03 21.83 5.5
15/7/2008 35.85 27.92 6.2
30/7/2008 38.02 20.12 5
3/8/2008 39.59 23.9 5.3
14/10/2008 38.85 23.62 5.6
14/10/2008 38.87 23.61 5.1
13/12/2008 38.72 22.57 5.2
13/1/2009 35.66 26.39 5.2
16/2/2009 37.13 20.78 5.5
26/6/2009 36.53 25.49 5
3/11/2009 37.39 20.35 5.6
11/11/2009 37.47 20.47 5.3
17/1/2010 35.26 27.86 5
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Collecting the earthquake data

A dataset from Kaggle was used for collecting the data 
required to create the final dataset on which the models are 
applied. In this dataset collected from Kaggle, the dataset 
has 8 columns as described below:

1)	 First Column: Year (yyyy)
2)	 Second Column: Month
3)	 Third Column: Date
4)	 Fourth Column: Hours [Column has been ignored]
5)	 Fifth Column: Minutes [Column has been ignored]
6)	 Sixth Column: Latitude
7)	 Seventh Column: Longitude
8)	 Eight Column: Magnitude (Richter scale)

The dataset has all the Earthquake recordings for Greece 
from the year 1901–2018. Out of this, for the final data-
set to be designed, Earthquakes from the year 2004–2011 
have been extracted with a magnitude greater than 5.0, lati-
tude ranging from 35–39.9, and a longitude ranging from 
20–27.9. The data retrieved of the dates an Earthquake takes 
place can be seen in Table 1.

The date is related to the observed Date; the other param-
eters, namely latitude, longitude, and magnitude, are related 
to the earth's movements. It is a standard dataset, and the 

ground truth of the values and constraints exists. Hence no 
preprocessing is performed on the dataset.

The features do not present any constraint in terms of 
noise and values. There is no feature selection approach fol-
lowed in the paper. However, in the future Principal Com-
ponent Analysis can be used.

Data pruning

After retrieving dates of when an earthquake took place 
between 2004 and 2011, an algorithm is designed to extract 
the dates that have a significant GfDiff value days before 
the earthquake such that the days are 30 days or less. The 
algorithm is explained using the flowchart in Fig. 2.

After finding the significant GfDiff that occurs 30 days or 
less, that Date is recorded, and the number of days between 
the dates is recorded. The final dataset designed can be 
described as the following:

1)	 First Column: Date of the EQ
2)	 Second Column: Date Prior EQ with Significant GfDiff
3)	 Third Column: No. of Days
4)	 Fourth Column: Latitude
5)	 Fifth Column: Longitude
6)	 Sixth Column: Magnitude

The total number of readings that have been recorded 
from the three sites is mentioned below:

ATH: 56 Readings
PYR: 56 Readings
HIO: 25 Readings

All the above Readings have been combined into one 
dataset, having a total of 137 readings. The first 20 rows 
from the dataset are visible in Table 2. Following the data-
set's formation, the dataset was split into training and testing 

Table 1   (continued)

Date Latitude Longitude Magnitude

18/1/2010 38.41 21.95 5.2
22/1/2010 38.42 21.97 5.1
9/3/2010 38.87 23.65 5.1
16/7/2010 36.81 26.91 5.1
16/7/2010 39.32 24.02 5.1
17/12/2010 36.94 24 5.1
1/4/2011 35.64 26.56 6.2

Fig. 2   Flow diagram of 
identifying and recording the 
significant GfDiff that occurs 
before an Earthquake
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datasets with a test size of 33%. This was stored separately 
to be implemented on the models, i.e., a formal training and 
testing set was used for designing the models. These mod-
els were used to estimate the magnitudes and estimate the 
time. This will be further elaborated using in the following 
subsections.

Figure 2 has start and End, indicating the beginning and 
end of the model. The flow paths are connected in operation, 
and there is no associated condition. The conditional aspects 
of Yes/No have already been labelled on paper.

Magnitude estimation

The magnitudes can be classified, as shown in Table 3. On 
studying the dataset on which the models would be training 
and testing on, it was noticed that the number of reading 
with a magnitude greater than 6 seemed to be small. This 
seemed to affect the models' accuracy, which was designed 
as there were, resulting in an ill-defined F1-score.

Hence, during the implementation of magnitude estima-
tion, the model tried two separate classification classes. The 
first one followed the classification as mentioned below:

5 – 5.9 – Class 0
6 – 6.9 – Class 1
7 – 7.9 – Class 2
8 or more – Class 3

However, the second classification classes were designed, 
as shown below:

5.0 – 5.5 – Class 0
5.6 – 5.9 – Class 1
6.0 – 6.5 – Class 2
6.5 Or more – Class 3

Table 2   Table Displaying the 
First 20 Readings from the Final 
Dataset That Was Formed

Date of EQ Date with Signifi-
cant GfDiff

No. of Days Latitude Longitude Magnitude

7/2/2004 14/1/2004 24 36.04 26.91 5
1/3/2004 7/2/2004 23 37.19 22.14 5
4/8/2004 26/7/2004 9 36.92 27.7 5.4
4/8/2004 26/7/2004 9 36.98 27.69 5.1
7/10/2004 28/9/2004 9 36.5 26.81 5.2
4/11/2004 26/10/2004 9 35.86 23.23 5
11/1/2005 16/12/2004 26 37.01 27.85 5
31/1/2005 21/1/2005 10 37.41 20.11 5.7
17/10/2005 24/9/2005 23 38.13 26.59 5.5
17/10/2005 24/9/2005 23 38.14 26.59 5.4
18/10/2005 24/9/2005 24 37.58 20.86 5.6
20/10/2005 24/9/2005 26 38.15 26.63 5.6
25/11/2005 19/11/2005 6 35.02 23.32 5.2
8/1/2006 2/1/2006 6 36.21 23.41 6.4
4/4/2006 1/4/2006 3 37.58 20.93 5.2
11/4/2006 6/4/2006 5 37.64 20.92 5.2
11/4/2006 6/4/2006 5 37.68 20.91 5.4
12/4/2006 6/4/2006 6 37.61 20.95 5.4
3/2/2007 15/1/2007 19 35.8 22.58 5
25/3/2007 13/3/2007 12 38.34 20.42 5.5

Table 3   Earthquake Magnitude 
Classes

Class Magnitude

Great 8 or more
Major 7 – 7.9
Strong 6 – 6.9
Moderate 5 – 5.9

Table 4   Classification Table for Time Estimation

Class Time

0 One Week (1–7 Days)
1 Two Weeks (8–14 Days)
2 Three Weeks (15–21 Days)
3 Four Weeks (22 or more Days)
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This was done to study any differences in accuracy and 
precision when testing the model’s predictability. This will 
be elaborated on further in the subsequent sections.

Time estimation

To implement this, the dataset was classified into four 
classes, as seen in Table 4. This classification was used in 
training the various models.

As seen in Table 4, the dataset observes and defines the 
class according to the number of days. For instance, when 
we refer to Table 2, the first reading stated that the number 
of days between the Date of EQ and the Date with significant 
GfDiff before an EQ is 24 days; these places this reading 
into class 3. Similarly, all the readings have been given their 
class, and then the dataset is divided into training and testing 
data on which the models are trained. The accuracy, preci-
sion, and observations made have been further elaborated 
in the subsequent sections. The dataset does not have any 
errors. The round-off operation alone is performed on the 
data for algorithms to work.

Table 4 defines the class level rules. It is required for 
classifying the earthquake features. It is related to Table 3 as 
it forms the basis for classifying the earthquake data. More 
details on the same are available in EQ (Zhou et al. 2017).

Artificial Neural Network

By definition, ANN can be considered an information 
processing model inspired by humans' biological nervous 

system, just like how the brain processes information. It 
comprises highly interconnected processing elements (i.e., 
neurons) to find a pattern to solving a problem.

In this study, two models of ANN are designed. One is 
to estimate the magnitude; the other is to estimate the time. 
To create this network, a high-level API, Keras, is used to 
design the model. Both models are similar in design. There 
are 4 input dimensions in the input layer. There are three 
hidden layers, and finally, an output layer of one unit with 
sigmoid as the activation function. Sometimes, overfitting 
can be a problem in neural networks. One of the steps taken 
to avoid this is adding a dropout, a regularization technique 
to reduce overfitting by changing the network. When fitting 
the model, the epochs are set to 500. Another form of over-
fitting is memorization, which could be possible since the 
entire dataset is passed forward and backwards through the 
neural network for each epoch.

Another point that needs to be kept in mind is that under-
fitting should not happen either. To check this, the training 
and validation loss during each iteration could be noted. 
There could be overfitting if the training loss is less than the 
validation loss, underfitting if the training loss is more sig-
nificant than validation loss. The ‘just right’ is possible when 
the training and validation loss are almost similar. (Fig. 3).

The x-axis represents the epochs, and the y-axis rep-
resents the measured loss. So, in order to achieve this, 
the iterations of the epochs need to be controlled. If the 
number of epochs required for fitting the model is low, 
but the number of epochs set is like 500, there could be 
overfitting or underfitting. So even after regularization was 

Fig. 3   Training Loss and 
Validation Loss Plotted in a 
graph. Values are quite similar, 
so there is no overfitting or 
underfitting
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applied, early stopping was also set. It is also another form 
of regularization where the model stops iterating if it starts 
to degrade. As seen in Fig. 3, even though the number of 
epochs set is 500, the iteration stops after 30 because the 
performance will be underfitting if the iteration continues.

Thus, keeping all this in mind, the ANN was designed, 
and the accuracy and precision are observed and noted. 
This will be further elaborated in the subsequent sections.

SVM‑KNN

In order to design this model, an advanced technique of 
ensemble learning is called blending, as shown in Fig. 4.

Here the training data is further divided into training 
data and validation data. The new training data is fit-
ted into the SVM, base, and testing validation data. The 
previous testing data is also tested into the model. The 

Fig. 4   Illustration of the Blend-
ing of the SVM-KNN Model

Fig. 5   Schematic Diagram of 
the Blending of SVN and KNN

Fig. 6   Illustration of the blending of SVM and ANN Models
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prediction results from the validation testing and the test-
ing set are added as features and the new dataset, as seen 
in Fig. 5.

As seen in Fig. 5, the features are added to the valida-
tion dataset and the testing test. The validation dataset 
becomes the new training data. This training data is then 
fit into the KNN model. The testing data is applied to the 
prediction model, and the accuracy and prediction are 
observed.

The dataset is splatted into Training, Validation, and Test 
Data. The validation data is used for defining the parameters 
for the model. This is done as there could be a possibility 
of losing some classes, leading to the ill-definition of indi-
vidual classes.

SVM‑ANN

This model is also similar to the SVM-KNN model, as seen 
in Fig. 6. Here, the SVM model will be the base model, 
and ANN will be the final model. The schematic diagram 
(Fig. 5) explains how the process has been implemented. In 
ANN, the possibility of overfitting and underfitting needs 
to be taken into account. So, in order to prevent the same, 
regularization by adding dropout, which modifies the neural 
network, is added. Another method applied here is the early 
stopping, which stops the iteration when training and valida-
tion loss differ significantly.

The ANN has an input layer with the input dimension 
set to 5 as the prediction result from SVM is added into 
the validation dataset, thus increasing the size of the input 
dimension by a unit. There are three hidden layers in the 
neural network, and the output layer has only one output, 

which uses the activation function sigmoid. The accuracy 
and precision of this model are observed and elaborated on 
in the subsequent sections.

A drawback is that in the final model is that the dataset 
is changed, as mentioned previously in 3.7. This is mainly 
because a small portion of the training data, i.e., the vali-
dation data, is used as the final model's training data, i.e., 
ANN. There could be a possibility of losing some classes, 
which further leads to the ill-definition of individual classes.

SVM‑KNN‑Logistic Regression

This model uses SVM and KNN as the base class and then 
Logistic Regression as the final model. An illustration of 
how it works is depicted in Fig. 7.

As shown in Fig. 7, the dataset is split into training and 
testing data. This training data is further split into training 
and validation data. This new training data is fitted into the 
SVM model, and then this model is tested using the valida-
tion data. The results yielded from the prediction of the vali-
dation data are recorded. After this, the new training data is 
fitted into the KNN, a base model. The KNN model is tested 
with the help of the validation data. The results yielded from 
the prediction of the validation data are also recorded.

In the previous case, only the SVM validation data's pre-
dicted results were added into the validation data, but in 
this case, the prediction results of both SVM and KNN are 
added. These recorded results from the SVM prediction and 
the KNN are added to the validation data, thus increasing the 
input dimensionality by 2. The original testing data is also 
predicted by the base models SVM and KNN. The results 
yielded from the prediction are added to the original testing 

Fig. 7   Illustration of the Blend-
ing of SVM, KNN, and Logistic 
Regression
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data, which results in an increase in the dimensionality by 
two. This testing data is used to test the final model. The 
validation data is now the training data, fitted into the final 
model, the Logistic Regression model. This model is then 
tested with the original testing data, and the accuracy and 
the precision in the predictability are observed. This entire 
process is illustrated in the schematic diagram (Fig. 8). It 
can be observed that this process is similar to the process 
of blending SVM and ANN or even SVM and KNN, which 
was illustrated in Fig. 5.

As mentioned before, in Sect. 3.7 and Sect. 3.8, a draw-
back is that in the final model is that the dataset is changed. 
This is mainly because a small portion of the training data, 
i.e., the validation data, is used as the final model's train-
ing data, i.e., ANN. There could be a possibility of losing 
some classes, which further leads to the ill-definition of 
individual classes. This issue is usually prevalent when the 
number of training and testing data is not so huge. Since the 
dataset only contains 137 readings, this issue could be seen. 

The dataset's size could not be increased as there were not 
enough EEFS Readings to increase the dataset's size.

SVM‑ANN‑KNN

As shown in Fig. 9, similar to Sect. 3.9, the dataset is divided 
into training and testing datasets with a test size of 33%. The 
training data is divided into training and validation data, 
with a test size of 33%. This new training data is fitted into 
the base model SVM, and thus the SVM model is created, 
then the same new training data is fitted into the following 
base model, ANN.

Here, the ANN model contains an input layer with an 
input dimension of 4, there are 3 hidden layers, and finally, 
the output layer has only one output with the activation 
function sigmoid. Here, overfitting and underfitting are 
taken into account. So, to prevent the same, early stopping 
stops the iterations when a vast difference between the 
training and validation loss exists and dropout layers have 
been added to modify and regularize the neural network. 

Fig. 8   Schematic Diagram of 
the Blending of SVM, KNN, 
and Logistic Regression

Fig. 9   Illustration of the Blend-
ing of SVM, ANN, and KNN
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After the training data is fitted into the base models, the 
validation data is used to test the model's predictability. 
The results obtained from the base models are added to 
the validation data, thus increasing the dimensionality by 
two units. The original test data is also used for the base 
models, and the results are added to the test data. The new 
validation data becomes the training data for the KNN 
model; the new test data is used to test the model's predict-
ability. Then the accuracy and precision are observed and 
elaborated in subsequent Sections.

The Schematic Diagram in Fig. 8 can explain this pro-
cess, but the difference is that instead of KNN being a base 
model, it is the final model and the base model is ANN and 
SVM instead. The drawbacks are the same as mentioned in 
Sect. 3.10 and Sect. 3.9, i.e., the loss in classes that affect the 
precision, accuracy, and F1-scores, making them ill-defined.

SVM‑ANN‑Logistic Regression

As seen in the illustration above (Fig. 10), the dataset is 
divided into training and testing data. This training data is 
further split into training and validation data.

This new training data is fitted into the base models SVM 
and ANN. Then the validation data is tested on these base 
models. The results obtained from these base models' predic-
tions are added to the validation data, increasing the dimen-
sions of the two units. The same is applied to the testing 
data, and the results are added to the testing dataset.

Here, the ANN model contains an input layer with an 
input dimension of 4, there are 3 hidden layers, and finally, 
the output layer has only one output with the activation func-
tion sigmoid. Here, overfitting and underfitting are taken 

into account. To prevent the same, early stopping stops the 
iterations when a considerable difference between the train-
ing and validation loss exists and dropout layers have been 
added to modify and regularize the neural network.

The validation data is used as the training dataset on the 
final model with Logistic Regression. Further testing data is 
used to test the predictability. Finally, after results from the 
prediction of the validation data and the base models' testing 
data and the results being added to the validation data and 
testing data, respectively. Then the accuracy and precision 
are observed and elaborated in subsequent sections.

The Schematic Diagram in Fig. 8 can explain this pro-
cess, but the difference is that instead of being a base model, 
the base model is ANN and SVM instead, with the final 
model remaining the same. The drawbacks are the same as 
Sect. 3.10 and Sect. 3.9, i.e., the loss in classes that affect 
the Precision, Accuracy, and F1-scores, making them 
ill-defined.

Performance evaluation

This section discusses the evaluation of the performance of 
the models designed and tested. A validation dataset had 
also been created for unbiased observation and estimation 
of the model. The data is collected from the sites Athens 
(ATH), Pyrgos (PYR), and Hios (HIO). These years contain 
inconsistent data as some of the days’ readings of the EEFS 
is not available. The years of data taken from the sites and 
the available range of dates are mentioned below:

Fig. 10   Illustration of the 
Blending of SVM, ANN, and 
Logistic Regression
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•	 ATH – Contains data from the year 2003, from April 15 
to December 31

•	 PYR – Contains data from the year 2003, from May 23 to 
December 31, and data from the year 2012, from January 
1 to March 17

In this folder, specific dates were found to be missing.

•	 HIO – Contains data from the year 2006, from March 
18 to December 31, and data from the year 2009, from 
January 1 to November 11. But since this was used just 
for validation purposes, this issue was overlooked.

The final validation dataset formed after the preprocess-
ing of the EEFS, extraction of the earthquake dates, and 

Table 5   A dataset that was used 
for Validation Testing

Date of EQ Date with Signifi-
cant GfDiff

No. of Days Latitude Longitude Magnitude

17/4/2004 16/4/2004 1 38.19 26.9 5
29/4/2004 20/4/2004 9 36.83 21.72 5
9/6/2004 21/5/2004 19 39.94 22.35 5
14/8/2004 31/7/2004 14 38.79 20.56 5.9
14/8/2004 31/7/2004 14 38.76 20.67 5.1
14/8/2004 31/7/2004 14 38.76 20.67 5.2
17/10/2004 20/9/2004 27 35.96 22.25 5.3
4/4/2006 23/3/2006 12 37.58 20.93 5.2
11/4/2006 23/3/2006 19 37.64 20.92 5.2
11/4/2006 23/3/2006 19 37.68 20.91 5.4
12/4/2006 11/4/2006 1 37.61 20.95 5.4
13/1/2009 2/1/2009 11 35.66 26.39 5.2
16/2/2009 29/1/2009 18 37.13 20.78 5.5
26/6/2009 9/6/2009 17 36.53 25.49 5
3/11/2009 10/10/2009 24 37.39 20.35 5.6
11/11/2009 8/11/2009 3 37.47 20.47 5.3
26/1/2012 3/1/2012 23 36.06 25.07 5.3
27/1/2012 3/1/2012 24 36.06 25.13 5.2

Fig. 11   (a) ANN (b). SVM-
ANN model (c). SVM-ANN-
KNN model (d). SVM–ANN–
Logistic Regression
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combining the dates with the dates having a significant 
GfDiff before 30 days or less can be seen in Table 5.

Magnitude Estimation type 1

The classification of the magnitude of type 1 is as follows:

•	 Class 0 – Magnitude between 5 and 5.9
•	 Class 1 – Magnitude between 6 and 6.9
•	 Class 2 – Magnitude between 7 and 7.9
•	 Class 3 – Magnitude 8 or more

The dataset was split into training and testing sets, and 
the models have trained accordingly. In the models which 
included an ANN, overfitting and underfitting had been 
taken into consideration. The number of epochs when train-
ing the model had been set to 500. A dropout layer has been 
added to regularize each layer. Additionally, there was an 
early stopping feature to prevent that the training and vali-
dation loss is similar. When the training loss is greater than 
the validation loss, then it is a case of underfitting. When 
the training loss is lesser than the validation loss, then it 
is a case of overfitting. The ‘just right’ condition would 
be when the training loss is similar. So, the first stopping 
feature has been implemented where the model will keep 
stop training when the performance ceases to improve. But, 
in some instances, there could be a chance for the model’s 
performance to worsen, and then it starts to improve. So, a 
patience argument has been set, and a callback feature saves 
the best model observed, and that model is loaded. The train-
ing and validation losses have been plotted in Fig. 11 (a) 
for the ANN model, Fig. 11 (b) for the SVM-ANN model, 
Fig. 11 (c) for the SVM-ANN-KNN model, Fig. 11 (d) for 
the SVM-ANN-Logistic regression, along with the number 
of epochs used while training the data for Magnitude Esti-
mation of type 1.

On the other hand, accuracy checks the percentage of 
accurate predictions, and hence as shown in Fig. 11 (a), 
(b), (c), and (d) early stopping, and callback helped create 
a model with the training and validation loss as minimal as 
possible. Thus, with the two's help, ANN stops training after 
19 epochs; SVM-ANN, after 316 epochs; SVM-ANN-KNN, 
after 34 epochs and finally, SVM-KNN-Logistic regression, 

after 35 epochs. The error measurements help estimate the 
performance of a model. In order to comparatively analyze 
the performance of the models created, accuracy, macro-pre-
cision, and macro-F1 score are analyzed. Precision measures 
the number of relevant results returned than the irrelevant 
ones. But precision doesn’t necessarily mean that the model 
is good depending on the precision alone. It is not the best 
performance measurement. F1-score, on the other hand, is 
a harmonic mean between precision and recall. Since the 
label sizes are not balanced in the dataset, macro-precision 
and macro F1-scores are analyzed. Macro measurements 
ensure that there is a bias against the least popular labels. 
The performance of the models of the magnitude estimation 
of type 1 can be seen in Table 6. Further inferences are also 
presented as below:

1)	 The original dataset does not have the class label. The 
class label learned with unsupervised learning allows for 
classifying the Earthquake dataset. It supports the class 
label feature as part of the training dataset.

2)	 Hence during testing, the dataset is predicted with a suit-
able class label using ANN.

Since ANN is used, the learning rate is related to the 
Error learned during the training process. It will allow for 
reducing the loss further.

On checking the testing data's performance, it can be 
observed that for the magnitude estimation of type 1, the 
SVM–ANN–Logistic Regression seems to have better per-
formance in predicting the magnitude than the other models. 
While on the other hand, all the other models seem to have 
the same performance result. This could be mainly because 
of the unbalance label size, i.e., the amount of data of Class 
1 must be less than Class 0, due to which there is an ill-defi-
nition in the prediction of samples. However, the validation 
test’s performance evaluation was observed to have 100% 
accuracy. When one looks at the validation data set (Refer 
Table 5), by looking at the magnitude, we can see that fall 
in the Class 0 category is based on the magnitude classifica-
tion of type 1. Thus, validation testing is not helpful in the 
performance evaluation of the magnitude classification of 
type 1.

Table 6   Performance 
Evaluation of The Testing 
Data on The Different Models 
Designed for Magnitude 
Estimation of type 1

Model Accuracy Macro-Precision Macro-F1 Score

ANN 0.80 0.40 0.45
SVM-KNN 0.80 0.40 0.45
SVM-ANN 0.80 0.40 0.45
SVM-KNN-Logistic Regression 0.80 0.40 0.45
SVM-ANN-KNN 0.80 0.40 0.45
SVM-ANN-Logistic Regression 0.89 0.94 0.78

1539Earth Science Informatics (2022) 15:1527–1544



1 3

Magnitude Estimation type 2

The classification of the magnitude of type 2 is as follows:

•	 Class 0 – Magnitude between 5 and 5.9
•	 Class 1 – Magnitude between 6 and 6.9
•	 Class 2 – Magnitude between 7 and 7.9
•	 Class 3 – Magnitude 8 or more

Magnitude Estimations of type 2 are similar to that of 
type 1. The only difference lies in the classification of the 
classes. Thus, when training the models with ANN, the 
number of epochs while fitting the model changes, and the 
performance changes. In these models, dropout layers have 
been added to regularize the neural networks. The number of 
epochs when training the model had been set to 500. In order 
to avoid overfitting and underfitting, early stopping and call-
backs have been implemented. The primary function of early 

stopping is to stop the training process when the model’s 
performance worsens. When the training loss is greater than 
the validation loss, then it is a case of underfitting.

When the training loss is lesser than the validation loss, 
then it is a case of overfitting. The ‘just right’ condition 
would be when the training loss is similar. So, the first stop-
ping feature has been implemented where the model will 
keep stop training when the performance ceases to improve. 
But, in some instances, there could be a chance for the mod-
el’s performance to worsen, and then it starts to improve. 
So, a patience argument has been set, and a callback feature 
saves the best model observed, and that model is loaded.

The training loss versus validation loss graphs of the 
models involving an artificial neural network, i.e., ANN, 
SVM-ANN, SVM-ANN-KNN, and even SVM-ANN-Logis-
tic regression, can be seen in Fig. 12 (a), (b), (c), and (d) 
along with the number of epochs used while training the data 
for Magnitude Estimation of type 2. As shown in Fig. 12 (a), 

Fig. 12   a ANN (3 epochs) b 
SVM–KNN (3 epochs) c SVM–
ANN–KNN (377 epochs)d 
SVM–KNN–Logistic Regres-
sion (3 epochs)

Table 7   Performance 
Evaluation of The Testing Data 
on The Different Designed for 
Magnitude Estimation of Type 2

Model Accuracy Macro-Precision Macro-F1 Score

ANN 0.72 0.24 0.28
SVM-KNN 0.72 0.24 0.28
SVM-ANN 0.72 0.24 0.28
SVM-KNN-Logistic Regression 0.76 0.58 0.40
SVM-ANN-KNN 0.67 0.23 0.27
SVM-ANN-Logistic Regression 0.96 0.98 0.91
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(b), (c), and (d), early stopping and callback helped create a 
model with the training loss and validation loss as minimal 
as possible. Thus, with the help of the two, ANN stops train-
ing after 3 epochs; SVM-ANN, after 3 epochs; SVM-ANN-
KNN, after 377 epochs and finally, SVM-KNN-Logistic 
regression, after 3 epochs.

The error measurements help estimate the performance 
of a model. In order to comparatively analyze the perfor-
mance of the models created, accuracy, macro-precision, 
and macro F1-score are analyzed. Precision measures 
the number of relevant results returned than the irrel-
evant ones. But precision doesn’t necessarily mean that 
the model is good depending on the precision alone. On 
the other hand, accuracy checks the percentage of accu-
rate predictions, and hence it is not the best performance 
measurement. F1-score, on the other hand, is a harmonic 
mean between precision and recall. Since the label sizes 
are not balanced in the dataset, macro-precision and macro 
F1-scores are analyzed. Macro measurements ensure that 
there is a bias against the least popular labels. The perfor-
mance of the models of the magnitude estimation of type 
2 can be seen in Table 7.

The x-axis is varied with epochs. The y axis is associated 
with the rate of learning. From the performance evaluation 
of the testing data, a difference can be seen in the perfor-
mance compared to the previous Magnitude Estimation 
models. Here, ANN, SVM-KNN, and SVM-ANN seem 
to have the same performance, while SVM-KNN-Logistic 
Regression, SVM-ANN-KNN, and SVM-ANN-Logistic 

Regression have different performances compared to the 
other three. Here, the worst performance is shown by SVM-
ANN-KNN, while on the other hand, SVM-ANN-Logistic 
regression seems to be the best performing model for both 
types of Magnitude classification.

On testing the performance of all the models with the 
validation dataset, all of the models seem to have the same 
percentage of performance, i.e., 0.89 accuracies, 0.44 macro-
precision, and 0.47 macro F1-score except for SVM-KNN-
Logistic regression, which differs in the micro-precision 
and so it has a micro-precision of 0.48. The possible reason 
why the performance is the same is that the validation data 
contains Earthquakes with a magnitude between 5 and 6 
(Table 5). There are only two readings of class 1, and the 
balance of 16 belongs to class 0. Thus, performance evalua-
tion on the validation test data set is less functional.

Time estimation

The classification of time for the estimation of the time of a 
model’s earthquake is shown below:

•	 Class 0 – 1–7 days
•	 Class 1 – 8–14 days
•	 Class 2 – 15–21 days
•	 Class 3 – 22 or more

Here, the dataset is split into training and testing data 
used to design the models. In models that involve ANN, 

Fig. 13   ANN (3 epochs) b 
SVM–ANN (500 epochs) c. 
SVM–ANN–KNN (500 epochs) 
d. SVM–KNN–Logistic Regres-
sion (500 epochs)
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the possibility of overfitting or underfitting is taken into 
account. So, the layers are regularized using a dropout layer. 
Additionally, for training the model, the number of epochs 
has been set to 500. One epoch represents how a dataset is 
passed forward and backwards through the neural network 
once, so 500 epochs mean 500 times the dataset is passed 
through the neural network. The major problem is the possi-
bility of memorization where the neural network can memo-
rize the result, which leads to overfitting.

So, during each iteration, the training and validation 
loss can be observed. If the training loss is lesser than the 
validation loss, then overfitting occurs; if the training loss 
is greater than the validation loss, then underfitting occurs. 
A ‘just right’ condition would be when the training and the 
validation loss. So, if the model's performance keeps getting 
worse after each iteration, then underfitting or overfitting 
could have taken place. In order to prevent this, early stop-
ping has been set up, which stops the training if the model’s 
performance starts to worsen. Additionally, callback helps 
in choosing the model which best suits the performance.

Their training versus validation loss has been plotted for 
the models with an ANN, as shown in Fig. 13. These plots 
show how the model stops training after a certain number of 
epochs based on the training performance. The default value 
of epochs has been set to 500. As seen in Fig. 13, except for 
ANN, the models have 500 epochs for the models' training. 
The error measures observed are used for the estimation of 
the performance of the models. The error measures used are 
macro-precision, accuracy, and macro F1-score. The reason 
macro is chosen is that the label sizes of the dataset are not 
perfectly balanced. So, the macro measures tend to bias the 
least popular ones. Thus, macro-precision is observed, and 
macro F1-score too. Accuracy is used to measure how many 

readings were predicted accurately. The performance meas-
ures of the models are observed in Table 8.

From the model's performance evaluation, as seen in 
Table 8, it is visible that ANN and SVM-ANN show the 
worst performance. Both models have low accuracies, 
macro-precision, and macro F1-scores. While on the other 
hand, the SVM-ANN-KNN and SVM-KNN-Logistic 
Regression seem to show good performance. SVM-KNN 
and SVM-ANN-Logistic Regression seem to perform rea-
sonably well too. The model parameters have been based on 
Galkina et al. (2019).

The validation testing data was used to check the perfor-
mance of the model. Unlike the magnitude estimation, the 
estimation of time in the different models showed different 
performance results. Even if the dataset had an imbalance, it 
was not as prominent as the magnitude estimation.

From Table 9, as expected, ANN and SVM-ANN per-
formed poorly. SVM-KNN showed a decent predictability 
performance. On the other hand, the validation data was 
correctly predicted by SVM-KNN-Logistic Regression and 
SVM-ANN-Logistic Regression, with SVM-ANN-KNN 
following. Thus, SVM-KNN-Logistic Regression, SVM-
ANN-KNN, and SVM-ANN-Logistic Regression can be 
considered ideal models in time estimation.

Conclusion

This study aimed to design models to estimate the magnitude 
and to estimate the time. This prediction system uses Earth’s 
Electric Field signals from Athens, Pyrgos, and Hios. The 
dataset of the electric field taken for processing was from 
the years 2004–2011. The electric field for each reading was 

Table 8   Performance 
Evaluation of the Testing Data 
Designed on the Different 
Models Designed for Time 
Estimation

Model Accuracy Macro-Precision Macro-F1 Score

ANN 0.30 0.08 0.12
SVM-KNN 0.87 0.85 0.82
SVM-ANN 0.22 0.05 0.09
SVM-KNN-Logistic Regression 0.91 0.89 0.90
SVM-ANN-KNN 0.93 0.92 0.91
SVM-ANN-Logistic Regression 0.87 0.86 0.86

Table 9   Performance 
Evaluation of the Validation 
Test Data on The Different 
Models Designed for Time 
Estimation

Model Accuracy Macro-Precision Macro-F1 Score

ANN 0.17 0.04 0.07
SVM-KNN 0.72 0.79 0.69
SVM-ANN 0.33 0.08 0.12
SVM-KNN-Logistic Regression 1.0 1.0 1.0
SVM-ANN-KNN 0.89 0.92 0.89
SVM-ANN-Logistic Regression 1.0 1.0 1.0
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calculated, and the GfDiff was calculated. Then the maxi-
mum peak value of each day is found. Then the day with the 
highest significant GfDiff that occurs 30 days or less from 
the date of the earthquake is placed is noted down, and the 
number of days between the date of the earthquake and the 
Date with significant GfDiff is calculated. The regression 
analysis is used as an initial step towards classifying earth-
quake magnitude. Further, as the dimensions are greater than 
3, other classifications and learning models have been used 
in the paper. Once the dataset is made, the dataset is split 
into training and testing data with a test size of 33%.

Then the training data is fit into the models designed 
for magnitude estimation and time estimation. The mod-
els designed were ANN, SVM-ANN, SVM-KNN, SVM-
KNN-Logistic Regression, SVM-ANN-KNN, and SVM-
ANN-KNN. These models’ performances were evaluated. 
It was observed that the data labels were not balanced for the 
magnitude estimation models, due to which the performance 
metrics were ill-scored. But reviewing the models for magni-
tude estimation, the model that did reasonably well was the 
SVM-ANN-Logistic Regression Model. SVM-KNN-Logis-
tic Regression, SVM-ANN-KNN, and SVM-ANN-Logistic 
Regression models performed well with good prediction 
results for the time estimation model. The model tries to pre-
dict the earthquake's magnitude and predict when it would 
occur for future work. It will allow for safety precautions and 
will direct the community with warning levels.
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