
Vol.:(0123456789)1 3

https://doi.org/10.1007/s12145-021-00685-4

RESEARCH ARTICLE

A comparative analysis of different pixel and object‑based 
classification algorithms using multi‑source high spatial resolution 
satellite data for LULC mapping

Akanksha Balha1 · Javed Mallick2 · Suneel Pandey3 · Sandeep Gupta4 · Chander Kumar Singh1 

Received: 3 June 2021 / Accepted: 31 July 2021 
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract
The preparation of accurate LULC is of great importance as it is used in various studies ranging from change detection to 
geospatial modelling. Literature offers studies comparing different classification algorithms/approaches to prepare LULC 
maps. However, still there is a lack of studies that can provide a comprehensive analysis on widely used classification 
algorithms. Hence, in the present study, nine different pixel- and object-based classification algorithms have been used to 
compare their relative effectiveness in generating remotely sensed LULC maps. The algorithms include maximum likeli-
hood, neural network, support vector machine (linear, polynomial, RBF (radial basis function), sigmoid kernels), random 
forest (RF) and Naive Bayes for pixel-based classification and maximum likelihood algorithm for object-based classification 
(OBC) approach. Additionally, the study has analysed the impact of different types of satellite datasets (i.e., high resolution 
image and resolution merged images of same resolution) on relative effectiveness of the algorithms in classifying the satellite 
imageries accurately. High resolution (5 m) satellite image LISS 4 MX70, resolution merged satellite images (5 m) LISS 3 
merged with LISS 4 mono and LISS 3 merged with IRS-1D are employed for classification. 27 LULC maps (9 classification 
algorithms * 3 images) are evaluated for comparing classification algorithms. The accuracy assessment of the images is 
carried out using confusion matrix and Mc Nemar’s test. It has been observed that (1) the performance of all classification 
algorithms differs from each other and (2) resolution merged data impacts classification accuracy differently when compared 
to other satellite image of same spatial resolution. RF and OBC are identified as potential classifiers with majority of datasets. 
The results suggest that due to heterogeneity in urban land-use, it is difficult to achieve higher overall accuracy in classifying 
a large urban area using 5 m resolution satellite dataset. Moreover, visual examination of LULC should be considered for 
choosing better classification approach as pixel-based approach produces salt-pepper effect in LULC, whereas OBC produces 
visually smoothened LULC and identifies even smaller objects in urban landscape. The comparative evaluation of different 
image types reveal that RF performs better with all images, however, the performance of OBC was found to be improved 
with original high-resolution data.

Keywords Radial basis function · Sigmoid · Kernel · Random forests · Naive Bayes · Mc Nemar’s test

Introduction

Over the past few decades, the advancement of remote sens-
ing and easier availability of satellite images have made 
land-use analysis using image classification a vital research 
topic (Robles Granda 2011; Tehrany et al. 2014). Automated 
image classification is one of the easiest and preferable tech-
niques to prepare land use land cover (LULC) of an area 
(Rozenstein and Karnieli 2011). The studies carried out 
in the past have identified the best performing classifica-
tion algorithm by comparing different classification algo-
rithms. However, none of them provides a comprehensive 
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comparative analysis of all the popular classification algo-
rithms (Srivastava et al. 2012).

Literature offers various studies which address com-
parison between pixel-based and/or object-based classifi-
cation approaches. The basic difference between the two 
approaches is that of the underlying spatial unit—pixel or 
object (Duro et al. 2012; Tehrany et al. 2014). Pixel-based 
classification uses the spectral information stored as digital 
numbers (DN) in each pixel, where each pixel represents dif-
ferent feature on the earth’s surface. The object-based clas-
sification approach considers spatial features e.g. shape, size, 
tone/color, texture, pattern, association etc., and divides the 
image into homogeneous objects (Gao et al. 2011; Tehrany 
et al. 2014).

Srivastava et al. (2012) have evaluated three pixel-based 
classification algorithms—artificial neural network (ANN), 
support vector machine (SVM) and maximum likelihood 
(ML) using low resolution Landsat TM/ETM + images and 
found ANN as a better classifier than SVM and ML. Rozen-
stein and Karnieli (2011) have used low resolution Landsat 
TM image to compare different pixel-based classification 
algorithms: supervised (ML), unsupervised (ISODATA) 
and hybrid method (developed by combining spectral sig-
natures from supervised and unsupervised classification). 
Their results revealed that hybrid method (73.5%) performed 
better than unsupervised (70.67%) and supervised (60.83%) 
algorithms. Similar order of performance by the three algo-
rithms was observed after performing post-classification 
processing. Hybrid classification method was found to be 
statistically significant than supervised classification, but not 
in comparison to unsupervised method. Cleve et al. (2008) 
have compared pixel-based (ISODATA) and object-based 
classification (nearest neighbour) in wildlife-urban interface 
area using high resolution aerial photographs and found 
object-based approach (80.08%) to be better than pixel-based 
approach (62.11%). Using medium resolution (10 m) SPOT 
5 data, Tehrany et al. (2014) has compared pixel-based 
(decision trees (DT)) and object-based (SVM and nearest 
neighbour (k-NN) classification approaches. The k-NN algo-
rithm in object-based classification performed significantly 
better than SVM algorithm in object-based classification and 
pixel-based (DTs) classification. Duro et al. (2012) have used 
SPOT (10 m) data to compare pixel-based and object-based 
classification approaches using Random Forests (RF), DT, 
support vector machine (SVM) algorithms. Their statistical 
tests revealed that pixel-based and object-based classifica-
tion are not statistically significant when same algorithm is 
applied, however, object-based (DT) classification algorithm 
was found to be statistically significant than object-based 
(RF) and SVM algorithms. Duro et al. (2012) stated that 
both pixel-based and object-based approaches produced sim-
ilar overall accuracies; however, pixel-based classification 
was less time consuming to process. LULC map produced 

using object-based classification approach was found to be 
visually smoothened. Using pixel-based (ML) and object-
based (k-NN) classification approaches to extract urban land 
cover from VHR quickbird data, it has been observed (Myint 
et al. 2011) that object-based classifier (90.40%) performs 
significantly better than pixel-based classifier (67.60%). 
Jozdani et al. (2019) evaluated comparative performance 
of different deep learning algorithms, common ensemble 
algorithms and SVM in classifying urban areas using object-
based approach. The findings indicated multilayer percep-
tron (MLP) as the best classifier. Moreover, other classifi-
ers such as SVM were observed as capable enough to map 
LULC in complex landscapes. While using Landsat 8 data, 
Qu et al. (2021) demonstrated that integration of auxiliary 
datasets improves pixel-based and object-based classifica-
tion results. The performance of object-based approach was 
found to be higher than pixel-based approach. Object-based 
approach was observed to achieve higher accuracy while 
using only spectral datasets. Gudiyangada Nachappa et al. 
(2020) compared conventional pixel-based models (data-
driven frequency ratio and expert based analytical hierar-
chical process) with geon-based object-based classification 
approaches. The results indicated that object-based approach 
provided higher accuracy than both pixel-based models 
and produced meaningful spatial units. Tassi et al. (2021) 
have compared pixel-based and object-based classification 
approaches and evaluated the impact of integrating textural 
details in classification process. The results revealed that the 
accuracy of pixel-based approach has not improved with the 
integration of textural details. The object-based approach 
was found to perform better than the pixel-based approach 
while employing 15 m panchromatic band of Landsat 8 data. 
Addition of panchromatic band did not improve the pixel-
based classification results; however, it generated a detailed 
LULC with object-based classification approach.

Many LULC classification studies (Gao et al. 2009; 
Hu and Weng 2011; Duro et  al. 2012; Tehrany et  al. 
2014) reveal that object-based classification approach is 
believed to provide more accurate results than pixel-based 
approach. Although more information is acquired from 
higher resolution images than coarser ones, high resolu-
tion images provide challenges for pixel-based classifica-
tion (Cleve et al. 2008). Unlike natural landscapes, many 
features in a small space in an urban area can be captured 
precisely in higher spatial resolution image, but such 
higher level of detail may congest the details of urban 
features in spectral context (Myint et al. 2006, 2011). It 
occurs because pixel-based classification considers only 
spectral information and neglects spatial information, an 
attribute which is considered significant in object-based 
classification (Benz et al. 2004; Walter 2004; Myint et al. 
2011; Duro et al. 2012). The similar spectra from differ-
ent features in urban areas (e.g. buildings, rooftops, roads, 
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sidewalks and other bright surface objects etc.) leads to 
“mixed pixel problem” or “salt and pepper effect” (Kelly 
et al. 2004; Cleve et al. 2008; Myint et al. 2011; Ouy-
ang et al. 2011) in pixel-based classification. This causes 
higher intra-class spectral variability which lowers the 
statistical separability between classes, thereby leading 
to misclassification and low classification accuracy (Su 
et al. 2004) and thus, object-based classification approach 
is used to overcome these challenges (Cleve et al. 2008; 
Ouyang et al. 2011). Many researchers (Herold et al. 2003; 
Durieux et al. 2008; Hu and Weng 2011; Myint et al. 2011) 
have employed object-based classification for urban areas, 
considering urban areas to be too complex to be classi-
fied accurately by pixel-based methods. In comparison to 
pixel-based classification, besides higher accuracy, object-
based classification approach has another advantage to 
classify objects with proper shape, which is rather hard to 
be achieved in pixel-based classification (Baatz et al. 2004; 
Ouyang et al. 2011). Although, object-based approach is 
believed to be more time consuming and labour intensive 
(Duro et al. 2012).

With the above background, the present study provides 
a comprehensive comparative view of most used classifica-
tion algorithms while taking account of satellite datasets 
from different platforms. Nine different classification algo-
rithms including maximum likelihood (ML), neural net-
work (NN), support vector machine (SVM)—linear, poly-
nomial, radial basis function (RBF) and sigmoid kernels, 
random forests (RF) and naive bayes (NB) in pixel-based 
and (maximum likelihood (ML) in object-based classifica-
tion (OBC) are performed on different satellite datasets.

Study area

The study area is National Capital Territory (NCT) of Delhi 
(Fig. 1). While covering an area of 1,484  km2, its latitudinal 
and longitudinal extent is 28.4084° N to 28.8845° N and 
76.8328° E to 77.3377° E respectively. It has a completely 
urbanized landscape with some agricultural area at the out-
skirts and river Yamuna flowing through it.

Data and methodology

In this study, satellite images of different spatial resolution 
are used. Detailed specifications of images are mentioned in 
Table 1, which indicates the variation in datasets (in terms of 
data of different time periods and sensors) that has been con-
sidered in the present work. LISS and IRS-1D images were 
obtained from National Remote Sensing Centre (NRSC), 
Indian Space Research Organisation (ISRO) (https:// www. 
nrsc. gov. in/). The years 2005, 2010 and 2016 have been cho-
sen carefully considering two important things, i.e. (1) the 
availability of cloud-free satellite images and (2) optimal 
temporal variability so as to have changing land-use to be 
prominent. To avoid seasonal effects, all the images were 
acquired for the same season.

Image pre‑processing

Before performing classification, all the satellite images 
for years 2005, 2010 and 2016 were pre-processed in 
 ERDAS® IMAGINE 2016 (Hexagon Geospatial 2016). The 

Fig. 1  Study area—NCT of Delhi
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methodology used for pre-processing the images is repre-
sented in Fig. 2. The images of 2005 and 2010 were resolu-
tion merged to generate higher spatial resolution images for 
the respective years. The highest spatial resolution among 
all the satellite images was 5 m, therefore the spatial resolu-
tion of resolution merged images was resampled to 5 m. For 
resolution merging, various techniques (including wavelet, 
high-pass filter (HPF), modified IHS (intensity, hue, satu-
ration), principal component (PC) based resolution merg-
ing, projective resolution merging and hyperspherical color 
space (HCS) were performed, however, the images resolu-
tion merged using HCS technique for both 2005 and 2010 
were chosen to be used further as they were more accurate 
among all.

Image classification

Different classification algorithms—pixel-based and object-
based, were performed on the processed subset images. Nine 
LULC classes, namely water bodies, built-up, dense vegeta-
tion, sparse vegetation, cropland, fallow land, open land, 
scrubland/forest and sediment, were identified.

Pixel‑based classification

For the training dataset, the spectral signatures from more 
than 3000 pixels from the satellite image of each year were 
selected to perform pixel-based classification. Thereafter, 
the training sets from spectrally similar pixels were merged. 
The same training dataset was used to perform all the algo-
rithms used in the study in pixel-based classification.

All the pixel-based classification algorithms were per-
formed in an open-source statistical computing software R 
version 3.3.2 (R Development Core Team 2016). Various 
add-on packages used in R to build and perform different 
classification algorithms include “rasclass” package for 
ML (Wiesmann and Quinn 2011), “nnet” package for NN 
(Venables and Ripley 2002), “kernlab” package (Karatzo-
glou et al. 2004) for SVM, “randomForest” package (Liaw 
and Wiener 2002) for RF and “naiveBayes” package for NB 
(Majka 2018).

Object‑based classification (OBC)

The OBC was carried out in ArcGIS 10.5 (ESRI 2016). 
Firstly, image segmentation based on mean shift approach 
was performed to create segments or features of interest. 
There is no common scale (Myint et al. 2011) or fixed 
criterion to estimate the best parameters (Ouyang et al. 
2011; Duro et al. 2012) for segmentation. The researchers 
(Chen et al. 2006; Ouyang et al. 2011) identify the scale 
that delineates the objects in the best visually correspond-
ing manner to the real-world objects and consider it the 
appropriate scale level to be adopted for the classification. 
Initially, segmentation was tried with different values of 
parameters (Fig. 3). In parameters, the spectral detail value 
was kept constant and different spatial detail values were 
experimented to decide the parameters values for segmen-
tation. Thereafter, based on visual attributes of the seg-
mented image, images with criteria spectral detail = 20, 
spatial detail = 20 and minimum segment size = 5 pixels 
were found to be more appropriate and precise. The fea-
tures of segmented image served as the underlying units 

Table 1  Specifications of satellite images used for classification to prepare LULC of Delhi (2005–2016) (* in accordance with metadata of the 
image)

S. no. Satellite/sensor Scene no. Date of image acquisition Spectral wavelength/bands (μm) Output spatial 
resolution* (m)

1 LISS 4 MX 70 96_51_A
96_51_C

Dec 04th, 2016 Band 2 (0.52–0.59)
Band 3 (0.62–0.68)
Band 4 (0.77–0.86)

5.0

2 LISS 4 MX 70 96_51_C Oct 20th , 2011 Band 2 (0.52–0.59)
Band 3 (0.62–0.68)
Band 4 (0.77–0.86)

5.0

3 LISS 4 Mono 96_51_A Nov 30th, 2010 Band 3 (0.62–0.68) 5.0
4 LISS 3 96_51 Nov 30th, 2010 Band 2 (0.52–0.59)

Band 3 (0.62–0.68)
Band 4 (0.77–0.86)
Band 5 (1.55–1.70)

24.0

5 LISS 3 96_51 Dec 02nd, 2005 Band 2 (0.52–0.59)
Band 3 (0.62–0.68)
Band 4 (0.77–0.86)
Band 5 (1.55–1.70)

24.0

6 IRS-1D (Panchromatic) 96_51_A
96_51_C

Oct 27th, 2005 0.5–0.75 5.0

2234 Earth Science Informatics (2021) 14:2231–2247
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for OBC. On an average, each image was segmented into 
more than 200,000 image objects. Once image segmenta-
tion was done precisely, training samples were collected 
from the segmented raster. Using the training samples and 
ML classifier, a classifier file was generated. Subsequently, 
based on generated classifier file, OBC was executed.

Accuracy assessment

Accuracy assessment of thematic (LULC) maps is crucial 
since the reliability of remotely sensed LULC maps depends 
on their accuracy. In the present study, for accuracy assess-
ment of the LULC maps, 542 points for 9 LULC classes in 

Fig. 2  Brief methodology
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each year’s dataset were selected based on equalized random 
sampling. The accuracy was determined using (1) Confu-
sion (or Error) matrix; and (2) Mc Nemar’s test (Kavzoglu 
2017). Confusion matrix provides three accuracy measures, 
i.e., overall accuracy, producer accuracy, and user accuracy. 
The confusion matrix is based on the comparison between 
reference image and classified image (output). Columns of 
matrix refer to LULC classes of reference image whereas the 
rows of matrix LULC classes of classified image. The no. 
of pixels comprising a specific LULC class is show by the 
cells of a matrix, whereas the number of pixels accurately 
classified is show by the diagonal cells. The overall accuracy 

is determined by dividing accurately classified pixels by total 
number of pixels. The overall accuracy decides the clas-
sification accuracy of the entire image whereas producer’s 
accuracy and user’s accuracy decide the accuracy of indi-
vidual LULC classes. The producer’s accuracy is calculated 
as accurately classified pixels divided by the sum of total 
pixels in the reference image. The user’s accuracy is calcu-
lated as accurately classified pixels divided by sum of total 
pixels in the classified image.

Mc Nemar’s test is a statistical test used to evaluate 
statistical significance in the differences in the perfor-
mance of different classifiers (Dietterich 1998). The test 

Fig. 3  Image segmentation 
parameters in OBC approach 
used in the study
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is applied to 2 × 2 contigency table where cells indicate 
number of samples incorrectly and correctly classified by 
two methods, the number of samples only correctly clas-
sified by one method (Kavzoglu 2017). The test statistic 
for Mc Nemar is give as Eq. (1)

where aij refers to pixels incorrectly classified by method i 
but classified correctly by method j, aji refers to pixels incor-
rectly classified by method j but not by method i. χ2 follow 
chi-square distribution with degree of freedom 1. If esti-
mated test values > χ value in the tale, two methods are said 
to perform differently, which means the difference in accu-
racy obtained by methods i and j are statistically significant.

Many researchers (Cohen 1960; Foody 2004; Rozen-
stein and Karnieli 2011; Duro et al. 2012) have pointed 
out that the cases wherein the same validation samples 
are used to assess different algorithms; the presump-
tion that every algorithm is evaluated independently is 
infringed. In such instances, statistical comparison using 
kappa remains unjustifiable (Foody 2004; Duro et  al. 
2012; Rozenstein and Karnieli 2011). Hence, in such cir-
cumstances, Agresti (2002) and Zar (2009) recommends 
the use of Mc Nemar’s test for comparing classification 
algorithms. It is a non-parametric statistical measure for 
assessing the accuracy of thematic maps (Yan et al. 2006; 
Dingle and King 2011; Rozenstein and Karnieli 2011; 
Whiteside et al. 2011; Duro et al. 2012).

Mc Nemar’s test gives p value and chi-square value 
which determines the statistical significance of the dif-
ference between two algorithms (Foody 2004; De Leeuw 
et  al. 2006; Rozenstein and Karnieli 2011). It is sug-
gested to be performed as not every difference between 
two algorithms shall be significant. Assessing 27 LULC 
maps using Mc Nemar’s test revealed the statistically sig-
nificant difference between any of the pixel-based algo-
rithms and OBC approach or among different pixel-based 
algorithms.

Temporal analysis of LULC change

LULC maps of 2005, 2010 and 2016 were compared to ana-
lyse the change in LULC over the specified period. Post clas-
sification comparison technique was adopted as it is widely 
used and considered to provide more accurate results than 
other techniques including PCA, image differencing etc. 
(Dingle Robertson and King 2011). LULC class-wise area 
statistics was tabulated to analyse the nature and trend of 
land-use change shown by different algorithms temporally.

(1)
�
2
=

(
|
||
aij − aji

|
||
− 1

)2

aij + aji

Theory

A brief description of the algorithms used in pixel and 
object-based classification is mentioned here in Table 2.

Results

The LULC maps classified using all the studied algorithms 
are shown in Figs. 4, 5 and 6. The accuracy assessment of all 
the maps was performed using confusion matrix. The accu-
racy measures (overall accuracy (OA), producer’s accuracy 
(PA), user’s accuracy (UA) and kappa statistic) for all the 
years are given in Table 3 and the results of Mc Nemar’s test 
for years 2005, 2010 and 2016 are given in Tables 4, 5 and 
6 respectively.

On an average, the overall accuracy of all the LULC 
maps is approximately 50%. This is far below the estab-
lished standard that states that the accuracy of the LULC 
maps should be at least 85% for the maps to be useful for 
planning and management of the areas (Anderson et al. 
1976). However, in the present research work, the prepared 
LULC maps are not to be used for planning and manage-
ment purposes but to compare the relative effectiveness of 
the different algorithms in classifying the remotely sensed 
satellite images accurately. Therefore, the output (LULC) of 
the algorithms as is produced have been taken into account 
for evaluation of algorithms and decided not to manipulate 
it with any post-classification processing i.e. filtering or 
recoding to increase the overall accuracy (Rozenstein and 
Karnieli 2011).

Accuracy assessment of LULC maps using confusion 
matrix

Overall accuracy (OA)

From Table 3, it is evident that among all studied algorithms, 
RF with OA (54.98% in 2005; 52.58% in 2010; and 56.83% 
in 2016) has performed as the best classification algorithm 
and Naive Bayes (39.11% in 2005; 41.14% in 2010; and 
35.42% in 2016) the least. The performance of all the four 
kernels of SVM has been better than that of ML and NN in 
all the three years. However, no trend in the relative perfor-
mances of the kernels across the three datasets is observed.

In comparison to all the pixel-based algorithms, object-
based classification approach (44.46% OA in 2005 and 
43.91% OA in 2010) has performed quite low; however, 
for year 2016, the performance of object-based classifica-
tion (54.98% OA) has been very close to the best performed 
(pixel-based) classification algorithm i.e. RF (56.83% OA). 
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Apparently, it indicates that object-based classification 
approach has performed better with original high-resolution 
dataset (i.e., LISS4 MX70 of 2016) than resolution-merged 
datasets (i.e., LISS 3 merged with LISS 4 and LISS 3 merged 
with IRS-1D of 2010 and 2005 respectively); although the 
resolution of resolution-merged datasets is similar that of 
the original dataset i.e. 5 m. This observation is not seen 
in any of the algorithms used in pixel-based classification 
approach.

Producer’s accuracy (PA) and User’s accuracy (UA)

Referring to PA and UA in Table 3, it is seen that no algo-
rithm has highest PA and/or UA with respect to all the 
LULC classes in one or more years. Considering the notion 
of > 85% accuracy individually class-wise, it is observed 
that NN in 2003 and NB in 2016 have the highest PA for 
dense vegetation (87.1%) and water (90.32%) respectively. 
ML in 2005 (89.47%), ML in 2010 (95.45%), NN in 2005 
(89.47%), RF in 2010 (95.83%), RF in 2016 (96.15%), 
NB in 2010 (88.46%) and OBC in 2005 (90.48%), in 2010 
(91.67%) and in 2016 (100.00%) have the highest UA for 
water. RF in 2016 has the highest UA for cropland (85.17%). 
All the SVM kernels in 2010 have the highest UA for sedi-
ment (100.00%). It shows that the performance of classifi-
cation algorithms is better with respect to UA in compari-
son to PA. Analysing the results class-wise, it is observed 
that the highest PA in 2005 is related to built-up (75.56%) 
classified using RF; in 2010 to water (68.43%) classified 
using SVM sigmoid and in 2016 to water classified using 
RF (80.65%). Similarly, the highest UA in 2005 is related to 
water (90.48%) classified using OBC; in 2010 to sediment 
(100.00%) classified using all the SVM kernels and;in 2016 
to water (100.00%) classified using OBC.

Statistical significance assessment of LULC maps 
using Mc Nemar’s test

From Table 4–6, the results of Mc Nemar’s test with 5% 
significance level reveal that in 2005, OBC is statistically 
significant (p < 0.05) than many pixel-based algorithms 
(NN (p = 0), SVM linear (p = 0.015), SVM polynomial 
(p = 0.023), SVM RBF (p = 0.038), RF (p = 0) and NB 
(p = 0.046)). In year 2010, OBC is statistically significant 
than RF (p = 0.001) and in 2016, OBC is statistically sig-
nificant than ML (p = 0.033), NN (p = 0) and NB (p = 0).

Analysis of Mc Nemar’s test with 5% significance level 
for different pixel-based algorithms reveal that statistical sig-
nificance (p < 0.05) exists between many pixel-based algo-
rithms; however, no consistent pattern regarding statistical 
significance among the algorithms is observed. A statisti-
cally significant comparison of any two or three pixel-based 

classification algorithms can be done using p values men-
tioned in Tables 4, 5 and 6.

Temporal analysis of LULC change

Table 7 shows the temporal LULC change (in  km2) derived 
from all the classification algorithms for all the years. As 
RF and OBC, based on OA, are found out to be the best 
classification algorithms, only these two are discussed in 
detail here. The performance of rest of the algorithms can 
be studied from Table 7.

The area covered by water has decreased from year 2005 
to 2016 for RF (46.41  km2 to 20.38  km2) as well as for OBC 
(29.08  km2 to 19.79  km2). These declining results in the 
are an obvious error as such sharp decline in the amount of 
water bodies in Delhi is not feasible. RF shows an overall 
decline in built-up (564.17  km2 in 2005 to 450.592  km2 in 
2016) which is incorrect for a study area like Delhi which is 
constantly urbanising. The OBC shows a realistic trend of 
an increase in built-up (374.98  km2 in 2005 to 564.93  km2 in 
2016), though the accuracy of the amount of area mapped as 
built-up cannot be relied upon as OBC has low P.A. (45.31% 
in 2005; 53.57% in 2010; and 69.63% in 2016) and U.A. 
for built-up for all the years. For dense vegetation, both RF 
(24.84  km2 in 2005 to 67.62  km2 in 2016) and OBC (20.59 
 km2 in 2005 to 64.65  km2 in 2016) shows an overall increase 
over the years, which is an incorrect detail considering the 
land-use of Delhi. To its credit, Delhi has only central ridge 
forest as dense vegetation and it has not increased with this 
huge magnitude over the given period. For sparse vegeta-
tion, both RF and OBC shows contrary overall trends. RF 
shows an increase in sparse vegetation (111.37  km2 in 2005 
to 247.80  km2 in 2016) and OBC shows an overall decrease 
in sparse vegetation (258.232  km2 in 2005 to 242.68  km2 
in 2016). Similar contrary trends are observed for cropland 
and fallow land by RF as well as OBC. The trend of LULC 
change for open land by RF as well as OBC is inaccurate 
as open land in Delhi, over the period, has a likelihood to 
get converted into either built-up or green spaces. Hence, 
decline in open land from 2005 to 2010 (49.30  km2 in 2005 
to 27.84  km2 for RF and 81.11  km2 to 51.79  km2 for OBC) 
is understandable and justifiable, however, a sudden increase 
in open land area in 2016 is an error. Similar erroneous trend 
observations are seen for scrubland/forest class by RF and 
OBC. For sediment, RF and OBC show different trends. In 
RF, the area of sediment has increased in 2010 (42.33  km2 
from 12.10  km2 in 2005) and then has declined to 10.43 
 km2 in 2016. This sudden increase of sediment in 2010 is 
an error and unexplanatory. OBC shows a constant decline 
in sediment (30.38  km2 in 2005 to 7.73  km2 in 2016) though 
the amount of change appears huge considering sediment 
is located only along the banks of Yamuna River in Delhi.
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Discussion

The results of the study infer that it is difficult to achieve 
higher overall accuracy in classifying large urban areas with 
detailed information using 5 m resolution satellite image-
ries. This is in consistence with the findings of Myint el al. 
(2011) stating that higher accuracy is difficult to be attained 
in detailed mapping of large urban areas. Also, the visual 
analysis of LULC maps reveal that the LULC maps pre-
pared using pixel-based approach possess salt and pepper or 
mixed pixel effect and LULC prepared using object-based 
approach has provided a visually smoothened landscape in 
output LULC map that gives the appearance of earth-like 
landscape as found in Duro et al. (2012). This smoothen-
ing occurs because the heterogeneity in urban landscapes 
due to the presence of many different sized features in a 
small space in the area congest the spectral details of the 
urban features (Myint et al. 2006, 2011). This is the rea-
son pixel-based classification leads to salt and pepper effect 
considering only spectral information. On the other hand, 
OBC considers spatial as well as spectral information of the 
features (Benz et al. 2004; Walter 2004; Myint et al. 2011; 
Duro et al. 2012) and it identifies the objects more precisely 

and leads to more accurate classification (Kelly et al. 2004; 
Cleve et al. 2008; Ouyang et al. 2011). Thus, the study dem-
onstrates that OBC (ML) approach is preferable than pixel-
based classification approach to prepare LULC for urban 
areas using satellite images having original high (5 m) spa-
tial resolution. Among pixel-based classification, RF per-
forms better compared to other algorithms. Despite having 
similar resolution (i.e. 5 m), original and resolution-merged 
dataset affects the performance of OBC. It illustrates that 
besides complex landscapes and classification algorithms, 
the type of remotely sensed data is another factor that affects 
the accuracy of the prepared LULC maps (Manandhar et al. 
2009). In our study, it happens because the resolution merg-
ing technique used, i.e. hyperspherical color space (HCS) 
(Padwick et al. 2010) merges the edges of features with the 
shadow region in the image and thereby leads to the disap-
pearance of smaller edges (Dahiya et al. 2013; Ghosh and 
Joshi 2013). Thus, it lacks spatial details (Ghosh and Joshi 
2013) to some extent, which is a significant attribute in 
OBC. This is the reason, why resolution-merged datasets of 
2005 and 2010 have shown lower accuracy for object-based 
approach. In this study, HCS resolution merging is used as 
it has generated resolution-merged datasets for years 2005 

Fig. 4  Different classification 
algorithms performed on Delhi 
year 2005 dataset. a Standard 
False Colour Composite of 
Delhi satellite image, b ML, 
c NN, d SVM (linear), e SVM 
(polynomial), f  SVM (RBF), 
g SVM (sigmoid), h RF,  i NB, j  
OBC (ML)
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and 2010 which appear visually more accurate (Agrafiotis 
and Georgopoulos 2015) than those generated using Ehler’s 
fusion, wavelet, HPF, modified IHS and subtractive resolu-
tion merging methods. But considering the results and the 
fact that resolution-merging techniques affect the quality of 
the resolution merged products (Wang et al. 2005; Ghosh 
and Joshi 2013), it is suggested that before performing clas-
sification, the accuracy of merged datasets prepared using 
different techniques should be assessed by different meas-
ures and not only visually.

It has been observed that the time consumed in selecting 
the object features for OBC approach is almost equal to that 
of consumed in selecting the training data for pixel-based 
classification, provided the user has expertise in carrying 
out OBC. Otherwise, it can be very time consuming and 
labour intensive. With reference to the procedure of accu-
racy assessment of OBC, few researchers (e.g. Cleve et al. 
2008) believe that a procedure that can assess the shape and 
topology of the features should be adopted because OBC 
takes into account the spatial topology, shape etc. of the 
classified features. In our study, to assess the performance of 
different pixel-based algorithms as well as OBC approach, 
pixel-based accuracy assessment method is used considering 

it to be the most suitable one as a pixel is the smallest unit of 
LULC map (Myint et al. 2011).The results reveal that unlike 
OA, the type of dataset (original or resolution merged) has 
no clear impact on the PA and UA of LULC classes with 
respect to different algorithms.

Higher PA of NN in 2005 for dense vegetation (87.1%) 
and that of NB in 2016 for water (90.32%) suggest NN and 
NB as the most powerful algorithms to classify the respec-
tive classes. Higher UA of OBC in 2005 for water (90.48%); 
that of RF and SVM in 2010 for water (95.83%) and sedi-
ment (100.00%) respectively and that of OBC and RF in 
2016 for water (100.00%) and cropland (85.71%) suggest 
these algorithms as the most reliable ones in classifying the 
respective classes as accurate as their presence on the earth’s 
surface. These results reveal that though based on OA, RF 
and OBC have performed as the best classifiers; class-wise, 
neither of them has higher (> 85%) PA for any of the LULC 
classes and UA for any other class except the ones men-
tioned a while ago. The PA and UA statistics (Table 3) show 
some shortcomings depicted by classification algorithms in 
few of the LULC classes. None of the algorithms has clas-
sified sediment class accurately in 2005 datasets, resulting 
into 0.00% PA and UA. The reason behind this could be 

Fig. 5  Different classification 
algorithms performed on Delhi 
year 2010 dataset. a Standard 
False Colour Composite of 
Delhi satellite image, b ML, 
c NN, dSVM (linear), e SVM 
(polynomial), f SVM (RBF), g 
SVM (sigmoid), h RF, i NB, j 
OBC (ML)
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smaller percentage area of sediment in the study area. Simi-
larly, NB in 2016 has not classified open land accurately. NN 
in 2005 and 2016 has not classified cropland and cropland 
and sediment respectively in the image. On visual basis, it 
was observed that the LULC maps in question do not con-
tain enough number of pixels in the respective class that the 
accuracy of that class can be evaluated. Hence, it does not 
provide any PA or UA.

In addition to this, all the LULC maps were employed 
to analyse temporal LULC analysis. The only aim was to 
analyse the trend that how efficiently different algorithms 
mapped different LULC classes over the years. The nature 
and trend of LULC change was evaluated based on the 
knowledge of development occurred in the study area over 
the period. Comparison among different algorithms on 
LULC change or quantification of LULC change was not 
considered as the overall accuracy of all the LULC maps 
was quite low. The results revealed that neither of the two, 
RF and OBC, had shown satisfactory performance although 
OBC mapped LULC change trends correctly for built-up 
class.

Conclusion

In the present study, comparative evaluation of different classi-
fication algorithms and the impact of different types of satellite 
images on classification has been performed using confusion 
matrix and Mc Nemar’s test. The results indicate that OBC 
is found to be statistically significant (p < 0.05) than other 
algorithms in all the years (2005, 2010, 2016). Also, various 
pixel-based algorithms in the three years show statistical sig-
nificance (p < 0.05) although no consistent pattern has been 
observed. With an overall accuracy (54.98% in 2005; 52.58% 
in 2010; 56.83% in 2016), RF has performed as the best clas-
sification algorithm whereas Naive Bayes shows the least 
overall accuracy (39.11% in 2005; 41.14% in 2010; 35.42% in 
2016). OBC exhibits lower overall accuracy (44.46% in 2005; 
43.91% in 2010; 54.98% in 2016) in comparison to pixel-
based algorithms. Moreover, the visual investigation of LULC 
reveals that despite lower accuracy, OBC derived LULC are 
visually smooth and contiguous in nature in comparison to 
pixel based derived LULC which possess salt and pepper 
effect. The assessment of different types of satellite data with 
respect to classification reveals that OBC has performed sig-
nificantly better with original high-resolution dataset. The 

Fig. 6  Different classification 
algorithms performed on Delhi 
year 2016 dataset. a Standard 
False Colour Composite of 
Delhi satellite image, b ML, c 
NN, d SVM (linear), e SVM 
(polynomial), f SVM (RBF), 
g SVM (sigmoid), h RF, i B, j 
OBC (ML)
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Table 4  Results of Mc Nemar’s test (p value, chi square) for year 2005 dataset (*denotes 2 tailed p value s; statistically significant values 
(p < 0.05) are in bold)

ML NN SVM linear SVM 
polynomial

SVM RBF SVM 
sigmoid

RF NB OBC

ML 0, 24.797 0.011, 6.534 0.018, 5.619 0.031, 4.676 0.307, 1.042 0, 17.137 0.027, 4.87
NN 0, 24.797 0.046, 3.965 0.03, 4.694 0.018, 5.61 0.001, 

12.108
0.404, 0.696 0, 39.2 0, 24.797

SVM linear 0.011, 6.534 0.046, 3.965 0.549* 0.14* 0.002, 9.49 0.234, 1.417 0, 20.405 0.011, 6.534
SVM poly-

nomial
0.018, 5.619 0.03, 4.694 0.549* 0.25* 0.005, 7.848 0.16, 1.97 0, 19.051 0.018, 5.619

SVM RBF 0.031, 4.676 0.018, 5.61 0.14* 0.25* 0.015, 5.953 0.106, 2.619 0, 17.388 0.031, 4.676
SVM sig-

moid
0.307, 1.042 0.001, 

12.108
0.002, 9.49 0.005, 7.848 0.015, 5.953 0.006, 7.656 0.003, 8.529 0.307, 1.042

RF 0, 17.137 0.404, 0.696 0.234, 1.417 0.16, 1.97 0.106, 2.619 0.006, 7.656 0, 42.006 0, 17.137
NB 0.027, 4.87 0, 39.2 0, 20.405 0, 19.051 0, 17.388 0.003, 8.529 0, 42.006 0.027, 4.87
OBC 1, 0 0, 21.114 0.015, 5.952 0.023, 5.138 0.038, 4.29 0.344, 0.895 0, 14.405 0.046, 3.967 1, 0

Table 5  Results of Mc Nemar’s test (p value, chi square) for year 2010 dataset. (*denotes 2 tailed p value s; statistically significant values 
(p < 0.05) are in bold)

ML NN SVM linear SVM 
polynomial

SVM RBF SVM 
sigmoid

RF NB OBC

ML 0.696, 0.153 0.078, 3.115 0.057, 3.613 0.055, 3.681 0.11, 2.56 0, 12.376 0.422, 0.644 0.891, 0.019
NN 0.696, 0.153 0.192, 1.703 0.151, 2.061 0.157, 2.005 0.245, 1.35 0.003, 9.14 0.186, 1.751 0.835, 0.043
SVM linear 0.078, 3.115 0.192, 1.703 0.687* 0.754* 0.86, 0.031 0.106, 2.616 0.006, 7.64 0.093, 2.814
SVM poly-

nomial
0.057, 3.613 0.151, 2.061 0.687* 1* 0.607, 0.265 0.139, 2.186 0.004, 8.466 0.067, 3.36

SVM RBF 0.055, 3.681 0.157, 2.005 0.754* 1* 0.571, 0.321 0.141, 2.162 0.003, 8.556 0.07, 3.289
SVM sig-

moid
0.11, 2.56 0.245, 1.35 0.86, 0.031 0.607, 0.265 0.571, 0.321 0.076, 3.148 0.01, 6.715 0.126, 2.346

RF 0, 12.376 0.003, 9.14 0.106, 2.616 0.139, 2.186 0.141, 2.162 0.076, 3.148 0, 26.579 0.001, 11.079
NB 0.422, 0.644 0.186, 1.751 0.006, 7.64 0.004, 8.466 0.003, 8.556 0.01, 6.715 0, 26.579 0.293, 1.107
OBC 0.891, 0.019 0.835, 0.043 0.093, 2.814 0.067, 3.36 0.07, 3.289 0.126, 2.346 0.001, 

11.079
0.293, 1.107

Table 6  Results of Mc Nemar’s test (p value, chi square) for year 2016 dataset (*denotes 2 tailed p value s; statistically significant values 
(p < 0.05) are in bold)

ML NN SVM linear SVM 
polynomial

SVM RBF SVM sigmoid RF NB OBC

ML 0, 15.63 0.174, 1.844 0.124, 2.369 0.199, 1.647 0.024, 5.097 0.005, 7.922 0, 27.574 0.033, 4.571
NN 0, 15.63 0, 23.959 0, 25.128 0, 22.672 0, 29.944 0, 46.762 0, 2.384 0, 29.884
SVM linear 0.174, 1.844 0, 23.959 0.625* 1* 0.049* 0.106, 2.619 0, 38.696 0.351, 0.871
SVM polyno-

mial
0.124, 2.369 0, 25.128 0.625* 0.453* 0, 0.143 0.141, 2.162 0, 40.042 0.432, 0.617

SVM RBF 0.199, 1.647 0, 22.672 1* 0.453* 0.031* 0.094, 2.81 0, 38.756 0.316, 1.005
SVM sigmoid 0.024, 5.097 0, 29.944 0.049* 0, 0.143 0.031* 0.326, 0.966 0, 45.662 0.776, 0.081
RF 0.005, 7.922 0, 46.762 0.106, 2.619 0.141, 2.162 0.094, 2.81 0.326, 0.966 0, 67.474 0.487, 0.482
NB 0, 27.574 0, 2.384 0, 38.696 0, 40.042 0, 38.756 0, 45.662 0, 67.474 0, 47.935
OBC 0.033, 4.571 0, 29.884 0.351, 0.871 0.432, 0.617 0.316, 1.005 0.776, 0.081 0.487, 0.482 0, 47.935
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poorer performance of OBC with resolution-merged images 
could be attributed to the reason that HCS resolution merging 
algorithm that is used in this study degrades the sharpness 
and spatial details to some extent in the output, an entity that 
is significant in OBC algorithm. Hence, the study suggests 
that to prepare LULC map of an urban area using satellite 
images of original 5 m spatial resolution, OBC approach is 
recommended whereas with resolution merged 5 m spatial 
resolution, RF algorithm in pixel-based approach is recom-
mended. The findings of the study may be useful for future 
studies mapping urban land-use using higher resolution or 
resolution merged images.
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