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Abstract
Feed Forward Neural Network (FFNN), Adaptive Neuro-fuzzy Inference System (ANFIS), and Support Vector Regression
(SVR) were applied for rainfall-runoff modeling of the Gilgel Abay catchment, Blue Nile basin, Ethiopia. Daily precipitations
from satellite sources and rain gauge stations and outlet discharge were used. The dominant inputs were selected by non-linear
sensitivity analysis. The study was conducted in two stages. First, single models for each data source with input fusion were
trained. Second, ensemble runoff modeling using rainfall data fusion from only satellite products (strategy 1) and satellite and
gauge (strategy 2) was conducted by Simple Average (SA), Weighted Average (WA), and Neural Network Ensemble (NNE)
methods. NNEmethod using input fusion of strategy 2 improved performance of the best single satellite model up to 14.5% and a
single gauge model up to 8% in the validation. Strategy 2 input data fusion ensemble rainfall-runoff modeling indicated
substantial improvement over satellite data-based runoff modeling. This could be due to the bias correction ability of gauge
rainfall over satellite rainfall products. Overall, results showed that ensemble modeling of input fusion from multiple source
satellite rainfall products is a promising option for accurate modeling of the rainfall-runoff process for ungagged or sparsely
gauged catchments.
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Introduction

Rainfall-runoff modeling is an important task in water re-
source optimization and planning activities such as flood con-
trol, river basin engineering, navigation, irrigation water man-
agement, and reservoir operation (Guimarães Santos and da
Silva 2014; Noori and Kalin 2016). It also has remarkable
importance in preventing and early warning of natural disas-
ters such as drought and flood and incident mitigation in ex-
treme cases (Shamseldin 2010).

However, rainfall-runoff process modeling is a difficult
hydrologic task because of spatial and temporal dynamics of

the process with complex non-linear characteristics, chaotic
disturbances, and exhibiting randomness (Singh and
Sankarasubramanian 2014). A wide range of approaches such
as data-driven (black-box), physically-based, and conceptual
models have been already developed and applied for rainfall-
runoff modeling (Shamseldin 2006). Statistical classic
methods such as Autoregressive moving average (ARIMA)
models are simple to use but they usually create a linear
input-output relationship which may have limitations in
modeling non-linear and non-stationary hydrological process-
es (Nourani et al. 2020). On the other hand, physically-based
models such as the Soil and Water Assessment Tool (SWAT)
need large size spatial and temporal hydrological data and
their calibration and validation take a long time that maymake
them difficult to be used (Makwana and Tiwari 2014). Data-
driven Artificial Intelligence (AI) models such as; Artificial
Neural Network (ANN), Adaptive Neuro-fuzzy System
(ANFIS), and Support Vector Regression (SVR) are black
box models that can accurately model non-stationary and
non-linear behavior of the hydrological processes (Gazzaz
et al. 2012). Data-driven models are trained and tested for
specified data and limited locations. In mountainous areas,
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commonly used hydrological forecasting models cannot accu-
rately predict streamflow because of less-density rain gauge
distribution. In such cases, data-driven AI techniques can ac-
curately predict flow using cross-station or single station
streamflow data (A. Danandeh Mehr et al. 2015). ANN is
enthused by the studies into the biological neural networks,
has a rapid, supple arrangement, self-learning, self-adaptive
characteristics without the requirement for the complicated
feature of fundamental progressions considered to be clearly
defined in the mathematical relationships.

The application of ANN as a commonly used AI method
in hydrological modeling has shown its ability to detect the
complicated non-linear relation between hydrological time
series, nevertheless, the model structure and parameters
may not characterize the physical processes of the basin
(Govindaraju 2000). ANN became popular hydrological
time series forecasting tool and particularly, it has been
successfully applied for runoff forecasting (e.g. see,
Shamseldin 2010; Taormina and Chau 2015a). The most
important strength of ANN is data handling ability, such
as learning, noise tolerance, and data generalization.
However, ANN application for rainfall-runoff modeling
has still some limitations. For instance, (Wu et al. 2009)
indicated that data noise existed in the rainfall and flow
time-series could significantly affect forecasting quality.
Moreover, overtraining and data quality are still problems
in modeling by ANN. The aforementioned weaknesses of
the ANN-based runoff modeling may be corrected by pre-
processing of data, via hybrid and, ensemble approaches.

Adaptive Neuro-Inference System (ANFIS) is a hybrid and
combination of the learning capability of ANN and fuzzy-
logic introduced by (Jang 1993). ANFIS has proved its effec-
tiveness in capturing the merits of both ANN and fuzzy logic
methods in a particular structure (Chang et al. 2015).
Numerous studies applied ANFIS to model rainfall-runoff
processes (Yaseen et al. 2017) but again it shows some defi-
ciencies in the real-world application as for ANN.

Another almost new AI model is Support Vector
Regression (SVR). SVR is a non-linear regression model de-
veloped based on Support Regression Machine (SVM) with
the fundamental concept of having the ability to map data with
higher dimensionality using a non-linear mapping technique.
SVR contemplates operational risk as the objective function to
minimize the risks in place of reducing the error between
measured and simulated values (Wen et al. 2015). In the last
10 years, SVR got some priorities over other AI models be-
cause of its self-learning characteristics, parallel distributed
processing, avoiding over-fitting issues, and providing glob-
ally optimum results (Kalteh 2013). The main drawback of
modeling via SVR is its complex computing processes for
the constrained optimization issues where such disadvantages
can be handled by applying a Least Square Support Vector
Regression (LSSVR) algorithm that uses linear methods in

place of quadratic equations (Wang and Hu 2005). Similar
to ANN and ANFIS, the SVR model has been also success-
fully applied for rainfall-runoff modeling (e.g. see, Ateeq-ur-
Rauf et al. 2018; Kalteh 2013).

Even if such non-linear AI techniques (ANN, ANFIS, and
SVR) could lead to reliable results for rainfall-runoff model-
ing, it is apparent that for the specific problem, different
models may provide different outcomes. Therefore, combin-
ing outputs of different models by ensemble modeling would
provide better efficiency of modeling by minimizing error
variance compared to the individual methods (see
Shamseldin and Connor 1999; Sharghi et al. 2018).
Ensemble modeling captures unique features of each model
and rainfall dataset thus it could improve the overall efficiency
of the modeling (Homsi et al. 2020; Taormina and Chau
2015b).

The most important input in any rainfall-runoff modeling is
precipitation data. Precipitation data could be derived from
either densely distributed rain gauges over the basin, fairly
located ground-based weather radar, and satellite sources
(Prakash et al. 2018). In mountainous areas, providing accu-
rate and reliable precipitation data is very difficult due to the
less spatial coverage of rain gauge stations and orographic
effects (Chen et al. 2018). Also in less developed countries,
such as Ethiopia, the spatial resolution of precipitation data is
usually poor because rain gauge stations are sparsely distrib-
uted and there is no ground-based weather radar due to the
lack of adequate finance allocated for the meteorology re-
search sectors. In ungagged or sparsely gauged catchments,
hydrological modeling using ground-based precipitation data
may not be accurate because of the unrealistic area represen-
tation of the gauge rainfall data and its associated temporal
and spatial variability (Gao et al. 2017). Evenly distributed
ground-based precipitation measurements for lower influence
areas can best estimate precipitation data, however, some un-
certainties may happen when the point rainfall is interpolated
or extrapolated and applied for the large influence areas. To
reduce the limitations of data acquiring from ground-based
data sources, in the past few decades, precipitation values
estimated from various satellite sources have been under wide
range use in the regions where ground-based measurement is
not available or sparsely located (Ebert et al. 2007). Recently,
satellite estimated precipitation data have been widely verified
as reliable, cheap, and uninterrupted data sources, particularly
for areas with a lack of ground-based meteorological station
accessibility (Collins et al. 2013). Moreover, the spatial cov-
erage and temporal resolution of such data are being increased
due to the advancements in radars and low orbit satellites for
precipitation measurement. Spatially and temporally high-
resolution satellite rainfall products are reliable inputs for hy-
drological modeling in areas where ground-based precipita-
tion recording stations are unreliable or it is not periodically
accessible (Gebremichael et al. 2014).
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Numerous satellites have been launched for precipita-
tion measurement, for example, Tropical Rainfall
Measuring Mission (TRMM) was launched in 1997,
Global Precipitat ion Measurement (GPM) Core
Observatory was launched in 2014 which measures near-
real-time precipitation and snowfall (Yong et al. 2015).
The Climate Prediction Center (CPC) morphing technique
(CMORPH) product was launched in 1998 and used to
measure rainfall as a near-real-time rainfall product
(Gebremichael et al. 2014; Joyce et al. 2004). TRMM data
are available in both real-time (3B42RT) and post real-
t ime (3B42) forms. The TRMM Multi-Satell i te
Precipitation (TMPA) is satellite-based precipitation from
multiple satellite sources, combining relative advantages
from satellites, providing more reliable and accurate
gridded precipitation (Prakash et al. 2018). TRMM is ideal
for tropical rainfall observation because it has suitable
complementary observation devices and its orbital posi-
tioning which is positioned at a low altitude with an ap-
propriate inclination angle that enables more frequent and
more spatially comprehensive data acquisition. CMORPH
retrieves higher temporal and spatial resolution rainfall da-
ta from more accurate passive microwave sensors (Ayehu
et al. 2018). Even though the satellite rainfall data set is
an appropriate material for hydrological modeling of
ungagged catchments and each satellite source has its ad-
vantages, the spatial and temporal reliabilities of the data
are highly influenced by atmospheric and topographic fac-
tors (Tang and Hossain 2012). Therefore, the fusion of
rainfall data from multi-satellite sources as input ensemble
may lead to a better outcome in rainfall-runoff modeling
so that via the calibration step, the model would capture
higher weight for the better satellite data.

This study aimed at ensemble rainfall-runoff modeling
using multiple source satellite and ground gauge rainfall data
sets for Gilgel-Abay, Ethiopia, using FFNN, ANFIS, and
SVR models. To the best of the authors’ knowledge, this is
the first study that ensembles simultaneously both input data
sources (gauge and satellite) and AI-based outputs to enhance
the rainfall-runoff modeling and utilized input fusion strategy
for bias correction of satellite rainfall products.

Gilgel-Abay, the study area of this research, is one of the
important sub-catchments of the Ethiopian part of the Blue
Nile river, which contributes a large proportion of the flow
into the Nile River and it is very vital for hydrological, and
environmental sustainability, and social and economic support
of millions of peoples living in the riparian countries. In the
study area, ground-based rain gauges are very sparse in space,
short, and irregular in time. Moreover, the topographic and
terrain condition of the area is highly variable from high to
low land that may expose the data for orographic effects and
cause bias and incorrect representation of the rainfall values
(Gebre 2015).

Materials and methods

Proposed methodology

In this study, non-linear sensitivity analysis was applied to
identify the most appropriate inputs for rainfall-runoff model-
ing in two steps (Fig. 1). In the first step, FFNN, ANFIS, and
SVRmodels were trained and tested separately using satellite,
gauge, and fusion of two precipitation data sets for rainfall-
runoff modeling. In the second step, the outputs from the
inputs fusion models were imposed into the ensemble unit to
predict the future runoff values. Recently, ensemble modeling
has been gaining popularity due to its significant strength to
improve the accuracy of time series prediction. The main ad-
vantages of ensemble modeling as stated by (Sharghi et al.
2018) are described as follows. i) It can enable the researchers
to choose an appropriate model for time series forecasting, ii)
The real-world problems occasionally show both linear and
non-linear features, in this circumstance, neither linear nor
non-linear models are effective for time series forecasting be-
cause a small error from the linear process can be magnified
via a non-linear model whereas a linear model will not be able
to handle nonlinearity of a real-world process. Thus, the prob-
lem may be handled by taking advantage of all models via an
ensemble of different models.

Used black box models

Artificial neural network (ANN)

ANN is an engineering conception of information in the area
of AI conceptualized by inheriting human nerve functional
structure (Mislan et al. 2015). ANN is a mathematical
‘black-box’ model containing numerous non-linear artificial
neurons, which are operated side by side, that could be created
as single or multiple layers. ANN is data processing methods
making connections of neurons with each other to build com-
plicated non-linear input-output interactions and it is specifi-
cally described by networking topology, testing, or training
algorithms, and activation functions (Tongal and Booij 2018).
ANN is a mathematical model that was able to determine a
non-linear relationship within input and output parameters out
of complex partial differential equation applications. The
ANN models have been applied to solve very complex real-
world problems such as hydrological and meteorological data
preprocessing and processing. The major advantage of this
model is no requirement for complex physical processes
where the processes are simply described by mathematical
equations (Venkata Ramana et al. 2013).

ANN provided the substantial methodology for managing
noisy, non-linear, and non-stationary data, particularly when
not fully understood the fundamental physical relationship,
which makes ANN a suitable method for time series data
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forecasting. Mostly known ANN architecture in hydrological
and climatological modeling is the multi-layer perceptron
(MLP) trained with the backpropagation (BP) algorithm,
which includes an input layer, hidden layers, and output
layers. There are also extensively used ANN algorithms such
as Levenberg-Marquart (LM), Conjugate gradient, Quasi-
Newton and Brodyen-Flecher-Goldfarb-Shanno are the best
and efficient algorithms on fast time convergence.

The FFNN trained with Back Propagation (BP) algorithm
is the most extensive applied ANN architecture in forecasting
several hydrological time series problems and it is also applied
in the current study. The FFNN architecture comprises input
layers, hidden layers, and output layers, and weights and ac-
tivation functions (Fig. 2.). The inputs are transformed into
output by the following equations.

y1 ¼ f 1 ∑
K

K¼1
w1k f 2 ∑

J

J¼1
wkjxj þ bk

� �
þ bl

� �
ð1Þ

f 2 pð Þ ¼ 2

1þ e−2p
−1 ð2Þ

whereWkj represents weight which connects input and output
layers,Wlk symbolizes the joining weight between the hidden
neuron and output neuron, bk and bl stands for the bias of the

corresponding hidden and output layer neurons f1(.) stands for
the linear activation function and f2(.) denotes the
tansigmoidal activation function of the model.

Adaptive Neuro-fuzzy inference system (ANFIS)

Fuzzy Logic (FL) describes computational methods of
thought and problem-solving increases the reasoning ability
and decision-making ability of human minds (Chandwani
et al. 2015). Fuzzy logic has a strong capability of connecting
diverse inputs to single output without complex computations,
such as normalization, linearization, and homogenization like
traditional statistical techniques. The assumption of FL is dif-
ferent from classical models. Classical models assume that the
variables have exact numerical values which are related by
mathematical functions and output is crisp numbers but in
FL, values of variables are linguistically defined, related by
If-Then rules and the outputs can be fuzzy subsets then
defuzzified to crisp numbers. Modeling by FL takes account
of the fuzzification of sets, specifying basic rules, choosing
inference techniques, and defuzzification to obtain prediction
results.

The adaptive neuro-fuzzy inference system (ANFIS) was
first presented by (Jang 1993) to resolve various real-world

Fig. 1 Schematic of the proposed methodology (Pt
g is Thiessen-based average gauge rainfall and Qt

ob is observed runoff)
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problems. ANFIS uses backpropagation gradient descent and
least square algorithms that are created by the hybrid-learning
algorithm and that can adjust fuzzy membership function pa-
rameters by iterative tuning. The main aim behind ANFIS
training is to rule the resulting components and optimum pre-
mise by training the fuzzy-inference system (FIS) with ANFIS
to adjust the membership function parameter to balance with
the training database on error selected criterion. ANFIS hav-
ing the training and testing data, the least square data model is
designated which is the parameter linked to the FIS model.
ANFIS combination gives a hybrid intelligent system that
synergizes fuzzy logic and artificial neural network by
conjoining human cognitive ability with neural network and
fuzzy logic (Talei et al. 2010) to handle the limitations of the
ANN and FIS. ANFIS is a powerful toolbox to model a prob-
lem with uncertain and doubtful input data (Moghaddamnia
et al. 2009) that can handle complexity and noise such as
streamflow forecasting and rainfall-runoff modeling. ANFIS
is often known as a tool that can universally approximator and
which have the capability of approximating any real-world
continuous data sets to an acceptable accuracy range. The
ANFIS structure is combined of five layers similar to multiple
layer FFNN and named based on their functional operation as
presented in (Fig. 3). Calibration of ANFIS needs a determi-
nation of fuzzy language rules unlike to neural network which
tuned weights. The ANFISmembership function calibration is
achieved by applying backpropagation and/or least mean
square but Takagi Sugeno fuzzy model is calibrated by the
conventional least square method. Considering FIS with two
inputs and one output as x, y, and f, the Sugeno first-order

fuzzy model used in this study has ideal rule sets which are
if-then rules and are specified by:

Rule 1: If μ(x) is A1 and μ(y) is B1; then

f 1 ¼ p1xþ q1yþ r1 ð3Þ

Rule 2: If μ(x) is A2 and μ(y) is B2; then

f 2 ¼ p2xþ q2yþ r2 ð4Þ

Where A1 and A2 are x inputs membership functions, B1

and B2 are y input membership functions while the output
function parameters are p1, q1, r1 and p2, q2 and r2 a five-
layer ANFIS architecture is described as:

Layer 1: Each node i is an adaptive node in this layer with a
node function of:

Q1
i ¼ μAi xð Þfor; i ¼ 1; 2orQ1

i ¼ μBi yð Þfor; i ¼ 3; 4 ð5Þ

where Q1
i is input and x or y is membership grades.

Layer 2: T-norm operator connecting each rule in this layer
between inputs ‘AND’ operator as:

Q2
i ¼ wi ¼ μAi xð Þ:μBi yð Þfor; i ¼ 1; 2 ð6Þ

Layer 3: “Normalized firing strength” is the output in this
layer

Q3
i ¼ w ¼ wi

w1 þ w2
; i ¼ 1; 2 ð7Þ

Fig. 2 Typical architecture of three-layered FFNN
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Layer 4: Each node i in this layer is an adaptive node and
achieves the resulting of the rules as:

Q4
i ¼ w pixþ qiyþ rið Þ ¼ wf i ð8Þ

w represent the output of layer 3 pi, qi and ri are conse-
quents of parameters.

Layer 5: the overall output of all incoming signals is calcu-
lated in this layer:

Q5
i ¼ w pixþ qiyþ rið Þ ¼ ∑wi f i ¼

∑wi f i
∑wi

ð9Þ

Support vector regression (SVR)

SVR was created based on the Support Vector Machine
(SVM) conception, which is used for non-linear regression
and classification of the problems (Nourani et al. 2020). In
contrary to many other black box predicting approaches,
SVR reduces operational risks as an objective function rather
than minimizing the error between the actual and predicted
parameters. SVR is the type of AI model that is based on a
supervised-learning technique with two-layered networks. In
the first layers of SVR, weights are non-linear and it is linear
in the second layer. In SVR, first, linear regression is created
on the data and then the results go through a non-linear kernel
to handle the non-linear characteristic of the input data (W. C.
Wang et al. 2013). SVR can solve regression problems by
applying an alternative loss function, which is modified in-
cluding distance measure, and the architecture of SVM is giv-
en in (Fig. 4.).

Considering the problem of approximation, the set of data
(x1,y1),…..,(x1,y1), xϵR

N, yϵR with a linear function.

f x; að Þ ¼ w*xð Þ þ b ð10Þ

The ideal regression equation is obtained by minimizing
the empirical risk

Fig. 3 First-order Sugeno ANFIS and FIS model architecture (Jang 1993)

Fig. 4 Structure of the SVM model
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Remp w; bð Þ ¼ 1

l
∑ yi− f

�
xi;α

���� ���
ε

ð11Þ

The most general loss function with ɛ-insensitive zone ex-
plained as

y− f j x;αð Þj ¼ ε;if jy− f x;αð Þ≤ ε
jy− f x;αð Þj

n
ð12Þ

otherwise, the objective is to found a function f(x,α)which has
at most ɛ deviation from the actual observed targets yi for all
the training data and simultaneously as flat as possible. This is
equivalent to minimizing functional

φ w; ξ*; ξ
	 
 ¼ ‖w‖=2þ C Σξ*i þ Σξi

	 
 ð13Þ

where C is a pre-defined value and ξ∗, ξ are slack variables
representative of upper and lower constraints on the outputs of
the system represented in the following equations:

yi−
�
wxið Þ þ b≤εξi; i ¼ 1; 2; :…; l

wxið Þ þ bð Þ≤εþ ξ*; i ¼ 1; 2; ::…; l
ξ*i ≥0andξi≥0; i ¼ 1; 2; :…l

ð14Þ

Lagrange function would be formulated from objective
function and corresponding constraint by applying a dual set
of variables as the following equation:

L ¼ wk k2=2þ C∑ ξi þ ξ*i
	 


−∑αi εþ ξi−yi þ wxið Þ þ b½ �
−∑α*

i εþ ξ*i −yi þ wxið Þ þ b
� �

∑
�
ηiξi þ η*i ξ

*
i

ð15Þ

From the saddle point situation, the partial derivatives of L

with respect to main variables (w, b, ξ*i , ξi) have to vanish for
ideality. Replacing the result of derivation into the eq. (15)
produces dual optimization.

W α*;α
	 
 ¼ −ε∑ α*

i þ αi
	 
þ ∑yi α

*
i −αi

	 

− 1=2ð Þ

�∑∑ α*
i −αi

	 

α*

j−α j

� �
xix j
	 
 ð16Þ

which has to be maximized subject to constraints

∑α*
i ¼ ∑αi; 0≤C; and

0≤αi≤Cfori ¼ 1; 2;…; l
ð17Þ

After the coefficients α*
i and αi are found from eq. (17) the

required vectors can now be determined as:

w0 ¼ ∑ α*
i −αi

	 

xiand

∑ α*
i −αi

	 

xixð Þ þ b0

ð18Þ

For the non-linear SVR model, a non-linear mapping ker-
nel could be applied to map the data into larger dimensional

characteristics place where linear regression is fitted. The qua-
dratic equation to be maximized can be re-written as:

w α*;α
	 
 ¼ −ε∑ α*

i þ αi
	 
þ ∑yi α

*
i −αi

	 

− 1=2ð Þ

�∑∑ α*
i −αi

	 

α*

j−α j

� �
K xi; x j
	 
 ð19Þ

and the regression function is given by:

f xð Þ ¼ w0 þ b0 ð20Þ

where

w0x ¼ ∑ α0
i −α

0*
i

	 

k xi; xð Þand

b ¼ − 1=2ð Þ∑ α0
i −α

0*
i

	 
h
k xr; xið Þ þ k xs; x j

	 
 ð21Þ

Ensemble unit

For similar sets of data, obviously, one AI model may out-
perform others and when various sets of data are used, the
results of different models would be entirely different. To
use the benefits of each model without missing the general
nature of data, the ensemble technique was developed
which uses individual model’s output as input with a defi-
nite importance level allocated to each with the assistance
of an arbitrator to offer the output (Kiran and Ravi 2008).
The accuracy of the combination of outputs from different
individual models usually will be better than the accuracy
of the best single model (Asaad Y Shamseldin and Connor
1999). The importance of ensemble modeling is that each
output from an individual model may be considered as rep-
resentative of the source of data that may be separate from
the other models and combining all information from dif-
ferent sources may enable to optimize all input information
to the model. For boosting prediction results, several
methods of an ensemble such as neural network, random
forest regression, simple average, least square, weighted
average, and Bates-Granger has been employed (Elkiran
et al. 2019; Homsi et al. 2020; Ribeiro et al. 2020;
Shamshirband et al. 2019; Shiru and Park 2020). Seasonal
rainfall was successfully predicted by ensemble techniques
by using different genetic programming models (Danandeh
Mehr 2020; Danandeh Mehr 2021) which could be used as
pre-processing of rainfall for different hydrological model-
ing. This study applied three ensemble techniques namely;
simple average, weighted average and, neural network en-
semble methods to improve the performance of AI-based
individual rainfall-runoff modeling. The selected ensemble
methods consume less time for modeling and more efficient
as reported in the previous studies.
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Simple average ensemble (SA)

In the SA ensemble technique, FFNN, ANFIS, and SVR are
modeled individually and the SA output is produced by taking
the average of the outputs of the individual models as:

Qo ¼ 1

n
∑
n

i¼1
Qoi ð22Þ

Where Qo is average discharge from the simple ensemble
model,Qoi is discharged from the ith singlemodel, and n is the
number of individual models (here, n = 3).

Weighted average ensemble (WA)

Weighted average ensemble applies different weights on the
outputs of models outputs based on the relative importance of
the results as:

Qo ¼ 1

n
∑
n

i¼1
wiQoi ð23Þ

where wi is the applied weight on the output of an ith model
that can be computed based on the model performance as:

wi ¼ DCi

∑
n

i¼1
DCi

ð24Þ

DCi is the performance measure (e.g., coefficient of deter-
mination) of the ith single model.

Non-linear neural network ensemble method (NNE)

In a non-linear neural network ensemble technique, the results
of individual models are taken as inputs of the neural ensem-
ble; each is assigned to one neuron of the input layer. The
modeling steps of the neural ensemble modeling are similar
to FFNN where the best topology and iteration number of the
neural ensemble combination should be attained using the
trial-error process and the sigmoid may be considered as hid-
den and output activation functions.

Sensitivity analysis

The performance of any model is influenced by the relevance
and quality of inputs concerning the output. A large number of
inputs could cause the complexity of modeling and overfitting
that leads to unrealistic results, especially in AI-based model-
ing. On the other hand, an insufficient number of inputs can
reduce modeling accuracy. Several statistical and data-driven
sensitivity analysis methods such as cobweb plots, Sobol’
indices, linear regressions, neural network, and partial deriva-
tive (PaD) were widely applied to understand the impacts of

inputs on the outputs (Tunkiel et al. 2020). Statistical methods
such as correlation coefficient, cobweb plots, Sobol’ indices,
linear regressions might not be suitable high-dimensional data
sets and could not well capture the non-linear hydrologic pro-
cesses. The neural network is affirmed as a powerful tool to
analyze sensitivity on output imposed by input parameters
since the neural network can well handle the non-linearity of
hydro-meteorological data and handles the large-
dimensionality of inputs (Nourani and Sayyah Fard 2012).
To determine the most influential and relevant input parame-
ters on the runoff, the ANN-based sensitivity analysis was
applied in this study to detect the sensitivity of the inputs such
as discharge, rainfall, and temperature with different lag times
on the output. The hydro-meteorological parameters with dif-
ferent time lags were considered as potential inputs to predict
runoff via a FFNN. The performance of each parameter in
terms of DC was used to rank the influence extent of each
input to the output and only significantly important parameters
were used as inputs for the AI-based modeling of the rainfall-
runoff process. Accordingly, different time lags of discharge,
precipitation, and temperature were used as inputs and single-
ahead discharge was considered as the target for the FFNN
based sensitivity analysis.

Performance evaluation

There are several techniques applied for evaluating the
predicting efficiency of models such as coefficient of determi-
nation (DC), Mean Absolute Error (MAE), and Root Mean
Square Error (RMSE). According to some studies, (e.g.,
Legates and McCabe 1999) to have an effective comparison,
the model efficiency performance should include at least one
goodness-of-fit (e.g., DC) and at least one absolute error mea-
sure (e.g., RMSE). The performance of the proposed models
could be evaluated using the standard evaluation criteria such
as coefficient of determination (Eq. 25) and root mean square
error (Eq. 26).

DC ¼ 1−
∑
N

i¼1
Qobsi−Qcomið Þ2

∑
N

i¼1
Qobsi−Qobs

� �2 ð25Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
∑
N

i¼1
Qo tð Þ−Qs tð Þð Þ2

s
ð26Þ

where DC is the determination coefficient (or Nash-Sutcliffe
criterion) (Nourani et al. 2019), RMSE is the root mean square
error, Qo is observed discharge, N is the number of observa-
tions, Q is the average of the observed discharge and Qs is the
predicted discharge at time t.
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Case study and used data

Study area

The Gilgel Abay watershed is situated in the north-western
part of Ethiopia in the latitude of 10056′ to 11051′ N and
longitudes 36044′ to 37023′E and has an area of 1635km2

(see Fig. 5). The basin is among the sub-basins of Lake
Tana that can contribute more than 60% of runoff to the
Lake Tana basin (Wale et al. 2009). Most of the catchment
is characterized by mountains topography where the elevation
varies from 1805 m to 3518 m above mean sea level and the
land slopes vary 0% to 6%. The area is characterized by a cool
semi-humid climate with an annual temperature of 17-20 °C,
the wet season occurs from June–September and dry season
occurs from October–May and the annual mean rainfall is
1416 mm. The watershed has one stream gauging station lo-
cated at the basin outlet. The textural class of the soil is pro-
portionally distributed among the basin (33.3% clay, 33.7%
clay loam, and 33% silt loam). The dominant soil type of the
basin is Haplic Luvisols and 74% of the catchment is covered
by rain-fed cropland, 15% grassland, and 11%woodlands and
forested at higher altitudes.

Used data sets

The data set used for this study includes 5 years (2014–2018)
daily rainfall, streamflow, and average temperature.

Precipitation and temperature were collected from Ethiopian
National Meteorological Agency for five stations (Sekela,
Wetet Abay, Adit, Dangila, and Gundil,), the first two are
located inside the basin and the rest located around the basin
(see Fig. 5). Streamflow data recorded at the outlet gauging
station of the main river, obtained from the EthiopianMinistry
of Water Irrigation and Energy. The first 3.5 years of the data
were used for training and the rest 1.5 years of data were
utilized for verification of the models.

Remotely sensed rainfall data from the satellite may give
better spatial and temporal resolutions of data in a case where
ground-based rain-gauge stations are sparse. Several satellite-
based rainfall products namely: Global Climatology Project
Multi-satellites (GPCP-MS), Precipitation Estimation from
Remotely Sensed Information using Artificial Neural
Networks (PERSIANN), National Oceanographic and
Atmospheric Administration Climate Prediction Center
(NOAA-CPC) Merged Analysis (CMAP), and TRMM prod-
ucts (Dinku et al. 2007). High-resolution satellite rainfall al-
gorithms combine rainfall information from remotely sensed,
more accurate, and infrequent microwave and more frequent
and less accurate infrared algorithms. For this study, TRMM
(Tropical Rain Measuring Mission) 3B42RT v7, which pro-
vides real-time data, and TRMM 3B42 v7 post-real-time data,
and CMORPH data, were downloaded and used at daily tem-
poral and 0.25ox0.25o spatial resolutions for the study period.
Nine satellite rainfall grids cover the whole watershed as
shown in Fig. 5. These satellite rainfall products were selected

Fig. 5 Map of the study area and the locations of meteorological and hygrometry stations and satellite grids
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because they already led to good performance for the study
area in previous studies (Menberu M. Bitew et al. 2012;
Menberu M. Bitew and Gebremichael 2011) and the temporal
resolution of the products are available daily which is suitable
for AI modeling.

TRMM precipitation sensor spacecraft contains precipita-
tion radar, microwave imager, and infrared and visible ray
scanner. TRMM estimates rainfall based on three steps; i)
received raw products are calibrated and geo-located, ii) the
products are derived by geographical and physical features for
the same location and resolution for the raw data, iii) the time-
averaged product is mapped into uniform space and time
grids. The 3B42RT is a near-real-time version (about 9 h
later real-time) which covers latitude from 60oN to 60oS and
the 3B42 is the post-real-time product (10 to 15 days later the
end of every month) that covers latitude from 50oN to 50oS (Li
et al. 2018). Both products are version 7 and have 0.25o by
0.25o spatial resolution and 1-day temporal resolution. The
3B42RT uses TRMM Combined Instrument (TCI) dataset,
which contains TRMM Precipitation Radar (PR) and
TRMM Microwave Imager (TMI), to calibrate rainfall es-
timations acquired from low orbit microwave satellites
(Ochoa et al. 2014). The 3B42RT combines all of the esti-
mates at a given time interval and data gaps are filled from
analysis of geostationary earth orbit infrared information
that is locally calibrated based on merged microwave prod-
ucts. The 3B42 uses gauge data analysis such as Global
Precipitation Climatology Center (GPCC) 1o by 1o, month-
ly rain gauge analysis, and Climate Assessment and
Monitoring System (CAMS) 0.5o by 0.5o rain gauge anal-
ysis (Rudolf et al. 1994).

The Climate Prediction Center (CPC) morphing technique
(CMORPH) product is a near-real-time rainfall product
(Gebremichael et al. 2014). It is usually available after 18 h
of observation developed by the United States National
Oceanic and Atmospheric Administration (NOAA). To esti-
mate precipitation data, the CMORPH algorithm uses passive
microwave information from near-orbit satellite radiometers
and infrared information from geostationary satellites.
CMORPH algorithm is not merging passive microwave and
infrared precipitation estimates but it uses rainfall estimates
derived from passive microwave observations and transmits
this information in space using motion vectors derived from
geostationary infrared data (Dinku et al. 2007). In the first
step, the time sequence of features motion is governed from
infrared ray information, and then these data are used to pro-
vide the displacement motion for morphing from one instan-
taneous microwave estimate to the next. In this process,
CMORPH combines the higher retrieval accuracy of passive
microwave and the superior spatial and temporal resolution of
infrared ray information. The statistics of daily discharge at
the outlet and rainfall of stations and satellite sources are given
in Table 1.

All input data were normalized to keep the range of data in
the specific range that means between 0 and 1 via:

X norm ¼ X−Xmin

Xmax−Xmin
ð27Þ

Where, Xnorm is normalized value, X is observed value,
Xmin is the minimum observed value and Xmax is the maximum
observed value.

Rain gauge and satellite rainfall datasets

Hydrological modeling requires accurate rainfall data over
the whole basin, however; rainfall is highly variable in both
space and time. Rain gauges in developing countries are
installed very sparsely and that cannot give accurate rainfall
to exactly represent the catchment. For hydrological model-
ing, average rainfall over the catchment is required and it
can be determined by several techniques. Among the tech-
niques, the Thiessen polygon method is the most popular
for practical problems. This method divides the catchment
into smaller areas with different geometric shapes, assigns a
weight for each polygon, and assumes that the rainfall at
any point in the watershed is similar to the nearest rain
gauge. For the study area, the polygons around rain-gauge
stations and their respective weights are shown in Fig. 6.
Using this method, average gauge time series rainfall over
the watershed was computed and used in the modeling.
According to the Thiessen polygon results, rainfall in the
watershed is mainly influenced by Wetet-Abay and Sekela
gauges because those stations are located inside the
watershed.

Daily Thiessen polygon average rainfall and satellite
datasets (3B42RT, 3B42, and CMORPH) for (2014–2018)
are plotted in Fig. 7a,b, and c where satellite rainfall products
averaged over 0.25o by 0.25o are compared with average
gauge rainfall.

CMORPH satellite rainfall dataset was relatively close
to ground station rainfall especially since high rainfall
during the summer season is much closer to ground sta-
tion rainfall record (Fig. 7a.). But it overestimates low
rainfall for all seasons. The 3B42 satellite rainfall product
is weak to capture both high and low rainfall values. It
has a tendency to underestimate the majority of peak rain-
fall values and overestimate low-intensity rainfall (see
Fig. 7c.) and it produces some false spikes during the
dry season. 3B42RT satellite rainfall products are fairly
good to capture low-intensity rainfalls but they underesti-
mate peak rainfall events (Fig. 7b.). Overall, usually,
CMORPH performed better than 3B42RT and 3B42 in
capturing seasonal and diurnal cycles of the rainfall over
the study area.
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Results and discussion

Results of sensitivity analysis and dominant inputs
selection

Relevant and dominant input selection is the most important
step in any black-box modeling because the quality and rele-
vance of input data could significantly affect the output. In this
study, the effect and sensitivity of each input data i.e., dis-
charge (Qt, Qt-1, Qt-2, Qt-3, and Qt-4), rainfall (Pt Pt-1, Pt-2, Pt-3,
and Pt-4), and temperature (Tt, Tt-1, Tt-2, Tt-3, and Tt-4) to the
output i.e., single-ahead discharge (Qt + 1) were analyzed via
neural network modeling and ranked based on the mean DC
value of each parameter obtained in the calibration and vali-
dation phases of FFNN modeling (Table 2). Accordingly, the
parameters which are significantly important for rainfall-
runoff modeling were selected by the t-student test and used
as the inputs of the models. Based on the sensitivity analysis

result (Table 2), the parameters found to be relevant for this
study are Qt, Qt-1, Qt-2, Qt-3, Qt-4 Pt, Pt-1, Pt-2, Pt-3, and Pt-4,
however, T, Tt-1, Tt-1, Tt-2, Tt-3, and Tt-4 were irrelevant since
their contribution to runoff is very low, therefore, these pa-
rameters were not considered as inputs for the modeling.
Hence, the inputs selected for this study were Qt, Qt-1, Qt-2,

Pt, and Pt-1 to get reliable modeling outputs.
The proposed modeling in this study comprises two steps,

(1) separate modeling of rainfall-runoff using satellite, gauge,
and input fusion rainfall data by different non-linear models
were created and the modeling performance of each input data
source for the respective model was evaluated; (2) The ensem-
ble was conducted using two linear ensemble methods
(weighted average and simple average) and one non-linear
(Neural network) to appraise the efficiency of single model-
ing. In this way, the outputs of the inputs fusion models were
used as inputs for the ensemble techniques. The results are
presented in the following sub-sections.

Table 1 Statistics of the used
daily data sets Rainfall data (mm)

Data source Maximum Minimum Mean Standard deviation

Adet (gauge) 70.2 0 3.49 7.32

Dangila (gauge) 61 0 4.41 8.52

Gundil (gauge) 90.2 0 6.73 11.73

Sekela (gauge) 72.3 0 6.04 9.91

Wetet-Abay (gauge) 70.5 0 5.32 9.90

3B42 (satellite, S1) 48.34 0 3.51 6.05

3B42RT (satellite, S2) 54.18 0 3.62 6.42

CMORPH (satellite,S3) 71.15 0 5.72 9.34

Flow at gauging station (m3/day) 355.46 4.69 58.40 60.71

Fig. 6 Thiessen polygons and
their weights of influence
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Results of individual rainfall-runoff models

Using satellite and gauge data sets, AI-based rainfall-runoff
models were created using the single non-linear models of
FFNN, ANFIS, and SVR.

Results of the FFNN model

FFNN trained by BP and the LM algorithmwas applied in this
study with one hidden layer and variable hidden neurons be-
cause of its fast convergence ability and popularity. The opti-
mum number of hidden neurons was determined by the trial
and error method for each data source. Hence, the range of
hidden neurons applied in this study varies from 9 to 21 for the
prediction of runoff (see Table 3). Among the satellite rainfall
products, CMORPH rainfall data with FFNN structure of (5–
17-1) with 17 hidden neurons gave the best result with DC of
0.8597 and 0.7744 in calibration and validation phases,

Fig. 7 Rainfall time series of Thiessen average and CMORPH for 2014–2018 and a detail for 2016 (a), Thiessen average and 3B42RT for 2014–2018
and a detail for 2016 (b), and Thiessen average and 3B42 for 2014–2018 and detail for 2016 (c)

Table 2 Results of
Sensitivity analysis Inputs Parameters Mean DC Rank

Qt 0.8438 1

Qt-1 0.8317 2

Qt-2 0.8242 3

Pt 0.7826 4

Pt-1 0.7724 5

Qt-3 0. 6041 6

Qt-4 0.5698 7

Pt-2 0.5549 8

Pt-3 0.5421 9

Pt-4 0.5392 10

T 0.1877 11

Tt-1 0.1855 12

Tt-2 0.1824 13

Tt-3 0.1786 14

Tt-4 0.1755 15
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respectively (see Table 3). Comparing the performance of the
three satellite data sets in FFNN modeling, it is practical to
select datasets to perform better with fewer hidden neurons. In
this case, the 3B42RT dataset is superior over CMORPH and
3B42 datasets. Therefore, FFNN using the 3B42RT rainfall
dataset could forecast runoff at a short time and low cost for
the study area. For average gauge rainfall data, the FFNN
model achieved DC of 0.9141and 0.8368 in training and val-
idation steps, respectively. Ground station rainfall data indi-
cated superiority over satellite rainfall products in runoff pre-
diction and this could be due to variation of capturing ability
of satellite spacecraft resulting biases for different rainfall
magnitudes. For instance, 3B42RT and 3B42 underestimate
the majority of peak rainfalls (see Fig. 7b and c) that could
reduce predicted runoff from observed runoff. Runoff time
series predicted by FFNN for best models using two different
rainfall data sources (ground station and CMORPH satellite)
are plotted versus observed runoff (Fig. 8a.). As it is shown in
Fig. 8a, FFNN accurately modeled low flows at dry seasons
however; it led to less accurate results in capturing the high
flows in wet seasons for both data sets.

Results of the ANFIS model

Sugeno type ANFIS was applied in this study and the mem-
bership functions (MPs) were calibrated by input-output pa-
rameters through a hybrid optimization algorithm. Various
MPs were deployed for ANFIS modeling and the best
ANFIS structures were characterized by MF and different it-
erations of epochs. For rainfall-runoff simulation, Gaussian,
Trapezoidal, and Triangular shaped MFs were applied for all
(satellite and ground station) data sets, and the MFs that gave
the best results at optimum epoch are presented in Table 3.

From satellite rainfall products, CMORPH rainfall products
with Triangular MF performed well with DC of 0.8677 and
0.7986 at training and validation stages, respectively (see
Table 3). All satellite rainfall products performed fairly well
for rainfall-runoff simulation by ANFIS at optimum epoch
iteration and appropriate MFs. Using the ground rain gauge
station data sets, ANFIS achieved the best results with DC of
0.9205 and 0.8452 at training and validation stages, respec-
tively (Table 3). ANFIS structure constructed with Gaussian
MF gave the best result. Runoff time series predicted by
ANFIS using two different rainfall data sources (ground sta-
tion and satellite) are plotted versus observed runoff in Fig. 8b.
ANFIS accurately predicted peak runoff in summer seasons
since the watershed receives high rainfall at this season,
however; it slightly overestimated low flow in the dry season
for both CMORPH and average gauge rainfall data sets (see
Fig. 8b).

Results of the SVR model

In SVR modeling, Radial Base Function (RBF) kernel was
used to create the models for ground-based and satellite data
sets. RBF was selected over the sigmoid and polynomial ker-
nels because it uses fewer tuning parameters and has been
already confirmed that RBF outperforms the other kernels
(Sharghi et al. 2018). The results of the SVR model for satel-
lite data sets are presented in Table 3 and it is shown that all
three satellite rainfall products gave fairly good results but
CMORPH surpassed the 3B42 and 3B42RT having DC
values of 0.8578 and 0.7732 in the training and validation
stage, respectively. The rainfall-runoff result of SVR showed
a good performance for average rain gauge data sets with DC
of 0.9082 and 0.8342 in training and validation stages,

Table 3 Rainfall-runoff results of
FFNN, ANFIS, and SVR models
for satellite and average gauge
rainfall data (inputs of all models
are Qt, Qt-1, Qt-2, Pt, and Pt-1)

Model RF data source Structure DC RMSEa

Training Validation Training Validation

FFNN 3B42 5–21-1 0.8603 0.7724 0.06423 0.0740

3B42RT 5–9-1 0.8625 0.7726 0.0641 0.0742

CMORPH 5–17-1 0.8597 0.7744 0.0633 0.0728

Gauge 5–11-1 0.9141 0.8368 0.0612 0.7007

ANFIS 3B42 Gaussian 0.8684 0.7803 0.0633 0.0717

3B42RT Gaussian 0.8571 0.7928 0.0636 0.0690

CMORPH Triangular 0.8677 0.7986 0.0624 0.0687

Gauge Gaussian 0.9205 0.8452 0.05818 0.0667

SVR 3B42 RBF 0.8571 0.7678 0.0652 0.0737

3B42RT RBF 0.8558 0.7688 0.0653 0.0736

CMORPH RBF 0.8578 0.7732 0.0658 0.0732

Gauge RBF 0.9082 0.8342 0.0590 0.0702

RMSEa : RMSE is unitless because the data are normalized
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respectively (see Table 3). SVR could accurately model low
flow in the dry season and normal flow in the wet season,
however, it underestimated peak flows in wet seasons using
both CMORPH and rain gauge data sets (see Fig. 8c).

Overall, the runoff prediction performance of ANFIS
surpassed the FFNN and SVR models for both average gauge
and satellite data sets (see Fig. 9).

Results of modeling by input fusion

In input fusion modeling, two input fusion strategies were
deployed. Strategy 1) Only satellite rainfall products were
combined as inputs (without average gauge rainfall) to predict
runoff (Table 4). Strategy 2) Rainfall from all three satellite
rainfall data products and the average gauge were combined
and imposed into the input layer of the models to predict
runoff (see Table 5), to see the combined effects of data from
different sources on runoff prediction. In this section, all in-
puts from both data sources were combined and modeled by
all AI models then ensemble modeling was performed using

WA, SA, and NNE techniques. Usually prior to use satellite
data in hydrological modeling, data should be bias-corrected
according to the ground-based gauge data (MenberuM. Bitew
et al. 2012). Satellite rainfall is “bias-corrected” by following
two steps. First, the bias on the satellite rainfall products is
determined by dividing the daily average satellite rainfall
products on the pixel that comprises the rain gauge to the
corresponding gauge rainfall value. Second, the original daily
satellite rainfall product is multiplied by bias to remove the
bias in satellite rainfall data. However, in this study, gauge
rainfall data were imposed directly into the models along with
satellite data that this can act as a bias correction method of the
satellite data.

The strategy 1 input fusion results gave promising im-
provements over runoff predicting using individual satellite
rainfall data sources however it indicated slightly lower per-
formance as compared with average gauge-based runoff
modeling (see Table 4). Inputs fusion of satellite with an av-
erage gauge as strategy 2, significantly improved the runoff
prediction accuracy over both average gauge and satellite-

Fig. 8 Observed vs. predicted runoff (average gauge and CMORPH rainfall) via a FFNN, b ANFIS, b)SVR, in the validation phase
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based rainfall for all AI models (Table 5). Particularly, for
satellite-based rainfall, the reason for the improvement of the
runoff prediction accuracy could be related to the bias correc-
tion capacity when gauge data are imposed to the models as
well as satellite data. It is fact that gauge rainfall is more
accurate than satellite rainfall products since the quality of
satellite information depends on cloud conditions, revisit time
of satellites, and their orbital positioning which results in bias
to rainfall estimations. In strategy 2 input fusions, both sources
of inputs combined to predict rainfall-runoff thus boosted the

models’ performance as compared with strategy 1. It is worth
mentioning that gauge rainfall corrected the bias of satellite-
based rainfall products and improved the rainfall-runoff pre-
diction efficiency of the models.

When the modeling results for gauge and satellite rainfall
data sources are compared, the gauge-based data indicated
superiority in both single modeling and input fusion stages.
The reason is related to the fact that the gauge rainfall can
capture the real physical relationships between rainfall and
runoff at the watershed level. The satellite-based rainfall

Fig. 9 Scatter plot of observed and predicted results of aANFIS-Gauge average, bANFIS- CMORPH, c FFNN-Gauge average, d FFNN-CMORPH, e
SVR-Gauge average, f SVR-CMORPH at validation phase

Table 4 Results of rainfall-runoff modeling by input data fusion using
only satellite data sets (strategy 1) (inputs for all models are Qt, Qt-1, Qt-2,
PtCMORP, Pt3B42RT, and Pt3B42)

Model Model structure DC RMSEa

Training Validation Training Validation

FFNN 6–9-1 0.9086 0.8086 0.0642 0.0726

ANFIS Gaussian 0.9187 0.8147 0.0608 0.0692

SVR RBF 0.8908 0.8043 0.0646 0.0732

RMSEa : RMSE is unit-less because the data are normalized

Table 5 Results of rainfall-runoff modeling for input fusion of both
gauge and satellite data sets (strategy 2) (inputs for all models are Qt,
Qt-1, Qt-2, PtGauge, PtCMORP, Pt3B42RT, and Pt3B42)

Model Model structure DC RMSEa

Training Validation Training Validation

FFNN 7–10-1 0.9205 0.8492 0.05634 0.06514

ANFIS Gaussian 0.9360 0.8644 0.0518 0.0625

SVR RBF 0.9175 0.8428 0.0588 0.0661

RMSEa : RMSE is unitless because the data are normalized
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showed weak performance in single modeling and satellite
rainfall input fusion (strategy 1 modeling) and this could be
due to the bias of satellite data. The satellite-based rainfall
could lead to reasonable results however, over-estimate or
under-estimate of runoff was noticed based on seasonal and
temporal variations as compared to observed runoff. This
could be because of topographic variations of the watershed
and the accuracy of the sensor of the satellites to retrieve the
information. The study by (Gebremichael et al. 2014) on
CMORPH, 3B42RT, and 3B42 satellite rainfall products in-
dicated that they may overestimate daily rainfall at lowlands
and underestimate at mountainous areas, as the study water-
shed has high topographic variations that vary between 1778
and 2349 m above sea level (see Fig. 5), hence, it could be
more vulnerable to the topographic effects. The accuracy of
rainfall measurement by satellite also depends on the algo-
rithms they utilized. The study by (Bitew and Gebremichael
2010) indicated that satellite which uses microwave algo-
rithms performs better than that which uses infrared waves.
As the result indicated that, the CMORPH that uses the mi-
crowave algorithm surpasses 3B42RT that uses a combination
of microwave and infrared algorithms, and 3B42, which uses
the infrared algorithm (see Table 3).

All AI models used in this study led to promising results
(see Fig. 10a) for both satellite and gauge data sets (see
Table 3); however, all models could not equally perform and
capture temporal variations of the runoff. To have a better
visualization of predicted runoff by each model, Fig. 10b in-
dicates the plots for the wet season (July – October 2017) and
Fig. 10c shows the plots for the dry season (December –
March 2017/2018). The results reveal that ANFIS could pre-
cisely predict peak runoff in the wet season (Fig. 10b) but it
overestimated the dry season low flow regime (see Fig. 10c).
SVR and FFNN models were good for predicting low flow
during the dry season (Fig. 10c); however, they indicated less
accuracy in simulating peak flows in the wet season (see
Fig. 10b).

To further investigate modeling performances at different
time spans, for each season, 2 different intervals were picked
and the predicted runoff by each model was compared with
the observed runoff values. For the wet season, points 1 and 2
on 18 July, and on 1 September 2017, respectively, were con-
sidered. At point 1, observed = 140.92 m3/s, FFNN =
106.8792 m3/s , ANFIS = 136.0592 m3/s , SVR =
106.5292 m3/s and at point 2, observed = 263.92 m3/s,
FFNN = 101.0892 m3/s, ANFIS = 250.6792 m3/s, and
SVR = 109.9292 m3/s, these indicate that ANFIS gave more
close predictions to the observed runoff with regard to FFNN
and SVR models in both points as it is shown in Fig. 10b. For
the dry season, points 3 and 4 on 17 December 2017, and 26
January 2018, respectively, were considered. At point 3, ob-
served = 17.4292 m3/s, FFNN = 17.4492 m3/s, ANFIS =
19.2492 m3/s, and SVR = 16.8192 m3/s, and at point 4,

observed = 18.4292 m3/s, FFNN = 17.492 m3/s, ANFIS =
22.7292 m3/s, and SVR = 16.9792 m3/s, which show FFNN
and SVR results are more close to the observed values than
ANFIS model as shown in Fig. 10c. The results at these se-
lected points indicate that different models at different time
spans could deduce different data aspects. Therefore, the com-
bination ofmodels via ensemble techniques could improve the
performance of the modeling and may lead to a better accura-
cy level of modeling. To this end, outputs ensemble tech-
niques by two linear (SA, WA) and one nonlinear (NNE)
approach were applied to improve the overall efficiency of
the modeling.

Results of input fusion-ensemble modeling

Ensemble modeling can boost the overall runoff prediction
capacity of individual models (FFNN, ANFIS, and SVR).
The outputs from the single models obtained by input fusion
were used as inputs of the ensemble unit using three proposed
ensemble techniques. The runoff already simulated by FFNN,
ANFIS, and SVR models using average gauge rainfall, and
satellite products were combined by SA, WA, and NNE en-
semble techniques. In this study, two strategies of ensembles
were applied, 1) ensemble of runoff outputs for only satellite
input fusion, 2) ensemble of runoff outputs for input fusion of
both satellite and average gauge data sources.

To obtain the weights of the WA ensemble, DCs at the
validation stage were used according to Eq. 24. Similar to
FFNN modeling, the NNE ensemble was developed by
FFNN with BP, using the Levenberg Marquardt algorithm
for training with one hidden layer and variable hidden neu-
rons. The best epoch and hidden neuron numbers of the en-
semble structure were determined by trial and error. NNE was
selected among other non-linear ensemble methods because
of its higher performance but other neural methods (e.g.
ANFIS and SVR) can be also similarly used.

The outputs of FFNN, ANFIS, and SVR from input fusion
modeling (both strategies) were applied as inputs to ensemble
techniques of SA, WA, and NNE. The results obtained from
the ensemble techniques are presented in Tables 6 and 7 with
input-output structures for SA where a, b, c indicate weights
generated by FFNN, ANFIS, and SVR applied for the WA
ensemble. In terms of DC and RMSE, strategy 2 input fusion
ensemble modeling certainly improved modeling accuracy
over individual models on separate and inputs fusion model-
ing (see Tables 3, 4, and 5). The ensemble result of runoff for
input fusion of strategy 2 has indicated the superiority over
ensemble runoff for input fusion of only satellite rainfall prod-
ucts (strategy 1). This could be because of the bias correction
capability of gauge rainfall on satellite rainfall products.
Hence in strategy 1 of the ensemble, the used inputs were
raw satellite rainfall products that were bias uncorrected
whereas gauge rainfall corrected bias of satellite rainfall in
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strategy 2. Anyway, the result of strategy 1 showed that it can
be a good option of inputs for rainfall-runoff modeling in
ungagged and sparsely gauged catchments (see Table 5).

The ensemble runoff results obtained using input fusion of
strategy 2 are depicted in Table 7 which the best ensemble

model i.e., NNE increased the prediction performance of best
satellite (CMORPH) rainfall-based single models up to
14.4%, 12%, and 14.5% for FFNN, ANFIS, and SVR respec-
tively in the validation stage (see Tables 3 and 7). It also
improved the performance of runoff prediction of input fusion

Fig. 10 Observed and predicted runoff time series in validation phase computed via FFNN, ANFIS, and SVR (for gauge data set), a the whole
verification period, b detail for a wet season, c detail for a dry season

Table 6 Results of ensemble
rainfall-runoff using input fusion
data, strategy 1 (inputs for all
techniques are QFFNN, QANFIS,
QSVR)

Ensemble techniques Model structure DC RMSEa

Training Validation Training Validation

SA 3–1 0.9145 0.8412 0.056663 0.064447

WA 0.3367,0.3307, 0.3368 0.9235 0.8469 0.05377 0.062343

NNE 3–8-1 0.9278 0.8696 0.04823 0.057123

RMSEa : RMSE is unit-less because the data are normalized
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of only satellite rainfall models (strategy 1) up to 10.6%,
9.5%, and 11% for FFNN, ANFIS, and SVR models respec-
tively, in the verification stage (see Tables 4 and 7). In strategy
2 of the input fusion ensemble, NNE improved the single
model runoff prediction of gauge-based rainfall data by
7.5%, 8%, and 6.6% for FFNN, SVR, and ANFIS models
respectively (see Tables 3 and 7). Moreover, the NNE ensem-
ble modeling increased the performance of the input fusion of
gauge and satellite rainfall models (strategy 2) up to 6%,
4.5%, and 7% for FFNN, ANFIS, and SVR models respec-
tively, in the validation stage (see Tables 5 and 7).

From the obtained results, it is logical to conclude that the
ensemble of input fusion from different data sources could
improve the modeling reliability of separate single models
and input fusions.

Figure 11 indicates the scatter plots of runoff predicted by
single best models for inputs of gauge rainfall, satellite rain-
fall, strategy 1, and strategy 2 ensemble models versus ob-
served runoff values. As is mentioned earlier, NNE performed
better than the other linear ensemble methods because i) NNE
uses a non-linear relationship to simulate runoff; hence, it well
catches the non-linear behavior of the rainfall-runoff process,
unlike linear ensemble methods. ii) The results from individ-
ual models could affect the ensembles by SA and WA
methods, indicating that less performing models may lead to
poor ensemble results by SA and WA since the single models
and ensemble models (SA, WA) directly connect the linear
relationships. iii) The inaccuracies resulted from single
models might be propagated and combined via WA and SA
ensemble techniques due to the direct amalgamation of single
models. The ensemble models did not lead to significant im-
provement of DCs in the training phase for some models,
however; a remarkable improvement attained in the verifica-
tion phase for all models and that was the major focus of the
methodology used in this study.

The efficiency of the ensemble techniques (SA, WA, and
NNE) are presented in Fig. 12 by two-dimensional graphic
transparency (Taylor diagram) that can vividly display the
predicted and observed values for accurate comparisons. In
this diagram, standard deviation (SD) and DC are combined
in a metrics form to build multi-performance metrics in a
single combination and it can describe the statistical similarity
between observed and predicted runoff values. The goal of the

Taylor diagram is to summarize the multi-performances in a
single combination, which measures the level of agreement
between observed and predicted runoff values. The Taylor
diagrams for the input fusion of strategy 1 and input fusion
of strategy 2 ensembles are presented in Fig. 12 for SA, WA,
and NNE ensemble techniques. In this diagram, the computed
values closer to the observed runoff values belong to the mod-
el that performed well. Hence, NNE performance surpassed
the SA andWA ensemble techniques for both models because
the observed and predicted points are close to each other in
NNE than the others. The input fusion of strategy 2 ensemble
could improve the runoff prediction for the satellite rainfall
products than gauge rainfall, which indicates the satellite rain-
fall products have a limitation of accuracy to capture rainfall
values more accurately. From this result, it is worth mention-
ing that the utilization of input fusion of multiple sources of
satellite and gauge rainfall products then ensemble modeling
can improve rainfall-runoff modeling more precisely. The re-
sult also indicated that the gauge rainfall in strategy 2 input
fusion significantly corrected the bias of rainfall of satellites
that could occur due to the aforementioned reasons.

Conclusions

This study focused on rainfall-runoff modeling to predict
single-step-ahead runoff discharge of Gilgel Abay catchment
using 5 years (2014–2018) daily data of three satellite data sets
(CMORPH, 3B42RT, and 3B42) and Thiessen polygon aver-
aged rainfall of five stations (Gundil, Dangila, Adet, Wetet-
Abay and Sekela) as inputs into different AI models. Themost
relevant and dominant inputs were selected by FFNN based
non-linear sensitivity analysis method. Firstly, rainfall-runoff
modeling using data from each of satellite and gauge as well
as input fusion of only satellite data sets (strategy 1), and all
satellites and gauge (strategy 2) was conducted by each of the
AI models, separately. Secondly, runoff values obtained by
input fusion models were combined by employing SA, WA,
and NNE ensemble techniques to improve the accuracy of
runoff predictions. Among the satellite data sets, modeling
by CMORPH satellite data performed better via all models;
however, it tended to overestimate low flows. The models
using 3B42 and 3B42RT products underestimated high-

Table 7 Results of ensemble
rainfall-runoff modeling using in-
put fusion data, strategy 2 (inputs
of all techniques are QFFNN,
QANFIS, and QSVR)

Ensemble techniques Model structure DC RMSEa

Training Test Training Test

SA 3–1 0.9324 0.8644 0.0556 0.0635

WA 0.3367,0.3307, 0.3368 0.9382 0.8678 0.0529 0.0622

NNE 3–8-1 0.9626 0.9045 0.0445 0.0545

RMSEa : RMSE is unitless because the data are normalized
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runoff and 3B42 produced random false spikes in the dry
season. From the AI models applied, ANFIS revealed the best
performance in average gauge and all satellite rainfall prod-
ucts that could be because the model combines the learning
ability of neural network and fuzzy logic in a single frame-
work. Input data fusion from two data sources showed sub-
stantial improvements over the outputs of satellite data
sources but indicated slight improvement as compared with
modeling by gauge rainfall data. This could be due to gauge
rainfall bias correction capacity for erratic satellite rainfall
products. To improve the prediction performance of the single
models, ensemble-modeling SA,WA (linear), and NNE (non-
linear) techniques were applied for the input fusion of strate-
gies 1 and 2. In the input fusion of strategy 2, the ensemble of
runoff from different satellite rainfall products and the average
gauge was conducted to enhance prediction performance. In

this stage, NNE led best results and improved the performance
of best satellite (CMORPH) rainfall-based single models up to
14.4%, 12%, and 14.5% for FFNN, ANFIS, and SVR, respec-
tively in the validation stage. It also improved the single
modeling runoff prediction using gauge-based rainfall data
by 7.5%, 8%, and 6.6% for FFNN, SVR, and ANFIS models,
respectively. Among the ensemble techniques, NNE was a
robust and precise ensemble technique for accurate rainfall-
runoff modeling because of its ability to handle the non-linear
nature of the process. Overall, the output of this study contrib-
utes a promising suggestion about utilizing a fusion of multi-
ple sources of satellite rainfall products for ungagged and
sparsely gauged catchments especially in developing coun-
tries where it could increase the accuracy of rainfall-runoff
modeling through the provision of reliable input data.
Moreover, it is recommended that future studies should focus

Fig. 11 Scatter plots for a Gauge-ANFIS b CMORPH-ANFIS c Strategy 1-NNE ensemble d Strategy 2- NNE ensemble in the validation stage
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on the ensemble modeling of AI and physically based models
for simulation of rainfall-runoff using rainfall data from mul-
tiple satellite sources.
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