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Abstract
Urban Structure Types (USTs) stand for areas with homogeneous appearance over the urban matrix. The use of spatial
metrics rises as a convenient alternative to quantify the homogeneity of areas on a specific scale. Remote sensing imagery
is largely used to assess and study the urban environment, and its classification is a way to recreate the Earth’s surface
digitally, both natural and urban spaces. This study proposes a method for city-scale UST mapping using remote sensing
images as the unique source of information. Such a proposal comprehends the classification of images that express spatial
metrics derived from previous land use and land cover (LULC) classification. We carried two case studies to assess the
proposed method under different image resolutions and urban complexity conditions. For this purpose, Landsat-8 OLI and
Sentinel-2 MSI images acquired from different cities in Brazil are submitted to the proposed method. An alternative object-
based image classification method is included as a comparison baseline. The proposed method shows efficiency in the UST
mapping process, which is highly influenced by the neighborhood size considered over the process. Also, it is verified that
the proposed method is superior at a significance level of 5%.

Keywords Urban structure types · Spatial metrics · Image classification · Remote sensing · Urban mapping

Introduction

The urban environment is susceptible to changes in spatial
dynamics, promoting impacts on the population and urban
design. Such changes make this perceptible through its
spatial growing patterns as well as the reshaping of its struc-
ture (Aljoufie et al. 2013). Furthermore, natural resources
have been increasingly used as a consequence of urban
growth, generating progressive environmental degradation.
Therefore, methodologies for the study of urban space and
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expansion dynamics are necessary, so that city planning
becomes more assertive, efficient, and rapid (Pham et al.
2011).

Once simulating, foreseeing, and recreating the urban
environment digitally is made possible, decisions about
the real world can be taken in a digital sphere. With this
purpose, remote sensing images have been used to assess
urban settlements and population dynamics in various scales
(Tomás et al. 2016). Studies that exemplify the digital
representation of the urban environment were developed in
Germany (Banzhaf and Hofer 2008) and Chile (Banzhaf
et al. 2009), which analyzed Urban Structure Types (USTs)
premised on the spatial distribution of land use and land
cover (LULC) types. The UST concept is based on the
subdivision of an area into minimal significant structures
that has homogeneous appearance in the urban matrix and
contains both built and open spaces (Böhm 1998).

According to Montanges et al. (2015), a UST is different
from a LULC as it does not study specific objects
such as vegetation, roofs, and pavements, but the spatial
morphology on a specific scale. Also, the Local Climate
Zones (LCZs), introduced by (Stewart and Oke 2012),
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differs from the UST since LCZs, applied in climate studies,
are “regions of uniform surface cover, structure, material,
and human activity” (Stewart and Oke 2012), while USTs
deal only with the morphology of the urban space.

Previous studies showed the integration of three-dimen-
sional and vector data with high-resolution images for clas-
sification into USTs (Berger et al. 2018) as well as the use
of building geometries and its spatial distribution for UST
characterization (Novack and Stilla 2017). Such studies
make evident a tendency regarding the use of multiple data
sources, different platforms, and low-automated methods.

An alternative for automating the process may be achieved
through remote sensing image classification. This kind of
application is frequently used to map the Earth’s surface
areas into different classes of interest (Mather 2004). UST
mapping supported by image classification techniques is a
topic that has already been addressed in previous studies
(Wieland et al. 2016; Tam et al. 2018; Simanjuntak and
Reckien 2019).

The use of spatial metrics combined with image classifi-
cation can be a potential methodology for UST characteri-
zation. Spatial metrics are measures derived from maps that
exhibit spatial heterogeneity on a particular scale (Herold
et al. 2005). Some examples of spatial metrics are the patch
cover percentage, coefficient of variation of patch areas,
patch density, and edge density, calculated over each con-
sidered LULC classes (Herold et al. 2002; Herold et al.
2003). Among different alternatives, the use of images of
spatial metrics derived from prior classification results rises
as a convenient way to characterize USTs.

This study introduces a city-scale UST mapping method
based on the concepts of spatial metrics and image clas-
sification with a Support Vector Machine (SVM). In con-
trast to previous studies, the proposed methodology adopts
remote sensing imagery as its unique information source.
This means that no additional data – such as vector data,
spatial models, or even exchanges through processing plat-
forms – are needed, allowing greater automation in the UST
mapping process.

To assess our method and compare it against an alterna-
tive methodology, based on Wieland et al. (2016) and using
the Random Forest (RF) classifier, we study two cases of
UST mapping. These study cases are carried in urban areas
of São José dos Campos and São Paulo cities, Brazil. For
this, we employed images acquired from different satellites:
Landsat-8 OLI and Sentinel-2 MSI.

This paper is organized as follows. Section “Theoretical
background” presents the fundamental concepts regarding
image classification, UST, and spatial metrics; “UST mapping
framework based on spatial metrics classification” introduces
the proposed method; the study cases and comparisons with

alternative methods are presented in “Experiments”; and
lastly, “Conclusions” summarizes the findings of this paper.

Theoretical background

A brief discussion on image classification

Remote sensing image classification has attracted the sci-
entific community’s attention as the derived results of this
application prove to be useful in socioeconomic and envi-
ronmental studies. Consequently, the development of more
accurate classification methods is a constant challenge (Lu
and Weng 2007).

Formally, a classifier is represented by a function F :
X → Y that assigns elements from the attribute space X to
a class in Ω = {ω1, ω2, . . . , ωc}, c ∈ N

∗, with class labels
in Y = {1, 2, . . . , c}. Under these conditions, for x ∈ X and
y ∈ Y , y = F(x) means that x corresponds to the class ωy .

Considering I as an image defined on a support lattice
S ⊂ N

2, the image classification consists of the application
of F on the attribute vector x ∈ X associated with a pixel
s ∈ S of I. By consequence, one can write I(s) = x as a
way to denote that the pixel s from I has attribute vectors x,
and C(s) = ωy means that s was associated with the class
ωy since F(x) = y.

Different image classification methods proposed in the
literature are distinct ways to model F : X → Y and apply
it to classify I. Supervised and unsupervised learning are
examples of approaches for modeling F . The supervised
approach uses available information in a training set D ={
(xi , yi) ∈ X ×Y : i = 1, 2, . . . , m

}
composed by m ∈ N

∗
vectors whose associated classes are known.

Among several supervised classification methods, the
SVM has received considerable attention given its solid
theoretical foundation and notable characteristics, such as
simple architecture, moderate computational complexity,
and great generalization capability (Bruzzone and Persello
2009). According to Mountrakis et al. (2011), the SVM
method has provided comparable and frequently better
results concerning other classification methods.

Let D = {
(xi , yi) ∈ X × Y : i = 1, 2, . . . , m

}
a

training set, with Y = {+1, −1}, where xi is assigned to
ω1 when yi = +1, or to ω2 when yi = −1. The SVM
method distinguishes ω1 from ω2 through the following
largest margin discriminating function:

f (x) = 〈w, x〉 + b, (1)

where w represents an orthogonal vector to the hyperplane
f (x) = 0 and b is a scalar such that |b| / ‖w‖ express the
distance between the hyperplane and the origin of the
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attribute space. The notations |·|, ‖·‖ and 〈·〉 stands for the
absolute value, vector norm, and inner product. The values
for w and b are obtained by solving the following optimiza-
tion problem (Theodoridis and Koutroumbas 2008):

max
λ

(∑m

i=1
λi − 1

2

∑m

i=1

∑m

j=1
λiλjyiyj

〈
xi , xj

〉)

subjected to:

{
0 ≤ λi ≤ C, i = 1, . . . , m∑m

i=1 λiyi = 0
(2)

where λi are Lagrange multipliers, and C is a parameter
insert to deal with non-separable classes, acting as a
misclassification penalty during the training stage.

The classification performance of the SVM method can
be improved by embedding the input patterns into a more
appropriate feature space with better separability. Kernel
functions that substitute the inner product at Eq. 2 may be
adopted for this purpose (Webb and Copsey 2011). The most
usual kernel functions are:

Linear: K(x, y) = 〈x, y〉
Polynomial: K(x, y) = (1 + 〈x, y〉)p
Radial Basis: K(x, y) = exp

(−γ ‖x − y‖2)

where p ∈N
∗ and γ ∈R

∗+ are parameters for polynomial and
Radial Basis Function (RBF) kernel functions, respectively.

Moreover, accordingly to the previous formulation, the
SVM is able to distinguish only two classes. In order to
extend its application for non-binary classification problems
it is adopted a multiclass strategy. Usually, such strategies
comprehends a decomposition of the original problem
into several binary sub-problems. Posteriorly, the results
of each sub-problem are then combined as a multiclass
classification result. “One-Against-All” (OAA) and “One-
Against-One” (OAO) are examples of multiclass strategies
based on binary decomposition (Webb 2002).

Introduced by Breiman (2001), the RF method is another
example of a classifier frequently employed in recent remote
sensing studies. The RF exploits the ensemble learning
technique, combining the output of multiple decision trees
through a major voting process, and producing a classifica-
tion decision (Ananias and Negri 2021).

From a training set D, several replications with the same
cardinality of D are taken by bootstrapping process. Then,
a decision tree is trained through each replica. The RF
parameters, like the maximum depth of trees, minimum
number of samples in each node to split, a maximum
number of trees and out-of-bag error should be tuned before
the training process. More details and discussions regarding
those parameters are found in Breiman (2001).

Concerning the RF classification process, a vector x is
assigned to a class in Ω that produces significant concor-
dance among all individual trees. According to Belgiu and
Drăguţ (2016), the RF method is a computationally efficient
algorithm that does not overfit the final decision rule.

Urban structure types

USTs aim to describe land use arrangements in urban areas
(Lehner and Blaschke 2019). Such a concept is sustained
by the principle that cities are composed of several mor-
phological elements, having an intrinsic metabolism with
well-defined social and environmental patterns according
to its activities and arrangements of build and open spaces
(Pauleit and Duhme 2000). Furthermore, Hecht et al. (2013)
states that USTs are determined as functions of buildings’
predominance types and their patterns of spatial distribu-
tion.

As such, the UST rises as a convenient basis for effec-
tive urban-environmental planning. It allows us to recognize
urban settlement groups with similar physic characteristics,
which are essential information to define the urban develop-
ment guidelines (Moon et al. 2009). Given a generalization
scale, USTs consist of the aggregation of isolated objects
inside the urban space on a block level, that is, concern-
ing the elements into a spatial neighborhood. The LULC
is the most generalist level for a city scale, and the struc-
tural elements the less generalist level, which is related to
the building scale (Fig. 1).

Spatial metrics

Spatial metrics stand for measures derived from digital maps
to quantify spatial heterogeneity at a specific scale and
resolution (Herold et al. 2003). Such measures yield quan-
titative characterizations about spatial composition, habi-
tat configuration, and land use. Moreover, spatial metrics

Fig. 1 Urban structure analysis according to the spatial scale. Adapted
from Banzhaf and Hofer (2008)
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on remote sensing data allow the generation of consistent
and detailed information about the urban structure (Deng
et al. 2009).

Among a plethora of proposals, four examples of spatial
metrics that can be derived from remote sensing image
classification are the following: patch cover percentage,
coefficient of variation of the patch areas, patch density
and edge density of the patch. Formalizations of such
metrics as well as their components are presented to allow
future methodological reproductions and applications of the
proposed method.

Initially, we should define the spatial neighborhood con-
cept:

Vρ (s) = {s ∈ S : d (s, t) < ρ; t ∈ S} , (3)

where d(·, ·) is the maximum distance, which is d (a, b) =
max

{ |a1 − b1| , |a2 − b2|
}
, being a = {a1, a2} and b =

{b1, b2} elements from S, and |·| the absolute value. ρ

represents the neighborhood influence radius for s.
Once the spatial neighborhood is established, we define

a patch as every set of spatially connected positions of
a common class. Formally, for each position s and a
given neighborhood influence radius ρ, a ωy class patch is
represented by the following:

M
(y)
j (s, ρ) = {

t ∈ Vρ(s) : C(t) = ωy, C(t)

= C(r), ‖t − r‖2 ≤ 1} . (4)

where ‖·‖2 is the Euclidean norm.
The patch cover percentage metric expresses the propor-

tion of ωy class areas in relation to the total area, given by
the following:

Py = Ay

A
, (5)

where Ay = #
my⋃

j=1
M

(y)
j (s, ρ) is the area of the patches

associated with the ωy class accordingly to the amount of

pixels related to this class, and A = #
c⋃

k=1

mk⋃

j=1
M

(k)
j (s, ρ) is

the sum of the areas of all patches. Also, mk is the number
of patches of a certain class ωk ∈ Ω .

The coefficient of variation of the patch areas expresses
the percentage of variation of the areas concerning ωy ,
which is the following:

CVy (s, ρ) =
σ

(
M

(y)
j (s, ρ)

)

μ
(
M

(y)
j (s, ρ)

) ; j = 1, 2, . . . , my , (6)

where, for ωy and the neighborhood Vρ (s), σ
(
M

(y)
j (s, ρ)

)

and μ
(
M

(y)
j (s, ρ)

)
represent the standard deviation and

the average area of the patches, respectively.

The patch density of the ωy class quantifies the propor-
tion between the number of ωy patches and the area of all
patches, given by the following:

Dy = my

A
, (7)

Lastly, the edge density of the patch regarding ωy is the
proportion between the length of edges for patches of class
ωy in relation to the area of all patches:

By =

my∑

j=1
b

(y)
j (s, ρ)

A
, (8)

where b
(y)
j is the perimeter of a patch M

(y)
j (s, ρ).

USTmapping framework based on spatial
metrics classification

Figure 2 depicts the flowchart of the proposed UST mapping
method. From an image with sufficient spatial resolution to
identify the objects of interest, and a set of LULC samples
collected over the study area (adequately partitioned between
training and testing), an image classification process is
carried out. To train the classification method, point-wise
samples are further indicated to reduce the risk of defined
samples with mixed information from multiple classes, once
the imagery resolution usually does not allow a polygonal
sample collection over small areas. We named the output
result of this stage as “primary classification”. The SVM
method is used for this purpose, and different parameter
configurations should be assessed to achieve the most
accurate result.

Regarding the primary classification accuracy assess-
ment, point-wise test samples are also indicated because the
classified image remains on the same scale as the original
input image, and polygonal samples may encompass more
than one class.

Afterward, the obtained primary classification is submit-
ted to the spatial metrics calculation. More precisely, the
Eqs. 5 to 8 are applied on each pixel of the primary classi-
fication under a fixed spatial neighborhood of radius ρ. It is
important to highlight that for a given ρ and according to the
Eq. 3, a square-shaped spatial neighborhood with dimension
h × h, where h = 2ρ + 1, is defined.

From such a process comes an “image of metrics”. This
image has the same support (i.e., number of lines and
columns) of the primary classification but with an attribute
amount (i.e., bands) equivalent to four times the number of
primary classes, since the four adopted spatial metrics are
applied to each LULC class. The attribute values observed
on the image of metrics correspond to the returns of spatial
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Fig. 2 Method structure flowchart

metrics for each pixel of the primary classification concern-
ing its classes.

Posteriorly, taking the image of metrics as the input, a
second classification process is carried out. A new sample
set defined in terms of UST classes, again partitioned into
training and testing, is adopted.

Additionally, since each pixel of the image of metrics
expresses the spatial behavior over the analyzed area, con-
sidering its neighborhood, the use of spatially sparse point-
wise observations as training samples is shown to be more
convenient. Otherwise, the use of polygonal samples could
encompass overlapping information from the pixels of its
surroundings. Additionally, the local high variances shown
by the spatial metrics may impair the classification process.

Similarly to the primary classification process, the SVM
method was applied considering different parameter con-
figurations, and the most accurate result was then selected.
However, polygonal test samples were used to assess the
UST classification accuracy. This choice follows the UST
class definition: regions containing urban patterns in a city
block level.

Lastly, the final mapping expresses the analyzed area
in terms of UST, describing how the urban environment is
organized according to its particular characteristics.

Experiments

In this section, we present two study cases regarding UST
mapping using the framework proposed in “UST mapping
framework based on spatial metrics classification”. The
following sections discuss the study areas and data used
(“Study areas and data”), the experiment design (“Experi-
ment design”), and finally, the results and respective analysis
(“Results”).

Study areas and data

The study areas comprehend two regions in Brazil (Fig. 3).
The first one (Area 1) is a portion of São José dos Campos
city, Brazil. An image acquired in September 2017 by the
Landsat-8 OLI sensor was adopted for this area. This image
has a spatial resolution of 30 m for the multispectral bands

and 15 m for the panchromatic band. In this case, it was
used the following bands: blue, green, red, near-infrared,
shortwave infrared (SWIR) 1, and SWIR 2. Also, it was
used the panchromatic band for a pansharpening process.

The second study area (Area 2) comprehends a portion
of São Paulo city, Brazil. In this case, it was employed an
image acquired by Sentinel-2 MSI sensor in February 2021.
Specifically, it were adopted the 10 m spatial resolution
bands, regarding the visible (red, blue, and green) and
near-infrared frequencies.

First, the Landsat-8 OLI multispectral bands were fused
with the panchromatic band using the principal component
analysis-based pansharpening method (Chavez and Kwarteng
1989), once it is a robust and well-known method designed
to improve the spatial resolution of images (Pushparaj
and Hegde 2017). This process generates multispectral
bands with a spatial resolution of 15 m (Fig. 4a), yielding
sufficient spatial information to define and distinguish the
different LULC classes and USTs over the São José dos
Campos study area. On the other hand, no additional image
treatment was needed for the Sentinel-2 MSI image, once
it has 10 m of spatial resolution (Fig. 4b), allowing the
identification of the objects/targets over the study area.

LULC and UST samples (Fig. 5), required by the SVM
method to perform the image classification processes, were
collected on the fused Landsat-8 OLI image, and on the 10 m
resolution bands acquired by Sentinel-2 MSI. The quantity
of UST training samples was defined with a similar mag-
nitude to the primary classification sample set. Reversely,
since the test set designated to assess UST classifications
comprises polygonal samples, its size tends to be much
bigger than the sample set adopted to test the primary
classifications. Table 1 summarizes the number of samples
collected for the different classes, whether LULC or UST,
used to train the SVM method and test the respective classi-
fication results. Also, the color key assigned to the classes,
as presented in Table 1, remain the same for all the following
figures and maps.

About the Area 1 (Landsat-8 OLI image – São José dos
Campos), seven LULC classes were considered to perform
the primary classification: ceramic roof, concrete roof, water,
bare soil, asphalt, vegetation, and pasture. Such classes were
chosen concerning the possibility of describing the USTs in
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Fig. 3 Study areas location

Fig. 4 (a) Area 1 - Landsat-8 OLI and (b) Area 2 - Sentinel-2 MSI images in natural color composition
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Fig. 5 Spatial distribution of training samples (•), point-shaped testing samples for primary classes (�), and region-shaped testing samples for
UST classes (�), where (a) Area 1 - primary samples, (b) Area 1 - UST samples, (c) Area 2 - primary samples, and (d) Area 2 - UST samples

the study area. Conversely, for Area 2 (Sentinel-2 MSI – São
Paulo), it was considered almost the same primary classes
of Area 1, except for including the “white roof” class and
excluding both “bare soil” and “pasture” classes due to their
absence.

Regarding the final mapping, seven USTs were selected
in consonance with Wieland et al. (2016). Such USTs
include three residential patterns (low-, mid-, and high-
level), two service patterns (downtown and industrial), and

two rural patterns (vegetation and pasture). As previously
mentioned, as Area 2 does not include “pasture” as a
primary class, consequently, the respective UST class is not
defined. The residential patterns differ from one another
in terms of building sizes and open green spaces. The
service patterns are described by the sizes and shapes of
the buildings, usually with concrete roofs. In turn, the
vegetation aspect and its concentration are the key elements
to differentiate rural patterns.
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Table 1 Training and testing samples of LULC primary and USTs classes for study Areas 1 and 2

selpmaSTSUselpmaSCLUL

tseTniarTssalCtseTniarTssalC

Area 1

Ceramic roof 12 14 Low-level 11 820

Concrete roof 16 15 Mid-level 10 256

Water 9 11 High-level 9 779

Bare soil 9 6 Downtown 5 1172

Asphalt 8 10 Industrial 8 595

Vegetation 14 9 Vegetation 11 460

Pasture 12 8 Pasture 8 467

Area 2

Ceramic roof 13 8 Low-level 6 449

Concrete roof 12 8 Mid-level 10 697

White roof 13 9 High-level 9 912

Water 5 3 Downtown 7 859

Asphalt 10 6 Industrial 4 363

Vegetation 9 7 Vegetation 8 401

Experiment design

As already stated, a primary classification is initially obtained
with the application of the SVM method, trained with sam-
ples of LULC classes (Table 1) with regards to the respective
study area. To achieve accurate classification results, dif-
ferent parameter configurations for the SVM method are
tested. Such configurations regard distinct penalty values (C
∈ {1, 10, 100, 1000, 10000}) under the linear, RBF (param-
eters γ ∈ {0, 05; 0, 1; 0, 25; 0, 5; 1, 0; 1, 5; 2, 0; 3, 0}), and
polynomial (parameters p = {2, 3, 4, 5}) kernel functions
using the One-Against-All (OAA) or One-Against-One
(OAO) multiclass strategies.

The classification results obtained by each parameter
configuration are evaluated in terms of kappa coefficient
(Congalton and Green 2009), computed based on the test
samples (Table 1). Afterward, the most accurate result
observed is selected as the primary classification. Con-
sequently, each spatial metric (Eqs. 5 to 8) is computed
considering diverse neighborhood influence radii ρ. Differ-
ent ρ ranges were used for each study image, specifically
{1, 2, . . . , 20} for Area 1, and {15, 16, . . . , 24} for Area 2.
The divergence of radii ranges between study areas results
from the higher spatial resolution of the Sentinel-2 MSI sen-
sor (Area 2), which demands bigger neighborhood radius
values to encompass sufficient spatial information.

Each image of metrics generated from a given ρ value
is classified using the SVM method and trained using the
selected UST samples. All the different parameter config-
urations considered in the primary classification process
are also evaluated for UST classification. Furthermore, the

kappa coefficient was used to evaluate the results. A final
UST classification is selected according to the higher kappa
value observed, considering all the adopted ρ values.

In Wieland et al. (2016), a UST mapping method is pro-
posed through the SVM method and object-based classi-
fication concepts. Such a method is incorporated in the
following experiments as a comparison baseline. Addition-
ally, to provide UST mappings by a distinct classification
method, the RF was adopted in alternative to SVM. For
such purpose, the Orfeo Toolbox 7.1.0 (OTB) was used to
carry out all classification steps (for more OTB details, see
Grizonnet et al. (2017)). First, a segmentation using the
Large-Scale Mean Shift algorithm (Fukunaga and Hostetler
1975) was carried out for the classification inputs. The
segmentation’s minimum area values are determined to
ensure a dimensional equivalence with the neighborhood
sizes regarded by the spatial metrics. For this, it was adopted
the values of h × h, used for build the spatial windows cre-
ated for each ρ value in the spatial metrics calculation step.
The object-based classification approach was then trained
by the segment-shaped samples, selected by the same loca-
tion as the UST point-shaped samples used in the proposed
method. As aforementioned, the RF (Ho 1998) was used as
the object-based classification method once, according to
Huang et al. (2015), it could provide better results in urban
studies when compared to SVM. The parameter configura-
tion was based on the variation of the maximum depth of
trees ({3, 5, 7, 9, 11}) and minimum number of samples in
each node ({1, 2}), while other RF parameters were fixed
at their default values, such as maximum number of trees
(100) and out-of-bag error (0.01).
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Finally, the significance of the best results from the
proposed method are compared according their different ρ

values. Also, they are compared against the best result from
the alternative approach. The statistical test derived from the
kappa coefficients (Congalton and Green 2009) is applied
with 5% significance.

The experiments were run on a computer with an Intel
Core i7 processor and 16 GB of RAM running the Debian
Linux version 8.1 operating system. The programming
platform was the IDL (Interactive Data Language), version
7.1. The code of the proposed framework is available for
free at https://github.com/luccasmaselli/svmust.

Results

Area 1 – Landsat-8 OLI

Following the experiment design, the primary classifica-
tions were generated for the Landsat-8 image. Figure 6
shows the kappa values assigned to the different parameter
configurations. The higher kappa value observed is equiva-
lent to 0.952, obtained using the polynomial kernel function
with p = 3, C = 104, and the OAA multiclass strategy.

Based on the selected primary classification, the consid-
ered spatial metrics were applied under different ρ values to
verify the neighborhood radius influence on the final result.

As this case study considers four spatial metrics and seven
primary classes, the generated images of metrics have 28
features.

Subsequently, the UST classifications were carried out.
Figure 7 shows the kappa values achieved for different
parameter configurations. In this case, the higher kappa
value observed is 0.872, whose assigned parameter config-
uration is C = 104, with the polynomial kernel function
of p = 4, the OAA multiclass strategy, and ρ = 20. The
increasing trend of kappa values, given a kernel function
and a multiclass strategy, appears when the classification
results are ploted in ascending order in terms of neighbor-
hood influence radius ρ. Such behavior implies that ρ plays
a strong influence on the results of the proposed method.

Regarding the object-based image classification process,
assumed as an alternative method for UST mapping, the
most accurate result is assigned to a kappa value of 0.696,
achieved by the parameter configuration of maximum depth
of trees of 11 and minimum number of samples in each
node of 2 and a segmentation generated by minimum area
around 840 pixels (equivalent to ρ = 14). Figure 7 also
summarizes the kappa values achieved by the alternative
proposal, separated by classification methods and ordered
in terms of minimum area value.

Figure 8a presents the best result achieved for the primary
classification. Likewise, Fig. 8b and c present the best

Fig. 6 Accuracy of primary classifications for Area 1 according to distinct kernel functions and multiclass strategies, where (a) Linear/OAA, (b)
Polynomial/OAA, (c) RBF/OAA, (d) Linear/OAO, (e) Polynomial/OAO, and (f) RBF/OAO
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Fig. 7 Accuracy of UST classifications for Area 1 obtained by the proposed and alternative method. The mean kappa value (μ) and standard
deviation limits (μ ± σ ) are included for reference

UST classification provided by the proposed and alternative
methods, respectively. As a supplementary check on the
efficiency of the proposed method, a manual mapping of
the study area was made in terms of UST, as presented in
Fig. 8d.

Although the spatial metrics are calculated considering
a context based on the primary classification, the proposed
method involves a pixel-based classification. In turn,
the alternative method adopts a object-based approach.
Therefore, the divergence of kappa values shown by each
method is explained by the effectiveness of the spatial
metrics in expressing the analyzed USTs. The pixel-based
classification approach followed by the proposal also plays
a strong influence on the quality of the results.

Table 2 presents the p-values from a bilateral statistical
hypothesis test, with 5% significance, adopted to compare
the best results of the proposed method under distinct values
for ρ. The alternative method is also analyzed (ref. “Best
RF” column), and the proportion ρ ≈ (

√
minimum area/2)

−1 is assumed for comparisons, once this method was

carried with minimum area parameters equivalent to each ρ

value assessed by the proposal.
In general, some equivalences (represented in bold val-

ues at Table 2) are observed when using images of metrics
derived from similar ρ. Also, better classifications come
from bigger neighborhood influence radii. As already men-
tioned, the magnitude of influence radius has an essential
role in the proposed method. Regarding comparisons with
the alternative approach, the significance (and superiority)
of the proposed method is verified in all cases.

When compared to the reference manual classification,
the proposed method achieved similar results. Since it
follows a pixel-based classification approach, a more
detailed mapping is provided, leading to the identification of
nuances that are not included in the empirical classification.

Lastly, regarding the final mapping from the proposed
method, we may observe the predominance of low- and
mid-level residential patterns. The high-level pattern is
concentrated in specific areas, usually far from downtown
or industrial areas. On the other hand, downtown is located
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Fig. 8 Best results for the (a) primary, (b) proposed method’s, and (c) alternative method’s classifications, and (d) an empirical UST mapping for
Area 1

at the center of the São José dos Campos city, characterized
as a commercial area. Industrial areas are also concentrated
in regions of industrial activities. This kind of information
is useful to understand the arrangement of the city, and
our proposed method is shown to be effective in such
understanding.

Area 2 – Sentinel-2 MSI

Regarding the second study area, primary classifications
were derived from the Sentinel-2 MSI image. High kappa

values were achieved using the RBF kernel function and
OAO multiclass strategy. The best performance found
stands for a kappa value of 0.941 when γ = 0.25 and
C = 103. Figure 9a depicts kappa values profiles relative to
the mentioned kernel function and multiclass strategy.

In a second moment, the best primary classification
was submitted to spatial metrics computing. The range for
neighborhood influence radius considered in this process
were ρ ∈ {15, 16, . . . , 24}. Whereas four spatial metrics are
computed for the six primary classes, the generated images
of metrics have 24 features. The best UST classification
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Table 2 p-values (×10−3) from a bilateral test to compare kappa values from Landsat-8 UST classification of proposed and alternative methods

ρ

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Best RF

ρ 1 – 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 – 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 – 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 – 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 – 1 1 298 0 0 0 0 0 0 0 0 0 0 0 0 10

6 – 478 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 – 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8 – 1 3 0 0 0 0 0 0 0 0 0 0 61

9 – 405 0 0 0 0 0 0 0 0 0 0 4

10 – 0 0 0 0 0 0 0 0 0 0 10

11 – 0 0 4 309 471 0 0 0 0 0

12 – 59 1 0 0 145 127 17 2 0

13 – 0 0 0 4 334 295 102 0

14 – 1 5 27 0 0 0 0

15 – 284 0 0 0 0 0

16 – 0 0 0 0 0

17 – 14 1 0 0

18 – 165 44 0

19 – 232 0

20 – 0

Bold values represent statistic equivalence between methods

result showed a kappa value of 0.848 and was obtained using
the polynomial kernel function with p = 3, OAA multiclass
strategy, C = 104, and ρ = 21. Figure 9b represents the
kappa behavior for different ρ values according to the best
kernel function and multiclass strategy (i.e., polynomial

kernel and OAA strategy) for the UST mapping by the SVM
classification.

Regarding the UST classification provided by the base-
line method, the most accurate result shows a kappa value
of 0.498, achieved when using as parameter configuration

Fig. 9 (a) RBF/OAO SVM configuration for primary classifica-
tion and (b) Pol/OAA SVM configuration for UST classifica-
tion for Area 2, that is, the best kernel and multiclass strategy

for each classification kind. In (b), the whiskers representing the
minimum-maximum accuracy range, notches express the 95% confi-
dence range around the median, and black dots as extreme values
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a maximum depth of trees of 7, minimum number of sam-
ples in each node equal to 2, and a segmentation generated
by minimum area around 961 pixels (equivalent to ρ = 15).
In analogy with Area 1, Fig. 10 shows the better results
for primary and UST classifications for Area 2, including
the baseline method output and a manual classification for
additional comparison. Moreover, Table 3 presents the p-
value from a bilateral statistical hypothesis test, also with a
significance level of 5%.

It is observed a statistical superiority of the proposed
method is comparison to the baseline method. Such results

allow concluding that the use of spatial metrics favors a
better UST mapping. However, it is worth highlighting
the statistical equivalences among the proposed method’s
results when considering high values of ρ. This behavior
can be assigned to the existence of an optimum value for
the neighborhood influence radius. By gradually increasing,
it is observed a maximum point of accuracy at a particular
value (ρ = 21) and a loss of performance for radius values
above it (Fig. 9b).

As previously mentioned, Area 2 comprehends a portion
of the São Paulo city. Most of this study area is covered by

Fig. 10 Best results for the (a) primary, (b) proposed method’s, and (c) alternative method’s classifications, and (d) an empirical UST mapping
for Area 2
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Table 3 p-values (×10−3) from a bilateral test to compare kappa values from Sentinel-2 UST classification of proposed and alternative methods

ρ

15 16 17 18 19 20 21 22 23 24 BestRF

ρ 15 – 73 0 115 0 125 0 0 0 0 0

16 – 0 399 0 385 0 0 2 5 0

17 – 0 378 0 124 487 299 188 0

18 – 0 484 0 0 1 2 0

19 – 0 199 365 201 115 0

20 – 0 0 1 2 0

21 – 117 49 20 0

22 – 310 196 0

23 – 359 0

24 – 0

Bold values represent statistic equivalence between methods

mid- and high-level residential patterns. This city has sev-
eral urban peculiarities, as different kinds of commercial
and residential patterns. São Paulo’s downtown, for exam-
ple, is composed of high-rise buildings (at its business
centers), high-density small shops (at its commercial cen-
ters), and the historical center, with unique morphology. The
residential patterns, particularly the high-level, also may
have different configurations over this study area. A com-
mon element over the residential areas is the presence of
vegetation, where, depending on the ρ value, it can be mis-
classified as the UST vegetation class. Despite the high
complexity of São Paulo, the proposed method showed a
satisfactory in recognizing the urban patterns, proving then
its effectiveness.

Conclusions

Understanding urban spatial dynamics is essential for deci-
sion making and sustainable planning. Remote sensing
data and digital image processing techniques have been
highlighted as potential tools for such a process. This
study proposed a unique image-based method for urban
area classification based on USTs. Two study cases, using
Landsat-8 OLI and Sentinel-2 MSI imagery was carried
out. Comparisons with an alternative method were also
presented.

When considering appropriate parameter configuration,
which includes those for the classifier (SVM), and for
computing the spatial metrics (neighborhood radius), the
proposed method can provide classification results with
high accuracy levels. Moreover, it can afford consistent
results according to the expected spatial behavior observed
over the study area. Furthermore, the significance of the

results was analyzed to prove the proposal’s superiority
when compared with an alternative method based on
object-based image classification concepts. Additionally,
the increase of the neighborhood influence radius also
promotes statistically different results since the amount of
information adopted for spatial metrics calculation is crucial
for the results’ quality. Also, it was noticed a trend of an
optimum ρ value; that is, a spatial neighborhood size that
sufficiently captures the spatial information and promotes
correct UST classification.

Regarding the output maps, the proposed method showed
efficiency in classifying the urban space into UST elements.
Considering different urban complexities, the method
effectively recognized the USTs in both cases. However, the
higher complexity of São Paulo city makes it more difficult
to separate some of the proposed classes. For example, high-
level residential areas were misclassified in some regions as
the dense vegetation presence observed in such areas is also
associated with other urban standards.

Based on the study cases carried out, the possibility of
classifying residential areas into low, medium, and high
levels, as well as downtown and industrial regions is worth
observing, highlighting the proposed method as a support
tool for social actions and urban planning.

As future work, we plan to do the following: (i) consider
other spatial metrics; (ii) investigate strategies to produce
the image of metrics using a flexible neighborhood influ-
ence radius for each primary class; (iii) apply the proposed
method to analyze multitemporal urban landscape changes;
and (iv) suggest other UST classes according to the urban
complexity of the analyzed area.
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