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Abstract
With the development of urbanization, global warming, rain island effect and other factors, cities around the world are facing 
more frequent and intense flood events. In order to deal with the damage caused by urban flood effectively, it is increasingly 
important to accurately predict and characterize the information of the flood in cities. In recent years, the rise of machine 
learning methods provides a new technical means for flood prediction. In this study, Naive Bayes (NB) and Random Forest 
(RF) algorithm were used to forecast the waterlogging point and the waterlogging process at the waterlogging point respec-
tively to achieve the goal of predicting the whole process of urban waterlogging. Compared with the actual result, the four 
evaluation indexes (P, R, A and  F1) of the NB classification models are 91%, 90.5%, 98.9% and 90.7% respectively, and 
the three regression indexes (MAE, MRER and RMSE) of the RF regression model were respectively 0.95%, 9.53% and 
1.21%. The results demonstrated that the prediction result of NB model for waterlogging point is reliable, and the process of 
waterlogging predicted by RF model is also consistent with the actual situation, which verify the validity and applicability 
of the NB model and RF model. This research is expected to provide scientific guidance and theoretical support for urban 
flood disaster mitigation and relief work.

Keywords Urban flood · Naive Bayes classification model · Random forest regression model · Waterlogging points 
prediction · Real-time depth prediction

Introduction

Extreme weather and climatic events, particularly flooding, 
have caused a huge impact on people's life and property and 
social development (Jamshed et al. 2021). In the twentieth 
century, the number of deaths caused by catastrophic floods 
has ranged from 100,000 to 1.4 million, according to pub-
lished national statistics (Hajat et al. 2003). Recent studies 
have reported that floods, one of the natural disasters caused 
by extreme weather and climate events, are becoming more 
frequent and intense (Hirabayashi et al. 2013; IPCC 2014). It 

is estimated that from 2000 to 2020, flood events have caused 
economic losses of more than $537 billion globally, affect-
ing the normal life of 1.6 billion people (EM-DAT 2020). 
With increasing impervious cover in urban areas driving 
dramatic changes in rainfall infiltration and storage capacity 
(Mu et al. 2020), which lead that urban flood appear sud-
den and frequent (Ward 1978), posing severe challenges to 
urban flood control and drainage. Cities gather a large num-
ber of talents, creating an economy that occupies an absolute 
advantage in the overall economic proportion, which leads 
to urban floods affect a large number of people worldwide, 
causing human fatalities and significant damages (Rahmati 
et al. 2020). After the Louisiana floods in 2016, the floods in 
Shouguang and Zhengzhou in China in 2018, and the floods 
in Iran on March 25 in 2019, as examples, these heavy rains 
and floods caused considerable economic losses and casual-
ties, and have become prominent bottlenecks affecting the 
healthy development of cities (Yazdi et al. 2019). The main 
reason for urban flood is that urbanization increases hard-
ened area, reduces infiltration, increases runoff and triggers 
higher and faster peak water flow (Loperfideo et al. 2014; 
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Ferreira et al. 2016). These changes have a considerable 
impact on the hydrological process when rainfall occurs, 
resulting in a large and rapid runoff generation, coupled with 
the failure of storm drainage system (GebreEgziabher and 
Demissie 2020), resulting in a higher probability of urban 
flood occurrence and a higher recurrence rate (Braud et al. 
2013; Miller et al, 2014; Jongman 2018).

To assist decision makers in anticipating potential flooded 
and preemptively taking measures to lleviate the pressure 
brought by urban floods, promote the steady development 
of cities and ensure the safety of people's lives and property, 
researchers and practitioners have done a lot of research on 
urban flood prediction (Bhan and Team 2001; Diaz-Nieto 
et al. 2012; Gain and Hoque 2013; Kong et al. 2017). Hydro-
logical and hydrodynamic models and data-driven models 
are the most popular and widely used tools in the research 
of early warning and forecast of urban flood information 
(White and Greer 2006; Bubeck et al. 2016).

Hydrological and hydrodynamic models are based on 
hydrological characteristics, which can physically describe 
runoff confluence by combining the physical laws of mass 
momentum and energy conservation (Vojinovic and Tutu-
lic 2009). SWMM (Zhao et al. 2009; Huong and Pathirana 
2013), Mike (Zoppou 2001; Zolch et al. 2017) and InfoW-
orks (Schmitt et al. 2004) are widely used hydrological and 
hydrodynamic models in flood prediction. Zhang et al. built 
an urban flood model based on SWMM to predict the flood 
disaster and pipeline drainage process under different types 
of designed rainfall, based on the data of topographic map 
underground drainage network, urban land use and rainfall. 
The results prove the applicability of SWMM in urban rain-
storm flood simulation and drainage analysis of pipe net-
work (Zhang and Li 2019). Wu et al. (2017) established a 
two-dimensional hydrodynamic inundation model through 
the coupling of SWMM and LISFlood-FP model, and on 
this basis revealed the evolution law of the inundation of 
Shiqiaoxi District (SCD) of Dongguan City under different 
scenarios of sea level rise and subsidence under heavy rain. 
Patro et al. (2009) took the data results of MIKE11 as the 
input of the two-dimensional model MIKE 21, coupled the 
MIKE11 model and the MIKE 21 model laterally to form the 
two-dimensional flood inundation simulation MIKE flood 
model in the study area, and carried out numerical simu-
lation on the flood inundation range and flood inundation 
depth. Bisht et al. (2016) used the two-dimensional (2D) 
MIKE model to overcome the limitations of the one-dimen-
sional (1D) SWMM model in simulating the flood range and 
flood inundation, and simulated the flood in a small urban-
ized area in West Bengal, India. The InfoWorks ICM 2D 
hydrodynamic model is utilized for simulating historical and 
designed rainfall events, which is carried out in the “Sponge 
City Construction” pilot area of Jinan City. The simulated 
water depth and flow velocity are recorded for flood risk 

zoning and the result shows that the InfoWorks ICM 2D 
model performed well (Cheng et al. 2017).

The data-driven intelligent model does not need to con-
sider the specific process of the model. It is mainly mani-
fested as the analysis and learning of the existing obser-
vation data, so as to establish the mapping relationship 
between input and output, so as to predict the specific vari-
ables (Nourani et al. 2009; Jhong et al. 2016). Ding et al. 
(2020) proposed an explicable spatiotemporal attention 
long—short memory model (STA-LSTM) based on LSTM 
and attention mechanism, and established the model using 
dynamic attention mechanism and LSTM method to make 
explicable analysis of flood prediction. Granata et al. (2016) 
predicted the runoff due to rainfall through support vector 
regression (SVR) and compared the results with those of 
the SWMM model. The results of SWMM overestimated 
the runoff compared to those of SVR. Kim and Han (2020) 
established flood prediction models for various basins by 
introducing nonlinear autoregressive model and self-organ-
izing map (NARX-SOM), and carried out flood prediction 
for the extremely heavy rainstorm in Seoul, South Korea in 
2010 and 2011, with high prediction ability. She and You 
(2019) combined the architectural advantages of radial basis 
function neural network (RBFNN) and nonlinear autoregres-
sive and exogenous input neural network (NARXNN) and 
proposed the RBFM prediction model to predict the urban 
drainage system flow, which proved the great potential of 
RNFM in urban runoff prediction and management. Wu 
et al. (2020a) established a real-time prediction model of 
flood depth based on waterlogging point by using GBDT 
algorithm based on multi-factor analysis, and verified the 
validity and applicability of the model for real-time predic-
tion of waterlogging process. However, the model that Wu 
used only be predicted when rainfall occurs, and cannot pre-
dict the flood depth after rainfall.

The above studies have achieved good results in the field 
of flood prediction. However, the current research results 
still focus on the prediction of a single aspect of the depth 
range of urban flood and the duration of water retention, 
which leads to the failure to make appropriate decisions in 
time to avoid the damage caused by the flood disaster (Yazdi 
and Neyshabouri 2012; Wu et al. 2020b). Moreover, studies 
on the spatial flood prediction for large urban basins are not 
sufficient. As such, this paper intends to use the Naive Bayes 
algorithm and random forest algorithm in machine learning 
to forecast the information of urban waterlogging generated 
by rainfall. The specific contents are as follows: 1. Accord-
ing to the rainfall data information, a classifier model based 
on Naive Bayes algorithm is constructed to analyze and pre-
dict the urban waterlogging point; 2. Construct a regression 
prediction model based on random forest algorithm, and 
use real-time rainfall and water accumulation information 
to make short real-time prediction of water accumulation 
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process at waterlogging points. From the determination of 
the waterlogging point to the prediction of the water level at 
the waterlogging point, the prediction research of the whole 
process of urban waterlogging is realized, which provides 
technical support for urban flood control management.

Materials and methods

Study area

Zhengzhou, the capital of Henan Province in Central China, 
covers an area of approximately 7446  km2 (Fig. 1). Its per-
manent resident population reached 10.352,000 by the end 
of 2019, ranking 14th in China. Among them, the urban 
population was 7.721 million, with an urbanization rate of 
74.6%. As an important hub city on the “new Silk Road” 
in Europe and Asia, Zhengzhou’s the total GDP (Gross 
Domestic Product) reached 177.3 billion dollars in the same 
year. Zhengzhou’s geographical location (34°16′–34°58′ N; 
112°42′–114°14′ E) in the continental monsoon climate 
allows 60% of its 524.1 mm annual average rainfall to occur 

during the summer months from June to September, when 
there is an increased risk of urban flood. For example, heavy 
rains on August 19, 2018 and August 1, 2019 caused wide-
spread flooding in city; some waterlogging prone points have 
serious water accumulation, compromising the regular traffic 
operation (Figs. 2, 3).

Fig. 1  Location of the study area

Fig. 2  The structure of the Naïve Bayes

2319Earth Science Informatics (2021) 14:2317–2328



1 3

Date and material

Through the analysis of the hydrological process of the 
accumulation and confluence of water, it is found that 
both rainfall and geographical factors play an indispen-
sable role in the formation of water. Ignoring any one of 
these factors may lead to the distortion and deviation of 
the predicted results. Thus, considering the usefulness of 
machine learning algorithm for multidimensional data and 
in combination with previous research results (Choubin 
et al. 2019; Vafakhah et al. 2020) and the data available 
in the study area, three main prediction features, namely, 
geographical characteristics, rainfall characteristics and 
flood characteristic are selected for training and verifi-
cation the model. Geographical characteristics describe 
land use (the proportion of roads, woodlands, grasslands 
and building) and geographical structure (permeability, 
catchment area, and slope), which were obtained from 
the maps extracted of Pleiades Satellite in May 2014 with 
the 0.5 m high spatial resolution. Rainfall characteristics 
include three rainfall indexes, namely, rainfall, rainfall 
duration and peak rainfall, which were obtained from the 
Henan Meteorological Service. Because the occurrence of 
rainfall, the characteristics values of rainfall in different 
parts of Zhengzhou urban area are various, the data of the 
rainfall was processed by using the Kriging method of 
space interpolation to refine the rainfall data and increase 
the diversity of rainfall intensity. For flood characteristic, 
locations and depths information of flooded urban areas 
were included, which were collected from the monitor-
ing equipment at each intersection administered by the 
Zhengzhou Municipal Urban Management Bureau.

Naive Bayes (NB) algorithm

Naive Bayes classifier is one of the few classification algo-
rithms based on probability theory of the classical machine 
learning algorithms (Perez et al. 2009). It does not need to 
consume a lot of time for calculation like k-nearest neighbor, 
support vector machine and other methods, nor does it need 
to determine and input any parameters (Patil and Atique 
2020). Therefore, the time of training model and model test 
is relatively fast, which is an outstanding advantage to pro-
vide sufficient time for urban flood control work to deal with 
the damage caused by urban flood. And it outperformed five 
other classifiers, including decision tree, logistic regression, 
k-nearest neighbor, support vector machine with polynomial 
kernel, and support vector machine with radial basis func-
tion (Lou et al. 2014). NB classifier predicts the probability 
of a class membership, that is to say the probability that a 
given set of variables (features) belongs to a particular class 
(Omran and El Houby 2020). The NB classifier works as 
shown in the following steps:

The NB classifier predicts the Yi of classes that X belongs 
to, based on the highest posteriori probability of the class 
conditioned on X, which means that:

Based on Bayes’ theorem, P (Y|X) can be written as 
formula:

(1)P
(
Yi |X

)
> P

(
Yj |X

)
for 1 ≤ j ≤ m, j ≠ i

(2)P(Y|X ) =
P(Y)P(X|Y )

P(X)

Fig. 3  Model construction of urban flood water accumulation process prediction based on RF regression algorithm
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For a given sample, the P (X) is independent of the class 
tag and same for all classes, so P (Y |X) is only related to P 
(Y) and P (X |Y). Based on the assumption that each network 
characteristic attribute independently has an attribute influ-
ence on the prediction results, he formula can be rewritten 
as:

Then, the training set was used to set the value for 
P(xi|Yi). Finally, the model takes the category with the high-
est probability as the optimal output result.

Random Forest (RF) algorithm

Random Forest algorithm is an ensemble machine learning 
algorithm for performing classification or regression (Pra-
jwala 2015; Kabir et al. 2018), which was first introduced 
by Breiman (Breiman 2001) and has been widely used in 
Geography (Gislason et al. 2006; Guo et al. 2020), Bioec-
ology (Parkhurst et al. 2005; Smith et al. 2010), Medicine 
(Chen and Liu 2006; Lee et al. 2010) and so on recent years. 
RF is the algorithm of tree class structure, which combines 
multiple decision trees to generate corresponding prediction 
results for different characteristics of the same phenomenon. 
Compared with various current machine learning models, 
the RF algorithm has the following three obvious advantages 
(Malekipirbazari and Aksakalli 2015; Li et al. 2020): 1. RF 
can deal with high latitude independent variable problems. 
2. able to fit and predict nonlinear problems. 3. the learning 
process is fast, and I can deal with a large amount of data 
efficiently. The important steps to implement the RF regres-
sion algorithm are presented below:

1. K data sets are extracted in the way of Bootstrap sam-
pling with random from the input data sets. The data 
amount of the K data sets is the same as the original data 
amount and the composition of the data can be repeated. 
This step is the first “Random” in the RF model.

2. Assuming that the number of variables in a data set is 
M, the Mtry variables are randomly selected from each 

(3)hnb(X) = argmaxP(Y)
∏d

i=1
P
(
xi|Y

)

node of each regression tree as alternative branching 
variables, and then the optimal branching is selected 
according to the branching excellence criterion. This 
step is the second “Random” in the RF model.

3. Ktree decision trees are constructed and trained by using 
the select data from the step 1 and 2. Each decision tree 
grows as much as possible without pruning, and then K 
decision trees are formed to form a random forest. This 
step is the “Forest” in the RF model.

4. The result of the prediction for a new sample is obtained 
by averaging the predictions from all the individual well-
grown regression trees in the RF regression model:

where Ktree is the total number of trees and fi (x) is the predic-
tion from each individual well-grown regression tree by using 
the training data set training.

What can be captured from the above modeling steps is that 
the diversity of the system in RF model is be improved, which 
can effectively avoid overfitting and improve the predictive 
performance of the model (Table 1).

Evaluation of model accuracy

Model evaluation is an important step in the modeling and 
prediction process, which represents accuracy of the results 
obtained by the model and the degree of people's trust that can 
be placed in the model. For the prediction of flood suscepti-
bility in waterlogging points based on NB theory, Precision, 
Recall, Accuracy and  F1score are used as indicators for evalu-
ation of model performance (Table 2).

For the short real-time prediction of flood process based on 
RF algorithm, Mean Absolute Error (MAE), Mean Relative 
Error Ratio (MRER) and Root Mean Square Error (RMSE) are 
used as indicators for evaluation of model performance, which 
are calculated by the following formula:

(4)f =
1

Ktree

Ktree∑

i=1

fi (x)

(5)MAE =
1

n

∑n

i=1

|||
(
y
si − y

oi

)|||

Table 1  The impact factors and flood data in the study

Category Indicator Description

Geographical characteristic Land use Contains four parameters such as the proportion of roads, woodlands, 
grasslands and building

Geographical structure Contains three parameters such as permeability, catchment area, and slope
Rainfall characteristic Rainfall Denotes the total amount of rainfall for a given rainfall

Rainfall duration Represents the duration of a rainfall from the beginning to the end
Peak rainfall Denotes the highest point on the rainfall intensity process line

Flood characteristic Flood level The recorded value of the change in water level over time
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where ysi and yoi is the simulated value and the measured 
value of the flood at the point i, respectively.

The closer the index (P, R, A and  F1) value is to 1, the 
more accurate the NB model is in predicting the waterlog-
ging point. And the smaller the value of these three indica-
tors (MAE, MRER and RMSE) is, the more the prediction 
flood depth result of the RF model is in line with the actual 
situation.

Results and discussions

Predictive analysis of flood susceptibility of urban 
waterlogging points based on Naive Bayes 
classification model

Previous studies and transport project appraisal (Dalziell and 
Nicholson 2001; Chang et al. 2010; Pregnolato et al. 2017) 
have shown that when the depth of the flood is 3-5 cm, urban 
vehicles can pass normally without being affected, so the 
threshold for determining the flood is 5 cm in this study. 
When the maximum depth of flood in a waterlogging area 
is greater than the threshold value 5 cm, it is considered that 
flood will occur in this area, namely the positive sample 
above; if not, it is considered that there is no need to worry 
about the occurrence of floods. There are 10 historical rain-
falls and corresponding floods depth data available, which 
happened specifically on July 26th, 2011; August 2nd, 2012; 
May 26th, 2013; June 9th and 19th, 2014; July 22th, 2015; 
June 11th,July 19th and August 5th, 2016; July 20th, 2017. 
SQL Server Data Tools was used to process diversified Data 
of geographical characteristics, rainfall characteristics and 

(6)MRER =
1

n

∑n

i=1

||ysi − y
oi
||

y
oi

× 100%

(7)RMSE =

√
1

n

∑n

i=1

(
ysi − yoi

)2

flood characteristic and build database. The geographical 
feature information of Zhengzhou city and the information 
of the first 7 rainfall floods were used as training data set to 
train the model, and the remaining 3 rainfall (August 2nd, 
2012; June 19th, 2014 and July 19th, 2016) information was 
used to verify the model (Table 3).

Short real‑time prediction of water accumulation 
process based on random forest regression 
algorithm

A waterlogging point in the city was randomly selected after 
obtaining the flood susceptibility analysis and waterlogging 
point results by using NB model, and data of 6 rainfall-water 
events occurred before about the waterlogging point was col-
lected (Fig. 4). By the data preprocessing of linear interpola-
tion, rainfall data and water accumulation data are unified 
into the same time scale, and the time granularity is 1 min.

The time series of rainfall and water accumulation at 
this waterlogging prone point are divided and the data set 
is constructed by using the moving window method, which 
is a common method for constructing datasets (Wang et al. 
2005; Jing et al. 2020). A moving-window of 2 × w grids 
rolls through the rainfall-flood data grids with size of 

Table 2  Categories of result 
and evaluation indexes of NB 
classification model

* Positive sample: water accumulation occurred in the area; Negative sample: no water accumulation 
occurred in the area

Indicator Abbreviation Description

True positive TP A positive sample predicted by the model to be positive
False positive FP A negative sample predicted by the model to be positive
True negative TN A negative sample predicted by the model to be negative
False negative FN A positive sample predicted by the model to be negative
Precision P P = TP/(TP + FP)
Recall R R = TP/(TP + FN)
Accuracy A A = (TP + TN)/(TP + FP + TN + FN)
F1score F1 F1 = 2PR/(P + R)

Table 3  The prediction result by the NB model (one of three valida-
tion events)

The label number of the 
sample points

Predicted 
results

Actual situ-
ation

Category

1 N N TN
2 N N TN
3 P P TP
4 N P FN
/ / / /
3322 N N TN
3323 P P TP
3324 N N TN

2322 Earth Science Informatics (2021) 14:2317–2328
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2 × J(rows × columns) at a step of 1. The number of the input 
variables (w of the moving-window) is the most important 
task in RF model development. For determining the value 
of w, samples of 12 different combinations of input data 
were arranged as provided in Table 4. Figure 5 shows the 

results of training the RF regression model by input differ-
ent models, which shows that after A9, the model's OOBS 
(out_of_bag score) increases by less. Thus, considering both 
the accuracy of the model and the complexity of the model 
input, the width of the moving window is set as 9, that is, 

Fig. 4  Time series diagram of rainfall intensity and flood depth
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each data set contains respectively 9 rainfall and water accu-
mulation data recorded successively. And the predicted time 
step is set as 5 min here.

The RF model contains several built-in parameters, but 
there are three main parameters affecting the accuracy of the 
model, respectively: the number of trees, number of features 
considered at each split and maximum depth of each deci-
sion tree (Liu et al. 2020). Those three built-in parameters 
of the RF model are obtained by means of traversal search 
and tenfold cross validation. Those three built-in parameters 
of the RF model are selected and optimized, and the best 
parameter combination is obtained by means of the traversal 
search algorithm and tenfold cross validation (Table 5). 
The parameter Sampling ratio represents the proportion of 

predicted features of each selected sample. Each sample 
contains 18 prediction features, and the proportion value of 
0.7 means that a sample 12 predicted features are selected. 
At the beginning and end of the record, rainfall and water 
values were replenished to 0 for input to the model. The col-
lected data of the first five rainfall accumulation were used 
as training data set for training and learning of the model, 
and the last rainfall data was used to verify the prediction 
performance of the model (Table 6).

Evaluating the performance of the model

The accuracy of NB classifier was evaluated by using the 
difference between flood susceptibility and predictive clas-
sification of urban waterlogging points under real rainfall 
events (Table 7). In order to make the predicted results 
more intuitive, the prediction results of flood suscepti-
bility of waterlogging prone points combined with geo-
graphic location information were introduced into GIS, 
and compared with the actual flood’s location and results, 
the actual distribution diagram of the indicators of water-
logging prone points was obtained (Fig. 6). According to 
the indexes obtained from the results, the precision, recall, 
accuracy and  F1score all reached more than 90%, indicat-
ing that the analysis and prediction of flood susceptibility 
at urban waterlogging points are reliable. In case of rain-
fall, NB model can predict the area where urban flood-
ing is likely to occur in Zhengzhou city. Provide reliable 
information support for city flood control workers. It can 
be seen from the figure that the waterlogging situation in 

Table 4  Model structure with a different input combination

Model Input combination

A1 Xi = f(yi-1,  qi-1)
A2 Xi = f(yi-1,  yi-2,  qi-1,  qi-2)
A3 Xi = f(yi-1,  yi-2,  yi-3,  qi-1,  qi-2,  qi-3)
/ /
A10 Xi = f(yi-1,  yi-2,…,  yi-8,  qi-1,  qi-2,…,  qi-10)
A11 Xi = f(yi-1,  yi-2,…,  yi-9, qi-1,  qi-2,…,  qi-11)
A12 Xi = f(yi-1,  yi-2,…,  yi-10,  qi-1,  qi-2,…,  qi-12)

Fig. 5  The OOBS of RF regression model with 12 different input 
combination models

Table 5  Parameters optimization results of the RF model

Number of the tree 
 (Ktree)

Maximum depth Sampling ratio  (Mtry/M)

20 10 0.7

Table 6  Simulation result of the last rainfall event by RF model

Time Simulated depth of 
flooded/m

Measured depth of 
flooded/m

Absolute error/m

0 0 0 0
1 0 0.01 − 0.01
2 0.012 0.03 − 0.018
/ / / /
60 0.741 0.74 0.001
61 0.712 0.71 0.002
62 0.71 0.69 0.02
/ / / /
120 0.002 0.02 − 0.018
121 0.035 0.01 0.025
122 0 0 0

Table 7  Performances of the NB classification prediction model

Indicator P (%) R (%) A (%) F1 (%)

Number 91 90.5 98.9 90.7

2324 Earth Science Informatics (2021) 14:2317–2328
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Zhengzhou is not too serious compared with that in south-
ern cities, and the area of flood waterlogging is relatively 
concentrated in the southwest of the city, which may be 
caused by the early construction of the drainage system 
in this area and the long-term failure of maintenance and 
repair.

The accuracy of the RF regression prediction model was 
assessed using the values of the MAE, MRER and RMSE 
between the simulated and measured value (Table 8). As 
shown in Table 8, the MAE, MRER and RMSE of the 
prediction results of water accumulation depth are 0.95%, 
9.53% and 1.21% respectively, which indicates that the 
water depth predicted by RF model is close to the meas-
ured value and the RF prediction model is feasible in the 
prediction of water accumulation processes. In order to 
compare the difference between the predicted water level 
and the actual water level over time more intuitively, the 
regression curve of water level was fitted (Fig. 7).

It can be seen from the figure that the variation trend 
of the predicted water depth of the RF model is synchro-
nized with the variation trend of the measured water depth. 
Combined with the data values of the three indexes (MAE, 
MRER and RMSE), there are sufficient reasons to prove 
the applicability of RF model in predicting the process of 
water accumulation.

Conclusion

In this study, in order to achieve the goal of predicting the 
whole process of urban waterlogging, Naive Bayes and 
random forest algorithm were used to forecast the water-
logging point and the waterlogging process at the water-
logging point respectively. Four classification evaluation 
indexes (P, R, A and  F1) and three regression evaluation 
indexes (MAE, MRER and RMSE) were used to evaluate 
the prediction performance of the NB classification model 
and RF regression model.

Fig. 6  Distribution and number of waterlogging points of the rainfall event on June 19th, 2014

Table 8  Performances of the RF regression prediction model

Indicator MAE (%) MRER (%) RMSE (%)

Number 0.95 9.53 1.21

Fig. 7  Fitting curves between predicted and measured values
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The results show that NB modal predicted waterlogging 
point with good performance. Four classification evaluation 
indexes (P, R, A and  F1) are 91%, 90.5%, 98.9% and 90.7% 
respectively. These findings demonstrate the validity of the 
model for the predicting the water accumulation points, 
when rainfall specific information is available. Therefore, 
under the background of relatively accurate rainfall fore-
cast information, NB classification algorithm can be used 
to predict waterlogging points, so as to give urban flood 
control workers more sufficient time to respond to urban 
waterlogging. The input data set of RF model is constructed 
by using sliding window. By comparing the OOBS obtained 
from 12 different input models, the optimal input model of 
RF model was determined as A9. The first 5 rainfalls data 
were used for the training of the model, and the last rain-
fall was simulated and predicted, and the three regression 
indexes (MAE, MRER and RMSE) were respectively 0.95%, 
9.53% and 1.21%, which demonstrates the validity of the RF 
regression model for the predicting the water accumulation 
process of the water accumulation point.

From the results, NB model and RF model can be used to 
predict the flood and waterlogging information under urban 
rainfall, which provide effective technical support for urban 
flood control and forecasting and allow the city's flood con-
trol work to have enough time and accurate flood informa-
tion to prevent and make decisions on the damage caused by 
the flood in advance.
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