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Abstract
With the availability of satellite-based precipitation products, it is pertinent to develop methods to use these data products to 
design hydraulic structures. The satellite precipitation products play a vital role in ungauged locations or when information 
is required on a catchment scale. Before such applications, the accuracy and uncertainty associated with the products have to 
be investigated. In this study, we develop a framework that includes bias correction for the development of robust IDF curves. 
The framework is applied to a small region in the southeastern part of India, and the IDF curves were evaluated using the 
gauge data at nine locations. This study compares Intensity Duration Frequency (IDF) curves using the recent precipitation 
product Global Precipitation Measurement (GPM-IMERG V6) with ground-based gauge data. Results show that the spatial 
correlation between the satellite IDF and the gauge-based IDF improves significantly after bias correction, and the value is 
as high as 0.75 for 2–10 year return period. The bias between the satellite IDF and gauge IDF is low in the north part of the 
study region and is high in the southeastern part, prone to extreme rainfall. Further, a significant percentage of the satellite-
based IDFs (with and without bias correction) lie inside the confidence interval of the gauge-based data. Thus, GPM V6 data 
have the potential to be used as an alternate data source for IDF generation in developing countries.

Keywords Satellite-based precipitation · Global precipitation measurement (GPM) · Intensity frequency duration (IDF) 
curve

Introduction

Floods are among the most common natural hazards 
resulting in loss of lives and infrastructure (Maheswaran 
and Khosa 2013, 2012; Kasi et al. 2020a). In the past few 
decades, almost 20,000 people are killed over the entire 
globe, and almost 58 million people are affected due to 
severe floods (Cross 2010; WDR 2018; Yeditha et al. 2020; 
Kumar et al. 2021). To minimize flood risk and reduce the 
loss of life and property accurate estimate of design floods 
is required while designing hydraulic structures. Inten-
sity Duration Frequency (IDF) relationships are generally 
developed to estimate the design floods (Watt and Mar-
salek 2013). The derived IDF curves are generally used for 

hydrological design purposes and verdict support evidence 
in flood risk and water resources management. IDF curves 
are the mathematical relationship between the rainfall inten-
sity “I” versus duration of time ‘D’ in hours over the vari-
ous return period (T) in years (Overeem et al. 2008; Dong 
et al. 2013; Vivekanandan 2013; Bhatt and Ahmed 2014; 
Wayal and Menon 2014; Tfwala et al. 2017). IDF curves are 
developed using historical annual maximum series (AMS) 
of rainfall data which were then best fitted with appropriate 
probability distribution to estimate the rainfall intensities 
over the given storm duration and return period (Overeem 
et al. 2008; Cheng et al. 2014). The developed IDF curves 
assume that the occurrences and distribution of precipita-
tion patterns are spatially similar and remain unchanged 
throughout the lifespan of the infrastructure (Cheng et al. 
2014; Agarwal et al. 2018, 2020; Setti et al. 2018).

Several studies have investigated the parametric formula-
tion of IDF curves relationships and estimation of the param-
eters in the past. Some of the significant and critical works 
include Chow et al. 1988; Koutsoyiannis et al. 1998 and 
Hosking and Wallis, 1993 wherein the latter have introduced 
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L-moments-based estimation uses the probability-weighted 
moments (Greenwood et al. 1979) in developing IDF curves. 
Koutsoyiannis et al. (1998) implemented regionalization 
methods such as the Index Flood method to develop IDF 
curves. Stewart et al. (1999) developed various rainfall con-
tour maps to design rainfall depths for various return periods 
and durations. Bairwa et al. (2016) developed IDF curves-
based probability weighted moments and scaling laws for 
urban clusters in India.

Developing robust IDF curves requires accurate and reli-
able precipitation datasets. One of the significant sources 
for real-time monitoring precipitation data is the ground-
based observation gauge data. For many decades, ground-
based gauge datasets were the primary sources that were 
used for developing IDF curves. The developed IDF Curves 
using ground-based gauge datasets give reliable results 
(Zope et al. 2016; Ombadi et al. 2018). However, due to 
extensive cost involvement for installing and maintaining, 
the rain gauge distribution is scarce (Endreny and Imbeah, 
2009; Marra et al. 2017; Ombadi et al. 2018; Agarwal et al. 
2020). As an alternative to ground-based gauge measure-
ments, satellite-based precipitation products have been used 
for developing IDF curves. The main advantages of the sat-
ellite-based precipitation products are (i) real-time moni-
toring/capturing dynamics and variability of extreme rain-
fall events that are not signified by a rain gauge. (Endreny 
and Imbeah 2009; Aghakouchak A et al. 2011; Al-hassoun 
2011; Hisham Abd El-Kareem El-Dardiry 2014; Marra et al. 
2017; Ombadi et al. 2018; Noor et al. 2021) (ii) provides 
high spatial and temporal resolution precipitation datasets 
(Amitai et al. 2012; Tapiador et al. 2012; Chen et al. 2013; 
Marra et al. 2016; Panziera et al. 2016; Raj et al. 2021). In 
the past, the utility of several precipitation products such 
as Tropical Rainfall Measuring Mission (TRMM) (Endreny 
and Imbeah 2009), Precipitation Estimation from Remotely 
Sensed Information Using Artificial Neural Networks (PER-
SIANN) (Ombadi et al. 2018), Climate Prediction Center 
(CPC) MORPHING technique (CMORPH) (Ombadi et al. 
2018), have been successfully used in developing IDF. For 
example, Endreny and Imbeah (2009) used Tropical Rainfall 
Measuring Mission (TRMM) precipitation product datasets 
over the Ghana region for developing IDF curves, Endreny 
and Imbeah 2009 combined TRMM precipitation product 
datasets with ground-based precipitation data to develop IDF 
curves. Similarly, Awadallah et al. 2011 examined TRMM 
precipitation product datasets and ground-based precipita-
tion datasets to construct IDF curves over the Northwestern 
Angola region. Recently, Gado et al. (2017) developed IDF 
curves for two basins in Colorado and California region by 
combining ungauged sites and PERSIANN-CDR datasets. 
Further, Marra et al. (2017) develop and compared derived 
IDF curves using Climate Prediction Center morphing 
(CMORPH) and radar data over the eastern Mediterranean 

region. Overall, these studies show that the satellite-retrieved 
precipitation product can be an alternative source to develop 
IDF curves, particularly in sparse gauged sites. Indeed, there 
has been significant work in developing IDF curves to evalu-
ate and implement satellite precipitation.

With the advent of GPM-era satellites (Huffman et al. 
2015), GPM-based rainfall estimates (v3, v4, v5) have been 
shown to be better than TRMM (Tan et al. 2019; Tang et al. 
2020). More recently, a new version of GPM-IMERG, V6 
is made available wherein the algorithm can fuse the data 
collected during the TRMM era (2000–2014) with the pre-
cipitation estimates collected during the GPM era, thereby 
IMERG data is now available from June 2000 (https:// pmm. 
nasa. gov/ dataa ccess/ downl oads/ GPM). Studies have shown 
that the IMERG v6 can be reliably used for hydrologic appli-
cation (Tang et al. 2016; Zhang et al. 2019; Le et al. 2020; 
Ahmed et al. 2020). Several studies in various geographical 
areas demonstrated the accuracy of the GPM IMERG. For 
example, Tan and Duan 2017 revealed a good correlation 
found with GPM IMERG daily and monthly scales with rain 
gauge data. Similarly, Wang et al. 2019 mainly found that 
GPM IMERG can detect better moderate and heavy rain-
fall and better correlate with daily scale. Chen et al. 2018 
assessed the performance of TRMM 3B42 (v7) and IMERG 
(v5), and results found that IMERG datasets were highly 
correlated at monthly and annual scales with the rain gauge 
observations.

The studies mentioned above have explored the reliability 
and accuracy of the IMERG v6 product, but no studies are 
investigating its applicability for the IDF curve generation. 
Therefore, this research study’s principal goal is to provide 
a suitable methodological framework for constructing IDF 
curves using the GPM-IMERG v6 product and investigate 
its accuracy by comparing it with the rain gauge-based 
estimates. We have chosen the Vizianagaram district in the 
southern part of India as a testbed for this purpose. The 
study area is located in the tropical region and is character-
ized by a monsoonal climate with regular cyclones.

The rest of the paper is arranged in the following manner. 
Section 2 provides information about the study area and data 
sets used. Section 3 explains the methodology adopted in 
this study. The results are discussed in Sect. 4, and Sect. 5 
provides overall concluding remarks from the study.

Study area and data used

Study area

Vizianagaram district is considered as the testbed for this 
study as the ground gauge data is available in sufficient 
data length. It is located on the Southeastern part of the 
Indian subcontinent (see Fig. 1) and is bounded by the Bay 

672 Earth Science Informatics (2022) 15:671–687

https://pmm.nasa.gov/dataaccess/downloads/GPM
https://pmm.nasa.gov/dataaccess/downloads/GPM


1 3

of Bengal on the South East (Pinninti et al. 2021). The 
geographical area of the Vizianagaram district is about 
6539 sq. km, and the latitude and longitude of this area 
are 18.12N0 and 83.42E0, respectively (Kasi et al. 2020b). 

The general meteorological conditions prevailing over the 
study area are shown in Table1.

Data used

Ground‑based rain gauge data

The observed rain gauge data was obtained from the 
Andhra Pradesh State Government, Central Planning 
Office, Vizianagaram. Andhra Pradesh State Government 
has installed a rain gauge in each Mandal (a subdivision 
in the district). The same is maintained by the Andhra 
Pradesh State Development Planning Society (APSDPS). 
For this study, we have collected the Vizianagaram Central 
Planning Office data for the period from 2000 to 2019 at 
nine locations spread across the district. The locations of 
the rain gauge stations are shown in Fig. 1.

Fig. 1  Geographical location of the study area. The right bottom panel shows the study area bounded in andhra pradesh state and the left panel 
show the index map of the study area of the entire vizianagaram district covered with nine gauge points

Table 1  General meteorological characteristics in Vizianagaram Dis-
trict, South India during the period from 2000 to 2018

S. No Parameters Value

1 Daily maximum precipitation (mm) 218.36
2 Average annual precipitation (mm) 1097
3 Maximum temperature °C 31.1
4 Minimum temperature °C 27.3
5 Average relative humidity (%) 75
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Global precipitation measurements (GPM) data

Global Precipitation Measurement (GPM) is a collaboration 
mission organized by the National Aeronautics and Space 
Administration (NASA) and Japan Aerospace Exploration 
Agency (JAXA) (Huffman et al 2013; Ning et al. 2016; 
Omranian and Sharif 2018). It estimates global precipita-
tion and provides improved weather systems and information 
on extreme weather events. It is an international satellite 
mission that provides precipitation estimates for every three 
hours interval over the globe (Omranian and Sharif 2018).

GPM is much more improved than its predecessor, 
TRMM, in detecting the light and solid precipitation, which 
became possible by using two different instruments, i.e., the 
Dual-frequency Precipitation Radar (DPR) and GPM Micro-
wave Imager (GMI) (Yang et al. 2014; Yong et al. 2015; 
Zhang et al. 2016). The GPM Microwave Imager (GMI) is 
a type of conical scanning radiometer, whereas the Dual-
Frequency Precipitation Radar (DPR) consists of two bands, 
i.e., Ka-band and Ku-band. The GMI radiometer frequency 
ranges from about 10 to 183 GHz and the DPR at Ka-band 
frequency range about 35.5 GHz, and the Ku band frequency 
coverage about 13.6 GHz (Omranian and Sharif 2018). The 
DPR offers measurements spread out at nearly 5 km over 
245 km and 120 km wide swats for Ku band and ka-band 
(Khan and Maggioni 2019). The Integrated Multi-Satellite 
Retrievals for GPM used the algorithm to investigate and 
revive rainfall estimates utilizing all passive-microwave 
devices present in the GPM constellation (Grecu et  al. 
2016; Naud et al. 2018; Wang et al. 2019). GPM microwave 
imager has more frequency channels than TRMM, and the 
precipitation radar is advanced (Huffman et al. 2015). More 
significantly, spatial coverage (60°S–60°N) and the spati-
otemporal resolution (30 min and (0.1° × 0.1°) have been 
improved compared to the previous SPPs. The GPM team 
has developed GPM-IMERG precipitation products using 
the IMERG algorithm that combines three SPPs features, 
including PERSIANN-CDR, CMORPH, and TRMM. Three 
types of IMERG products are made available: early run, late 
run and final run with a latency period of 4 h, 14 h and 
3.5 months. The first two products are useful in real-time 
applications, whereas the latter can be used for water balance 
studies. All these products are available at 0.1° × 0.1° spatial 
resolution over the fully global domain.

Presently, IMERG is at its Version 06 stage (https:// gpm. 
nasa. gov/ missi ons/ two- decad es- imerg- resou rces). The new 
thing in Version 06 IMERG is that the algorithm combines 
the data collected during the TRMM era (2000–2014) 
with the precipitation estimates collected during the GPM 
era. Due to this, IMERG is now available from June 2000 
(https:// pmm. nasa. gov/ dataa ccess/ downl oads/ gpm). The 
"Final run" of IMERG combines the GPCC Monitoring 
product, the V8 Full Data Analysis, for most of the time 

(currently 1998–2019). This study used the GPM-IMERG 
v6 final run precipitation product from June 2000 to Jun 
2019 for the study. Further, the GPM-IMERG v6 data 
was downloaded at grid locations that are near the gauge 
locations.

We have derived the 2-day and 3-day precipitation from 
the available daily satellite-based precipitation (GPM) 
product and gauge precipitation data for the IDF curve 
generation.

Methodology

In this section, the methodology used for developing IDF 
curves using GPM data is presented. Here, apart from using 
the satellite data for IDF generation, it is also intended to 
investigate the effect of using the bias-corrected product. 
For this purpose, we use the strategy proposed by (Ombadi 
et al. 2018). The overall methodology is represented in the 
form of a flow chart shown in Fig. 2.

Homogeneity test

There is always a question of whether the underlying prob-
ability distribution remains constant or not, especially in 
hydro climatological studies (Kisi 2015; Dash et al. 2017; 
Agarwal et al. 2017). The changes can be attributed to sev-
eral causes. However, for the present analysis, the assump-
tion of stationarity must be verified. The homogeneity test is 
essential for assessing the extreme annual rainfall data and 
would provide confidence in the datasets for development 
of IDF curves.

The homogeneity test can be done using a parametric and 
nonparametric test. The analyzed variables are assumed to 
be normally distributed in the parametric test, whereas the 
nonparametric methods do not make any assumptions. Many 
statistical approaches can be applied to evaluate the homo-
geneity of the time series data. Of the different methods, in 
this study, nonparametric homogeneity test, Pettit test is used 
because, according to the earlier investigation, proved to be 
most reliable in detecting the break or change points in the 
time series data (Wijngaard et al. 2003; Costa and Soares 
2009; Hurtado et al. 2020).

Pettit test

Pettit test is a nonparametric homogeneity test that is consid-
ered more sensitive to detect the break point in the middle of 
the time series (Pettit 1979; García-Marín et al. 2020). The 
Pettit test uses the version of Mann–Whitney statistic Ut,n , in 
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which it detects the change and breakpoints in the time series 
data and the equation which is given below:

(1)U(t,n) = U(t−1,n) +

n∑
(j=1)

sgn
(
Xt − Xj

)
, 2 ≤ t ≤ n

(2)sgn(Xt − Xj) =

⎧⎪⎨⎪⎩

+1Xt > Xj

0Xt = Xj

−1Xt < Xj

The statistic test counts the no of member of the first 
sample exceeds the second sample. In the Pettitt test, the 
null hypothesis is the absence of a change point. The prob-
ability (P) and test statistic  (KN) used in the test is given by

(3)Kt0
=

max

1 ≤ t ≤ n
||Ut,n

||

(4)P
(
t0
)
≅ 2 exp

[
−6K2

(t0)

(
n3 + n2

)]

Fig. 2  Flow chart of the proposed methodology
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when P(t0) ≤  0.5, then there is a significant change 
point in  t0.

Biased correction for Satellite‑based Precipitation

In recent years, numerous studies have been evaluating 
the satellite-based precipitation products (Soorooshain 
et al. 2000; Ebert et al. 2007; Dinku et al. 2008; Behrangi 
et al. 2011; Duan et al. 2016; Marra et al. 2017; Ozturk 
et al. 2018, 2021; Marra et al. 2019; Guntu et al. 2020; 
Setti et al. 2020; Kalyan et al. 2021) and their utilization 
for different applications. Although these studies vary in 
many aspects like topography, the time scale of evaluation 
and valuation metrics, the general agreement is that the 
satellite precipitation products contain errors, both ran-
dom and systematic (Zorzzzetto et al. 2016; Ombadi et al. 
2018; Zorzzetto and Marani 2019). Further, it was also 
generally observed that some of the products have a lower 
performance in detecting the heavy rainfall events (Meh-
ran and Aghakouchak 2014; Prakash et al. 2016), thereby 
necessitating careful examination of errors prior to their 
application for the development of IDF curves.

For IDF curve generation, only extreme rainfall events, 
defined as events higher than the  99th percentile of the dis-
tribution of total rainfall accumulated over a definite dura-
tion of time, are considered. Of the different approaches 
for sampling the extreme events, the Annual Maximum 
Series (AMS) is considered in this study as AMS ensures 
independency of the series's elements and does not require 
the definition of thresholds (Marra et al. 2017). The error 
analysis of the GPM data is carried out as given below.

(i) AMS rainfall values are extracted from the ground 
measurement data and satellite-based precipitation 
product (GPM) datasets for all the locations; the length 
of the AMS series is 19 years extracted for the period 
from 2001 to 2019.

(ii) AMS obtained from the gauge and GPM rainfall data-
sets are given ranks and arranged in descending order.

(iii) A bias correction factor (ξ) is defined as the ratio of 
ground measurement to satellite-based precipitation 
product (GPM) that is,

  where (x, y, l) is the adjustment factor for the lth 
event in the AMS at the location (x, y),

  PG(x,y,l) is the lth ground-based rainfall event in the 
AMS at the location (x, y) and PS(x,y,l) is the lth Satel-
lite-based rainfall event in the AMS at the location (x, 
y).

(5)(x, y, l) =
PG(x,y,l)

PS(x,y,l)

(iv) At each grid point location, the average value of the 
bias for a given location ( �x,y) which represents the 
systematic error in the satellite precipitation product is 
estimated as

(v) After estimating the bias in the estimates for each loca-
tion, the bias-corrected satellite precipitation at a given 
location (x,y) is estimated by,

For comparison, in this study, IDF curves were developed 
using both the GPM datasets with and without correction.

Developing intensity duration frequency (IDF) 
curves

In this study, the Generalized Extreme Value type (GEV) 
distribution (Appendix A) method is used for developing 
IDF curves. GEV is a three-parameter extreme value dis-
tribution commonly used to model extreme rainfall events 
(Bougadis and Adamowski 2006; Overeem et  al. 2008; 
Bairwa et al. 2016; Marra et al. 2017; Ombadi et al. 2018). 
Compared with the other distribution functions like Pear-
son type III distribution or Generalized logistic distribu-
tion, GEV distribution best fits the Annual Maximum Series 
(AMS) (Kysely and Picek 2007; Perica et al. 2013). Further, 
GEV distribution has been used for frequency analysis for 
datasets based on satellites (Overeem et al. 2008; El-dardiry 
et al. 2015; Paixao et al. 2015; Marra et al. 2016, 2017; 
Panziera et al. 2016) owing to its ability to include all three 
(EV-I, EV-II and EV-III) asymptotic extreme values types 
(Katz et al. 2002).

Based on the reasons mentioned above, in this study, 
GEV is used to fit the AMS values of maximum rainfall 
intensities observed over 1-day, 2-day and 3-day durations, 
obtained from daily gauge data, GPM and biased-corrected 
GPM precipitation data.

The obtained AMS rainfall intensities values for each 
point are fitted with GEV distribution, then the IDF Curves 
are derived for 2, 5, 10, 25, 50 and 100 years return period 
at 1-day, 2-day and 3-day duration.

Comparison between for derived intensity–
duration–frequency maps

In this study, the comparison between the IDF generated 
using different datasets is performed using the non-dimen-
sional normalized metrics given below. For comparison, the 

(6)�x,y =

19∑
l=1

ξ(x, y, l)

19

(7)Pcorr
s (x,y)

= PS(x,y) × �x,y
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IDF derived using the observed gauge-based data is used to 
reference the ones derived from the satellite-based datasets.

Coefficient of Correlation (CC) It computes the spatial 
correlation between the IDFs generated from the gauge 
data and the satellite product across different locations 
at given return periods. The values range between -1 
and 1 with + 1 indicating that the estimates from both 
datasets perfectly match the spatial variation of the esti-
mates from both datasets. It can be computed by using 
Eq. (8)
Bias It measures the mean quantitative agreement of the 
derived IDF curves. Generally, the bias values should 
be greater or less than 1. The + 1 indicates the exact 
mean quantity agreement. A lower value indicates that 
the mean of satellite-based precipitation evaluation is 
greater than the mean of ground-based gauge estimate. 
It can be estimated using Eq. (9)
Normalized standard difference (NSD) It measures 
the standard deviation of the residuals of the normal-
ized values is calculated as Eq. (10) (Marra et al. 2017). 
NSD values are generally ≥ 0, with values near to zero 
are desirable.
Percentage relative error (RE) The percentage rela-
tive error is the accepted metric for the absolute val-
ues of rainfall estimates. This metric evaluation allows 
computing the overall performances of derived IDF 
curves over the entire study region.

Where S
d,T and G

d,T represents vector (1xN) rainfall 
intensities estimated from the fitted GEV at d-day dura-
tion with T year return period; gi

d,T
 and si

d,T
 are the gauge 

IDF and satellite IDF estimates at the ith location within 
the total number of N locations; gd,T and sd,T are the mean 
values of the gauge and satellite estimates.

(8)CC(d, T) =
Cov(G

d,T , Sd,T)

Stdev
(
G

d,T

)
.SD(S

d,T)

(9)Bias(d, T) =

∑N

i
gi
d,T∑N

i
si
d,T

(10)NSD(d, T) =

√√√√√ 1

N

N∑
i

[
si
d,T

sd,T
−

gi
d,T

gd,T

]2

(11)

RE =

(
IDFSatellitebasedprecipitation − IDFGroundbasedgaugeprecipitation

IDFGroundbasedgaugeprecipitation

)

Estimation of confidence intervals

The confidence intervals are estimated using the Monte 
Carlo bootstrapping method following the method described 
in Ombadi et al. 2018. The methods consist of three steps.

1. Empirical CDF is estimated from the gauge data at all 
nine locations using Kernel Density estimation (Rosen-
belt 1956; Ombadi et al. 2018).

2. From the empirical distribution, samples with the same 
length of record (19 years) are extracted. Random sam-
ples were drawn from the uniform distribution in the 
range [0 1], then the corresponding quantiles were esti-
mated from the empirical CDF.

3. The Monte Carlo sampling is done 1000 times to get the 
asymptotic properties. The 95th and 5th percentiles were 
estimated to get the 90% confidence interval based on 
the obtained values.

Results and discussion

Homogeneity tests

Pettitt test is applied to the extreme annual rainfall daily 
data for each ground-based gauge point precipitation data, 
GPM precipitation and biased corrected GPM precipitation 
data. The results obtained using the Pettit test for different 
precipitation products are shown in Table 2: The k-statistic 
value and p value are given for a significance level of 0.05 
at a 95% confidence interval. Overall, p values from Petit's 
test show that the data is homogeneous and can be used for 
the IDF generation.

Bias correction

Figure 3 shows the Q–Q plot between the gauge-based 
quantiles and the quantiles from satellite data before and 
after adjustment for one location. Figure 4 demonstrates 
significant improvement in the quantiles estimated from the 
GPM after the bias correction. Further, the bias correction 
removes the significant part of systematic error as seen from 
the close alignment of the quantiles values towards the X = Y 
line after bias correction. It can be discerned from Fig. 3 that 
the bias correction results in improves the estimation of the 
AMS value. This analysis highlights that bias correction is 
effective in removing bias in satellite precipitation.
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Assessment of satellite‑based and ground‑based 
GEV parameters

The obtained AMS data from 1-day, 2-day and 3-day from 
rain guage, GPM and bias-corrected GPM datasets at all the 
locations are fitted GEV distribution to obtain parameters 
like location ( � ) parameter, scale ( � ) parameter and shape 
(k). The median and the 25–75th quantile intervals of the 
parameters (over the all the locations) derived from the three 
datasets are shown in Fig. 4.

The location parameters from the GPM are larger than 
the ones from the gauges, meaning that the extreme values 
from the GPM are in general higher than the observed val-
ues. Marra et al. 2017 assert that the location parameters' 

differences can be associated with the bias in the extreme 
values and can be removed by suitable bias correction. 
Figure 4 shows that the location parameters obtained using 
the bias-corrected GPM are closer to the observed values 
for all the duration.

For comparison, the scale parameters are normalized by 
considering the corresponding location parameters. The 
normalized scale parameters from the GPM dataset tend to 
derive high scale parameters suggesting higher dispersion. 
However, increasing the duration, the scale parameters’ 
value tends to decrease for all the three datasets, and the 
difference in values tends to reduce.

Analysis of the shape parameters obtained shows that 
mostly k > 0 for all the three datasets and durations, sug-
gesting that thick-tailed distribution better describes extreme 
rainfall events in this area. As evident from the figure, the 
shape parameters were similar to those obtained using the 
gauges. The parameters obtained using the bias-corrected 
GPM were similar in terms of the median, but the variability 
is slightly higher than the gauge-based estimates. Further, 
with increased duration, the shape parameters values tend to 
increase, suggesting more thicker tailed distribution.

Comparison of derived IDF curves

Using the estimated GEV parameters, the IDF curves 
were derived for different return period, T = 2, 5, 10, 25, 
50, 100 years at all the locations considered in the study. 
The intensity of rainfall vs duration for T = 2 years and 
T = 25 years is shown in Fig. 5a, b. As evident from Fig. 5a, 
the derived IDF curves using gauge data and bias-corrected 
GPM are closer for most locations except for Point 5, where 
there is an underestimation.

Table 2  The k-statistic value, 
pvalue and point detected 
location values are given for a 
significance level of �=0.05 for 
9 different location points

If the p value is less than the significance level � , then we can reject the null hypothesis that the data is 
homogeneous
If the p value is greater than the significance level, then we can accept the null hypothesis

Station point Pettit test

K Static p value

Ground based 
gauge point

GPM Biased cor-
rected GPM

Ground based 
gauge point

GPM Biased cor-
rected GPM

P1 34 33 33 0.765 0.885 0.905
P2 39 39 39 0.554 0.546 0.533
P3 39 43 43 0.54 0.361 0.351
P4 25 41 41 0.465 0.441 0.429
P5 37 79 79 0.645 0.0001 0.001
P6 24 31 31 0.403 0.945 0.95
P7 47 20 20 0.23 0.174 0.164
P8 55 37 37 0.084 0.645 0.65
P9 29 61 61 0.788 0.03 0.032

Fig. 3  Q-Q plots comparing quantiles of AMS extracted from the 
ground-based gauge point, GPM and biased corrected GPM. The 
red colour represent GPM precipitation, and blue colour represents 
biased corrected GPM precipitation
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However, there is a significant overestimation of the 
intensity values using the GPM data, which was also evident 
from the corresponding location parameters.

Comparing the 25-year estimate of the rainfall intensity 
(as shown in Fig. 5b) obtained using the bias-corrected 
GPM, there is a tendency to underestimate at most locations 

except at points 1 and 4. Interestingly, the estimates at points 
5 and 9 based on GPM closely match the gauge-based esti-
mates from bias-corrected GPM. This could be due to an 
outlier in the AMS values from that location because the 
overall bias correction value was affected.

Overall, based on the IDF curves' visual comparison, 
the bias-corrected GPM-based estimates were closer to the 
gauge-based estimates.

The IDF maps for 1-day duration at three different return 
periods obtained from the gauge, GPM and bias-corrected 
GPM are presented in Fig. 6. It can be seen that the IDF 
values are higher in the southern part of the study, which is 
closer to the Indian Ocean. The IDF maps based on GPM 
tend to overestimate the intensities, particularly in the south-
ern part of the study region. Even though there is a signifi-
cant improvement in the bias-corrected GPM derived IDF 
maps, there are still pockets of locations in the southern part 
where there is significant overestimation compared to the 
gauge-based estimates. The bias-corrected GPM IDF maps 
are comparable with those from the gauges for a higher 
return period than for a lower return period (T = 2 years). 
A detailed quantitative analysis of the differences between 
the IDF maps derived from the different datasets is given in 
the next section.

Comparison of non‑dimensional metrics 
between IDF of ground‑based gauge point—GPM 
and ground‑based gauge point—biased corrected 
GPM

The complete quantitative comparison in terms of non-
dimensional metrics like Coefficient of Correlation (CC), 
Bias and Normalized standard differences (NSD) between 
the GPM and Biased corrected GPM IDF maps are shown 
in Fig. 7. A significant difference is observed in the pattern 
of CC for GPM and bias-corrected GPM. The CC, which 
measures the spatial correlation of the IDF maps is as high 
as approximately 0.74–0.8 for 2 years and 5-year return peri-
ods and reduces when higher return periods are considered. 
The bias-corrected GPM exhibits a higher correlation at all 
return periods and duration than the GPM. Interestingly, the 
bias correction factor improved the magnitude and also the 
spatial organization of the annual extremes.

Bias values less than 1 indicates that the GPM tends to 
overestimate the rainfall intensities, whereas the bias values 
were closer for bias-corrected GPM, meaning that the bias 
correction improves the results significantly. Noteworthy, 
the bias values were of the same magnitude for all the return 
periods and durations. Similar behavior was observed by 
(Marra et al. 2017) wherein the authors report the bias is the 
same for return periods at higher durations.

The difference in NSD tends to decrease with the return 
period and the duration. The bias-corrected GPM tends 

Fig. 4  The variation between the obtained GEV parameters like loca-
tion ( �), scale (�) and shape (k) parameters from ground-based gauge 
point, satellite-based- GPM and Biased-corrected GPM precipitation 
product over 1 day, 2 day and 3 day duration
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Fig. 5  a Comparison of 2-year 
return period for 1-day, 2-day 
and 3-day duration for ground-
based gauge point, GPM and 
Biased-corrected GPM for 9 
grid point data and b Compari-
son of 25-year return period for 
rain gauge GPM and Biased-
corrected GPM for nine grid-
point data

(a)

(b)
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to have lesser NSD at lower return periods but has simi-
lar NSD (to GPM) at larger return periods. A similar trend 
was observed at longer durations, but the gap between the 
two was reduced with the increase in duration. According to 
Mei et al. (2016) results shows that the regularly monitored 
gauge data impacts the annual extreme rainfall events when 
compared with the satellite-based obtained annual extreme 
rainfall events.

The percentage relative error for the remotely sensed pre-
cipitation data, i.e., GPM and biased corrected GPM precipi-
tation data, are shown in Fig. 8. It can be seen that the biased 
corrected GPM product performs well in providing the least 
percentage relative error. The GPM dataset without bias 
possesses a percentage relative error vary from 5 to 40%, 
whereas, in the biased corrected GPM precipitation prod-
uct, it is comparatively less for all return periods. Across 

Fig. 6  Comparison of Spatially 
distribution/Interpolated maps 
for 2-year, 10 year, and 25 year 
return periods of Ground-based 
gauge precipitation, GPM and 
Biased-corrected GPM precipi-
tation data

Fig. 7  Comparison of non-
dimensional metric parameters 
of Coefficient of correlation 
(cc), Bias and NSD for 1-Day, 
2-Day and 3-Day duration. The 
first row represents the CC, 
the middle row represents the 
bias, and the last row represents 
the NSD for 1-Day, 2-Day and 
3-Day durations
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the different durations, the error range is reducing with the 
increased duration, indicating that aggregating the rainfall 
values reduces the difference in the precipitation products. 
On the other hand the range of the error is increasing with 
the return period as expected.

Figure 9 reports the IDF curves obtained from the dif-
ferent datasets at all locations and the confidence interval 
estimated using the method elaborated in Sect. 3.5. The IDF 
curves.

The estimates obtained using the different datasets are 
within the confidence interval for durations. However, 
the quantiles obtained using the GPM were overestimated 
compared to ones obtained from the gauge data at P1, P2, 
P4, P7, P7, P8, and underestimated at P3, P5. There is a 
significant improvement in the IDF curve estimates using 
the bias-corrected wherein the IDF curves are closer to the 
gauge-based IDF. A similar pattern was observed across the 
different durations.

Interestingly, the estimates from GPM data without bias 
correction were closer to gauge IDF at P2, P3, and P5 loca-
tions. The bias correction exaggerates the error, leading to 
increased underestimation at these locations. This empha-
sizes that while the bias correction is essential for develop-
ing accurate IDF curves, special attention must be given to 
regions where the satellite products show a different behav-
ior, such as the case over the eastern part (P2, P3 and P5) of 
the study region.

This study reveals the applicability of satellite-based 
products for deriving the IDF curves. However, there are 
different levels of uncertainty (retrieval stage, downscaling, 
bias correction methods, extreme event selection method, 
parameter estimation) that arise in the estimation of IDF 
curves and the quantification of the same can be considered 
as a future study.

Conclusion

This work aims to investigate the application of the satellite 
precipitation products in deriving IDF curves, particularly 
in developing countries where the rain guage network is 
sparse and has lesser spatial coverage/record length. With 
the advancement in space technology and retrieval method 
of precipitation from satellites, it is important to assess these 
precipitation products accurately. This study has attempted 
in assessing recent GPM products and a methodology to 
derive IDF curves from the satellite products.

With this motivation, the application of GPM-IMERG-
V6 for IDF generation in the developing countries, we have 
considered a small region in the southern part of India where 
ground gauge area available insufficient length.

The shape parameters of the GEV distribution as derived 
from the satellite precipitation and gauge are greater than 
“zero”. The location parameters from the satellite precipita-
tion (GPM) are larger than those from the gauges, meaning 
that the extreme values from the (GPM) are generally higher 
than the observed values. The normalized scale parameters 
from the GPM dataset tend to derive high scale parameters 
suggesting higher dispersion. However, increasing the dura-
tion, the scale parameters’ value tends to decrease for all the 
three datasets, and the difference in values tends to reduce. 
The percentage relative error median values of GPM return 

Fig. 8  Relative error present in ground-based gauge point -GPM and 
ground-based gauge point—biased corrected GPM IDF return period 
values are represented in the form of boxplot for a 1 day. b 2 day. c 
3  day. The light blue thick line present in the box represents the 
median value and the boxes represent the interquartile range, and the 
thick dashed lines represent the range
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periods vary from 5 to 40%, whereas, in the Biased cor-
rected GPM precipitation product, the percentage relative 
error values are less than 15%. The estimates from the bias-
corrected product are robust for most of the study region, 

but at two locations, the model has limitations in adjusting 
the underestimation.

Even though the present study focused on a small 
region, the methodology can be extended to large river 
basins /regions. Overall, the study results emphasize the 

Fig. 9  Visual Comparison of IDF curves for 2-year, 5-year, 10-year, 
25- year, 50-year and 100-year return period values for satellite-
based precipitation GPM (red line) and bias corrected GPM data 

over ground-based gauge (dashed black line) data at nine location for 
1-day, 2-day and 3 day durations. The 95% confidence interval band 
is represented in the shaded area (grey)
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potential use of the GPM satellite precipitation as an alter-
native data for developing IDF curves in developing coun-
tries. There are several future works emanate from this 
study. These include quantifying the different sources of 
uncertainty that arise at various levels, such as estimation 
algorithms, bias correction methods, parameter estimation 
methods, etc.

Appendix A

The Generalized Extreme Value (GEV) type distribution 
method is defined below equation:

 (i) For k ≠ 0:

 (ii) For k = 0:

Where: ‘I’ is the rainfall intensities derived for 1-day, 
2-day, 3-day duration. The location ( �) , scale ( � ) and shape 
(k)are the GEV distribution parameters. The tail of the 
extreme values distribution is direct with the shape param-
eter (k). The shape parameter(k) of low (high) is related to 
lower (higher), which are having a more significant extreme 
probability. We use the Type III distribution method. When 
shape (k) is zero, then we can expect extreme values at the 
upper limit. We adopted Type II or equal Type I distribution 
when shape parameter (k) is 0 then. In this case, we cannot 
expect an upper limit. If the k is greater than 0.5 and 1, then 
the mean and standard deviation of the distribution tends to 
‘ ∞ '. According to the Fisher-Tippet theorem validates that 
Generalized Extreme Value Type Distribution is one of the 
most probable distribution functions for similar distributed 
random variables of extreme values.
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