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Abstract
A 3D geological structural model is an approximation of an actual geological phenomenon. Various uncertainty factors in
modeling reduce the accuracy of the model; hence, it is necessary to assess the uncertainty of the model. To ensure the credibility
of an uncertainty assessment, the comprehensive impacts of multi-source uncertainties should be considered. We propose a
method to assess the comprehensive uncertainty of a 3D geological model affected by data errors, spatial variations and cognition
bias. Based on Bayesian inference, the proposed method utilizes the established model and geostatistics algorithm to construct a
likelihood function of modeler’s empirical knowledge. The uncertainties of data error and spatial variation are integrated into the
probability distribution of geological interface with BayesianMaximum Entropy (BME) method and updated with the likelihood
function. According to the contact relationships of the strata, the comprehensive uncertainty of the geological structural model is
calculated using the probability distribution of each geological interface. Using this approach, we analyze the comprehensive
uncertainty of a 3D geological model of the Huangtupo slope in Badong, Hubei, China. The change in the uncertainty of the
model during the integration process and the structure of the spatial distribution of the uncertainty in the geological model are
visualized. The application shows the ability of this approach to assess the comprehensive uncertainty of 3D geological models.
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Introduction

A 3D geological structural model can describe complicated
geological phenomena in an intuitive way. In general, the
accuracy of the geological structural model is affected by
many factors, such as the geological complexity, the measure-
ment errors, the sparsity of samples, the subjectivity of the
modeler, the limitations of the modeling method and the soft-
ware, and so on. These factors result in inevitable uncertainties
in the geological models. A 3D geological model can be only
an approximate description of objective geological phenome-
na. To further revise and improve a model, it is necessary to
determine the uncertainty factors that can affect the model.

To date, many efforts have been made to analyze and quan-
tify the uncertainties of geological models (Chilès et al. 2004;
Caumon and Journel 2005; Bistacchi et al. 2008; Suzuki et al.
2008; Jessell et al. 2010; Wellmann and Regenauer-Lieb 2012;
Thiele et al. 2016; Schneeberger et al. 2017; Edwards et al.
2017). Uncertainties in 3D geological models can be classified
into three types, according to their different sources (Mann
1993; Bárdossy and Fodor 2004; Wu et al. 2005; Wellmann
et al. 2010; Zhu and Zhuang 2010; Bond et al. 2011; Lindsay
et al. 2012; Bond 2015). (1) Data error (Fig. 1a), e.g., measure-
ment error in observations and accuracy loss in data processing.
(2) Spatial variation (Fig. 1b). This type of uncertainty is de-
rived from the random process defined in the modeling algo-
rithm to describe geological phenomena. Similar conditions
may produce different results. (3) Cognitive uncertainty (Fig.
1c). Cognitive uncertainty is mainly caused by a geologist’s
cognitive bias or incomplete knowledge, e.g., empirical knowl-
edge bias in the delimitation of ore bodies.

Many studies of uncertainty analysis have focused only on
uncertainties from specific sources, or have ignored the inter-
actions between different sources. This makes it hard to pre-
cisely estimate the comprehensive impact from multi-source
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uncertainties on model accuracy. To determine a more accu-
rate assessment of this impact, some researchers have consid-
ered multiple uncertainty sources and have integrated the un-
certainties from different sources (Riddick et al. 2005; Lelliott
et al. 2009; Lark et al. 2013; Pakyuz-Charrier et al. 2018).
Numerous geostatistical modelling methods, such as
Bayesian Maximum Entropy (Christakos 1990), Bayesian se-
quential Gaussian simulation (Doyen and Den Boer 1996),
kriging with measurement errors (Fazekas and Kukush
2005), and so on, can process data with measurement errors.
These methods can also be used to evaluate the comprehen-
sive uncertainty of data error and the spatial variation in their
posterior distribution (e.g., Li et al. 2013), various realizations
(e.g., Thore et al. 2002), or estimation error (Kang et al. 2017).
In addition to the methods mentioned above, geostatistical
methods can also be combined with stochastic simulation to
assess the comprehensive uncertainty (Wellmann et al. 2010;
Wellmann and Regenauer-Lieb 2012; Røe et al. 2014;
Schweizer et al. 2017; Hou et al. 2017; Soares et al. 2017;
Pakyuz-Charrier et al. 2019). Although cognitive uncertainty
is difficult to evaluate (Bárdossy and Fodor 2001), some re-
searchers have presented uncertainty assessment methods that
consider a geologist’s cognition (Wellmann and Regenauer-
Lieb 2012; Wellmann et al. 2017; de la Varga and Wellmann
2016; Demyanov et al. 2019). To assess the impact of spatial
variation and cognitive bias, Tacher et al. (2006) assumed that
a geological model is the best guess based on modeler’s cog-
nition, and used a Gaussian random field around the expected
model to evaluate the comprehensive uncertainty. This is a
very useful method to effectively mine information from the
established model. To satisfy the hypotheses of the respective
methods used, many uncertainty assessment studies have
more or less ignored the effects of data error and the modeler’s
subjective cognition. This simplification of uncertainty factors

may affect the outcome of the assessment. Therefore, it is
necessary to conduct an overall assessment of multi-source
uncertainties.

In this paper, an uncertainty assessment of 3D geological
models that uses integrated data error, spatial variation and
cognition is proposed. This method is applied to the uncertain-
ty assessment of an established 3D geological model of the
Huangtupo Slope in Badong, Yichang. In the following sec-
tions, we will analyze the sources of the uncertainties of the
model and introduce a geological interface random function to
formulize multi-source uncertainties. In a Bayesian frame-
work, we will integrate the various data errors, the spatial
variation and the geologist’s cognition into the posterior prob-
ability distribution of the geological interface. Then, the prob-
ability distributions of the geological interfaces are converted
into a series of conditional probabilities on the basis of the
contact relationships of strata. Lastly, to assess the uncertainty
at any specific location in the geological model, the probabil-
ity field for individual stratum and the comprehensive uncer-
tainty for the entire model are calculated.

Materials and method

Data and model description

The Huangtupo slope is located on the south limb of the
Guandongkou syncline in the Three Gorges reservoir area,
on the south bank of the Yangtze River in Badong, Hubei,
China. The facility sliding strata at this location pose a land-
slide threat to the residents and towns on the Huangtupo slope.
Huangtupo Landslide is a complex landslide mass formed
after multiple slumps (including Riverside slump mass 1#,
Riverside slump mass 2#, Garden Spot Landslide and

Fig. 1 Multi-source uncertainties in geological models: (a) Data error in contact measurements; (b) different boundary realizations via a stochastic
simulation with the same data; (c) Diverse ore bodies based on the same observations
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Substation Landslide) covering an area of 1.35×km2 with a
volume of 69 million m3. The strata on the Huangtupo slope
mainly belong to the Badong Formation, Triassic system (T2b):
the slump mass of Huangtupo is developed in slip stratum of

the Middle Triassic Badong Formation Section 2 (T2b
2) and

Section 3 (T2b
3), mainly composed of mud rock, pelitic silt-

stone and muddy limestone (Yang and Chen 2001). The
Huangtupo slope shows the alternations of soft and hard rocks:

Fig. 2 Geological map and
location of the Huangtupo slope
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upper soft rock (T2b
2), medium hard rock (T2b

3 − 1) and lower
soft rock (T2b

3 − 2) (Hu et al. 2012). The surface of underlying
bedrock in the landslide area is undulating. The rock structure
of the slide body presents fragmented. The geological map and
location of the Huangtupo slope are shown in Fig. 2.

Many detailed geological investigations have been con-
ducted in this area. A 3D structural model of the Huangtupo
slope was built in the previous geological modeling work to
assist the geological hazard analysis (as shown in Fig. 3 and
Fig. 4). However, many uncertainty factors may limit the ac-
curacy of the subsequent analysis. Therefore, it is necessary to
determine the impact of these uncertainties on the established

model. The model was built by modeling software with the
artificial auxiliary. The modeler ignored data errors in the
modeling process. The model mainly used the contact infor-
mation for 22 strata from 95 boreholes, 6 sections, and a de-
tailed geological map. Because the area has few observational
data, some virtual boreholes were added based on the mod-
eler’s expertise. The size of the study area is 1530 × 2265 ×
702m. Because of the absence of initial modelers and relevant
record, the details of the parameter settings used in the model-
ing procedure are unknown.We can only obtain observational
data and an established model to use in the uncertainty assess-
ment in this paper.

Fig. 3 Geological subsurface model of the Huangtupo slope
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Source analysis of the uncertainty of the model

Before the uncertainty assessment is conducted, we need to
ascertain the sources of uncertainty in our study. The 3D
geological model is built in three stages: data acquisition,
data processing, and structural modeling (Fig. 5). The ob-
servations from the measurements are processed into a
dataset. Within the constraints of the available geological
information and the dataset, the geological interfaces are
modeled and assembled into a geological structural model.
During data acquisition, measurement error is inevitable.
The data processing procedure may cause accuracy loss. In

the procedure for structural modeling, the randomness of
spatial variation and the cognitive uncertainty of the mod-
eler are introduced. All of these uncertainties propagate
and cumulate as the modeling progresses.

To quantify the impact of multi-source uncertainty fac-
tors on the geological model, a random function that de-
scribes the probable events affecting the geological struc-
ture should be defined. We defined a geological interface
random function based on Abrahamsen and Omre’s work
(Abrahamsen and Omre 1994). First, for each interface, a
coordinate system (U, V, Z) is defined according to the oc-
currence of formation: U is parallel to the strike direction,

Fig. 4 Two geological profiles of the Huangtupo slope model
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V is parallel to the dip direction and Z is perpendicular to
the UV plane and oriented upwards. The UV plane is hor-
izontal, and the Z-direction is vertical. The local coordinate
system (U, V, Z) and global coordinate system (X, Y, Z)
adopt the same origin. The coordinates in the (U, V, Z)
coordinate system can be obtained by the rotation transfor-
mation according to the azimuth of dip direction. Then, the
random function Z(u) is defined as the elevation value of
the geological interface at the location u = (u, v). The pur-
pose of coordinate transformation is to consider the anisot-
ropy of spatial variation. Since the trend of different inter-
faces are not the same, each interface should be handled
individually. A diagram of the random function Z(u) in the
interface between strata T2b

2 and T2b
1 is shown in Fig. 6.

In geostatistics, the spatial variation in the geological struc-
tures presents two types of characteristics: a structural trend
and random fluctuations. The structural trend is caused by the
spatial continuity of geological structures. The randomness
reflects the measurement error and the spatial variation. The
geological model can be seen to be a mixture of deterministic
and random information (Abrahamsen et al. 1991). Therefore,
Z(u) consists of two distinct parts: a local driftm(u) and a local
variation σ(u) ⋅ ε(u).

Z uð Þ ¼ m uð Þ þ σ uð Þ⋅ε uð Þ: ð1Þ

Where m(u) is the most probable value that Z(u) will have
at the location u and σ(u) ⋅ ε(u) expresses the random

Fig. 5 Accumulation of Multi-
source Uncertainties in Modeling

Fig. 6 Random function Z(u) of
the interface between the strata
T2b

2 and T2b
1. The enlarged

section shows the distribution of
elevation value of the geological
interface in the plane of U = u0
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fluctuation around the best guess, m(u). m(u), is inferred by
the geologist based on his knowledge of the geological phe-
nomenon. σ(u), is the standard deviation of Z(u) at the loca-
tion u, which means the fluctuation amplitude of the random
distribution. ε(u), is a random function, which Var{ε(u)} = 1.
The distribution characteristic of ε(u) depends on the spatial
correlation structure in the local area surrounding the location
u. Because of the insufficient information, we usually simply
assumed that E{ε(u)} = 0 and the distribution of ε(u) follows
Gaussian distribution. However it should be noted that ε(u) is
not limited only to subject to Gaussian distribution(Gunning
2000). m(u), σ(u) and ε(u) are spatially dependent, these
terms may change with location u.

Since Z(u) is a random function describes the geologic struc-
ture, the three types of uncertainty we mentioned in the intro-
duction also exist in the subterms of the random function Z(u):

1. Data error. σ(u) is the random amplitude of the summa-
tion of the spatial variation and the data error at the loca-
tion u. σ(u) is partially composed of data errors. The rest
of the composition of σ(u) reflects the randomness of
spatial variation.

2. Spatial variation. From the viewpoints of the probability
and statistics, the observations of geological phenomena
are the outcome of a regionalized random process
(Tacher et al. 2006). In the unobserved area, the distribu-
tion of geological phenomena is characterized by random-
ness. In practical applications, we make assumptions about
the study variables based on a certain application scenario
that helps us select the appropriate modelingmethods, such
as intrinsic assumption, stationary assumption, Gaussian
assumption, and so on. Various modeling methods have
different theoretical models and assumptions to describe
spatial variation; therefore, the descriptions of the random-
ness and the assumptions used in these theories may take a
variety of forms of expression (Arnold et al. 2019). The
random function ε(u) reflects the pattern of spatial variation
simulated by the chosen modeling method.

3. Cognitive uncertainty. Cognitive bias is a systematic
(non-random) error in modeler’s mind (Haselton et al.
2005; Ariely 2008). Due to lack of knowledge or scien-
tific ignorance, the subjective bias in the cognition of the
modeler will inevitably lead to the bias and limitation in
the research methods adopted by the modeler and the
consequent conclusions (Mann 1993). The modeling
method, modeling software, and all of the components
that used as modeling tools are inevitably influenced by
the cognition of the modeler. Therefore, the uncertainty
caused by cognitive bias is derived not only from the
human-computer interaction in the modeling but also
from the selection of the modeling method, software pa-
rameter setting, and so on. The subjective decisions made
by the modeler result in the cognitive uncertainty of

geological model. Although the cognitive uncertainty is
difficult to quantify, the established model is based on
available observations and the modeler’s own subjective
understanding. Therefore, a geological model is the most
likely instance of the geological structure in modeler’s
cognition. We assume m(u) is chosen by the modeler as
the best guess of the geological structure at the location u,
which the modeler developed after considering the com-
prehensive information, and is consistent with observa-
tions from the sampling locations. The established geo-
logical model is an assemblage of the best guess m(u) for
the entire region. The deviation between the model and
the reality reflects the uncertainty caused by cognitive
bias. It should be noted that in the cognitive uncertainty,
the parts “We don’t know what we don’t know” and “We
cannot know” (Caers 2011), i.e. the “unknown un-
knowns”, are theoretically unknowable on the basis of
the given information (Mann 1993; Wellmann et al.
2010). The potential effect of the “unknown unknowns”
is outside the scope of this paper.

In error theory, m(u) represents the predicted value with a
systematic error, and σ(u) ⋅ ε(u) represents a random error.
m(u) expresses the most likely result, with a modeler’s cogni-
tive bias. σ(u) expresses the degree of random uncertainty. ε(u)
expresses the distribution pattern of random uncertainty. The
cognitive bias (as a systematic error) may not reduce the preci-
sion of the geological model, but it may change the accuracy of
the model. Multi-source uncertainty factors may be correlative.
For example, modeling data can introduce measurement error
into the randomness of spatial variation. To assess the compre-
hensive influence of these factors, multi-source uncertainties
should be integrated following certain rules.

Methodology of uncertainty assessment

We know that Bayesian theory is widely used in multi-source
information integration (Dowd 2018). In someways, the prop-
agation and accumulation of uncertainty in a modeling proce-
dure can be identified as a process of information integration
(Caers 2011). Thus, we utilize a Bayesian approach to inte-
grate multi-source uncertainties. In this section, uncertainties
from data error, spatial variation and the modeler’s cognition
are considered and integrated.

Statistically, data error and the randomness of spatial varia-
tion are all included in random uncertainty. We integrate these
two types of uncertainties into the PDF (Probability Density
Function) of Z(u) based on the Bayesian Maximum Entropy
(BME) principle. Although the cognitive uncertainty has a dif-
ferent nature than the random uncertainty (Mann 1993; Ariely
2008), both of them can be quantified as probabilities in
Bayesian theory. Hence we adopt a Bayesian Inference (BI)
method to update the BME PDF. A posterior PDF is calculated

167Earth Sci Inform (2021) 14:161–178



for each individual geological interface; thus, it is insufficient
for analyzing the uncertainty of the entire model. The posterior
PDF of each interface is transformed into a stratigraphic type
probability field and integrated by the stratigraphic relationship.
Ultimately, the comprehensive uncertainty will have a unified
representation; therefore, there will be a holistic picture of the
uncertainty in the model. The workflow of the uncertainties
assessment is shown in Fig. 7. The details of the workflow will
be explained in the following sections.

Uncertainty integration of data error and spatial variation

In this paper, we adopt the spatial BME method (Christakos
1990), implemented using the BMELib code library to integrate
data error and spatial variation into the posterior PDF of every
interface. BMElib is a spatiotemporal geostatistics toolbox run
in MATLAB (for more details, see reference Christakos et al.
2002). BMElib can be downloaded freely (https://mserre.sph.
unc.edu/BMElib_web/). One of the advantages of using this

method is that it can integrate data with various errors. Many
geostatistical prediction methods are based on the minimum
prediction error criterion and an assumption of a Gaussian
distribution. However, the multi-source data with the measure-
ment error may not conform to the assumption of a Gaussian
distribution. In addition, there may be more than one type of
error distribution existent in the data error, such as uniform
distributions, Gaussian distributions, Bernoulli distributions,
skewed distributions, and so on. Because of the complexity of
multi-source uncertainties, many linear integrationmethodsmay
not be applicable to data with such intricate errors. The BME
method can process both hard data (e.g., accurate observations
without errors) and soft data (e.g., data with uncertainties, such
as interval data or data expressed by PDFs) (Bordwell 2002).
BME does not require the data to conform to a Gaussian distri-
bution. Another advantage is that BME is allowed to add many
aspects of general knowledge (such as physical laws, expertise,
and statistical information) as constraints (Christakos 2017).
These non-numerical constraints are treated as prior information
of the variables. Then, BME calculates the prior distribution of
the maximum information entropy using prior information. The
maximum entropy principle can ensure that information will be
fully used in the estimation procedure to obtain the optimum
result. BME not only generates a single prediction value but also
calculates the PDFs of all potential values. Using the sample
information (i.e., data from boreholes, sections, geological
maps, etc.), the prior distribution will be updated to the BME
probability distribution in accordance with the Bayesian infer-
ence. If the constraints are only the mean and the variogram of
the variable, and the sample data conform to a Gaussian distri-
bution without measurement error, then the solution of the BME
will coincide with that given by a simple kriging prediction
(Christakos 1990). In this condition, spatial BME and simple
kriging are equivalent.

It’s necessary to note that, as a method for spatial interpo-
lation in 2D mapping, BME cannot be applied directly to
some complex geological settings. To some scenarios, geo-
logical structures may have multiple Z(u) (elevation value of
the boundary) in an u = (u, v). To solve this problem, a strat-
egy of boundary decomposition (Pomian-Srzednicki 2001) is
taken into account. In this strategy, the boundaries of complex
geological structures such as faults, lenticular bodies,
overturned folds, etc. can be divided into different parts in
order to satisfy the condition of single Z(u). For instance, we
can separate the different limbs of an overturned fold into
distinct interfaces and divide strata into different parts on ei-
ther side of fault surface.

In BME, the prior distribution reflects the understanding of a
geological structure based on knowledge and experience that
exists before the sample data are considered. In addition, the
BME PDF represents the new understanding after the field mea-
surement data have been considered. BME provides a tool that
can be used to update our understanding of geological structures.Fig. 7 Workflow of the uncertainty assessment
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Uncertainty update considering cognition

The uncertainty of a modeler’s cognition is affected by many
subjective factors that are difficult to describe quantitatively.
We consider the established model as a deterministic instance
based on the combination of sample information and mod-
eler’s empirical knowledge. The model that incorporates em-
pirical knowledge reflects the modeler’s biased cognition. To
integrate the cognitive uncertainty into the comprehensive un-
certainty, we adopt a Bayesian Inference (BI) method to up-
date the BME PDF with information from modeler’s empiri-
cal knowledge.

We reference Tacher’s assumption (Tacher et al. 2006)
about the established model and provide further development.
In a practical geological modeling procedure, most of the
modeling software and modelers ignore the measurement er-
ror in observations. Usually, they just utilize the best estimate
of the observations to build the model. In Tacher’s methodol-
ogy, ignoring the data error, the uncertainty in a geological
variable can be estimated by substituting the expectation
mk(u) of random variables Z(u) with the best guess m(u),
which is the model established by a modeler with a back-
ground in geology. In the uncertainty integration, before and
after the modeler’s empirical knowledge is considered, the
uncertainty of Z(u) varies as follows:

Zprior uð Þ ¼ mk uð Þ þ σk uð Þ⋅εk uð Þ →
update

Zpost uð Þ
¼ m uð Þ þ σk uð Þ⋅εk uð Þ: ð2Þ

Without the influence of measurement errors, the distribu-
tion of εk(u) is standard normal distribution, the prior distri-
bution of the Z(u) can be expressed as a Gaussian distribution
(Abrahamsen 1993; Gunning and Glinsky 2004), in which the
expectation is the kriging prediction values mk(u) = zk(u) and
the variance equals the prediction variance σ2

k uð Þ, namely

Zprior uð Þ∼N zk uð Þ;σ2
k uð Þ� �

. The kriging prediction variance

σ2
k uð Þ represents the possible random fluctuation of the inter-

face elevation Z(u). Suppose m(u) = zm(u) is the most likely
elevation value of the interface model at the location u = (u, v),
the posterior distribution of Z(u) can be expressed as the
Gaussian distribution composed of the expectation zm(u) and
variance σ2

k uð Þ, namely Zpost uð Þ∼N zm uð Þ;σ2
k uð Þ� �

. The dif-
ference between the expectations zm(u) and zk(u) reflects the
influence of modeler’s cognition. As a systematic error, the
cognitive bias will not influence the level of the random fluc-
tuation (i.e. σ2

k uð Þ ).
Asmentioned in Section 2.3.1, without data error, the prob-

ability distribution of Z(u) calculated by the BMEmethod will
attain the same Gaussian distribution N zk uð Þ;σ2

k uð Þ� �
.

However, considering the various errors in the measurement
data, BME may attain a skewed distribution or even a

complex distribution with multiple peak values. m(u) and
ε(u) in the BME estimationmay not have explicit expressions.
Therefore, it is difficult to determine an optimal solution of
Z(u). In this situation, it is not appropriate to replace the ex-
pectation with the established model. To update the probabil-
ity distribution of Z(u), we choose the Bayesian inference
method. To avoid confusion and awkward phrasing, some
comments on notation are needed here. In this paper, p(⋅)
represents the marginal distribution. p(⋅| ⋅) represents the con-
ditional probability density of the parameters mentioned in the
context. P(⋅) represents the probability of an event.

Since the measurement and modeling happen in different
stages and are operated by different people. We assume the
sample information frommeasurement and the modeler’s sub-
jective empirical knowledge are conditional independent giv-
en Z(u) = z. The Bayesian inference of the uncertainty of Z(u)
is as follows:

p Z ¼ zjD;Kð Þ∝p Z ¼ zjDð Þ⋅L Z ¼ zjKð Þ ð3Þ

Where zmeans the possible value in the domain of Z(u).D
denotes the dataset from sample observations. K denotes the
modeler’s empirical knowledge which implies the cognitive
bias of modeler. p(Z = z|D) is the prior probability density of
Z(u) = z before the Bayesian update, which is estimated by
geostatistical method based on the observation D. The prior
distribution p(Z|D) reflects the understanding of the geologi-
cal structure summarized from statistical information and the
modeling algorithm. p(Z = z|D,K) is the posterior probability
density of Z(u) = z after considering the modeler’s empirical
knowledge K. The posterior distribution p(Z|D,K) reflects the
new understanding after integrating all of the observation in-
formation and the subjective cognition in the modeler’s mind.
Likelihood function L(Z = z|K) = p(K| Z = z) is a function of
Z(u). p(K| Z = z) denotes the probability density of the empir-
ical knowledge K in the condition of given Z(u) = z. L(Z = z|
K) represents the likelihood that Z(u) = z is the real interface
position value under the given empirical knowledge K.

Without considering data error (i.e., Tacher’s study), for
each location u, using the sample data D and the empirical
knowledge K, the prior probability density p(Z = z|D) and the
posterior probability density p(Z = z|D,K) would be calculat-
ed as follows:

p Z ¼ zjDð Þ ¼ 1ffiffiffiffiffiffi
2π

p
σk uð Þ e

−
z−zk uð Þ½ �2
2σ2

k
uð Þ ; ð4Þ

p Z ¼ zjD;Kð Þ ¼ 1ffiffiffiffiffiffi
2π

p
σk uð Þ e

− z−zm uð Þ½ �2
2σ2

k
uð Þ ð5Þ

After the update, the expectation of Z(u) changes from the
kriging prediction value zk(u) to the model value zm(u).
According to Eq. (3), we have the likelihood function:
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L Z ¼ zjKð Þ ¼ α⋅
p Z ¼ zjD;Kð Þ
p Z ¼ zjDð Þ ð6Þ

Where α denotes a constant as scaling factor.
To assess the uncertainty from measurement error, we es-

timate the error distribution for each sample and convert inac-
curate sample data to soft data. We use De to denote the
dataset after error assessment. Considering the measurement
error, the posterior probability density p(Z = z|De,K) can be
obtained by:

p Z ¼ zjDe;Kð Þ∝p Z ¼ zjDeð Þ⋅L Z ¼ zjKð Þ ð7Þ

According to Eq. (6),

p Z ¼ zjDe;Kð Þ∝ p Z ¼ zjDeð Þ⋅ p Z ¼ zjD;Kð Þ
p Z ¼ zjDð Þ ð8Þ

As mentioned above, the probability distribution p(Z|D)
and p(Z|De) can be calculated with geostatistical methods;
here we use kriging and the BME method to calculate p(Z|
D) (i.e., ignore data errors) and p(Z|De) (i.e., consider data
errors), respectively. In addition, we adopt the methodology
of Tacher et al. (2006), i.e., select the Gaussian distribution
composed of model zm(u) and the kriging variance σ2

k uð Þ as
p(Z|D,K). After calculation by the proportion in Eq. (A2), a
normalization process should be taken to ensure the integral of
p(Z|De,K) on all z equals to 1.

Comprehensive uncertainty field calculation

The posterior distribution of Z(u) can only describe the spatial
uncertainty of the interface between two adjacent strata.
However, the occurrences of different interfaces are mutually
exclusive in certain locations, and we should consider the
impact from the other strata when calculating the uncertainty
in the present stratum. We utilize the conditional probability
of a stratigraphic type to assess the uncertainty in a certain
stratum existing in a given location under the influence of
other strata. The occurrence probability of each stratigraphic
type is calculated with the CDF (cumulative distribution func-
tion) of stratigraphic interface Z(u). According to the contact
relationship of strata, we update the stratigraphic type proba-
bility in an iterative way (Pomian-Srzednicki 2001). Using
this method (See comments to modeling method above in
Appendix), we obtain a multi-stratigraphic type probability
field P(X, Li) that in each location X = (x, y, z), P(X, Li) repre-
sents the conditional probability of the stratigraphic type Li.

To guide the further adjustment of the geological model,
we should know the spatial distribution of the uncertainty of
the model. The stratigraphic type probability field P(X, Li) can
quantify the spatial uncertainty in each stratum. However,
sometimes we need to not only reveal the uncertainty of each

stratum but also reveal the uncertainty in the integral structure.
For this purpose, the probability field of each stratum should
be merged into a 3D uncertainty field. Following Wellmann
and Regenauer-Lieb (2012), information entropy is applied as
the measurement of the integral structure uncertainty in this
study. We can calculate the information entropy of the strati-
graphic type based on the multi-type probability field P(X, Li).
In any location X = (x, y, z), the information entropyH(X) of n
stratigraphic types is defined as:

H Xð Þ ¼ − ∑
n

i¼1
P X ; Lið ÞlogbP X ; Lið Þ: ð9Þ

Using different values of base b, information entropy has
different units; if b = 2, the unit is a bit. In this paper, ‘bit’ is
adopted as the unit of information entropy.When the probability
of each event is equal, the information entropy will be at its
maximum, which means that the dispersion degree of the possi-
ble result is maximized; therefore, the uncertainty in the predic-
tion will be at its maximum in this situation. If the sample space
has only one result, the entropy of this definite event will be 0.

It should be noted that in the probability density functions
p(Z|D), p(Z|De), p(Z|D,K) and p(Z = z|De,K) mentioned in
Section 2.3.2, only p(Z|D,K) and p(Z = z|De,K) imply the
information from the established model. p(Z|D) and p(Z|De)
are improper to be used as distribution of Z(u) in the calcula-
tion of probability field of geological model or else the uncer-
tainty fields just express geological uncertainty and have no
connection with established model. In other words, the con-
sideration of cognitive bias is inherent in the uncertainty as-
sessment of geological model.

The MATLAB codes of comprehensive uncertainty calcu-
lation can be obtained freely (https://github.com/bomer2000/
UAGM).

Results

This section shows the results of an experiment used to illus-
trate the approach to comprehensive uncertainty assessment of
the Huangtupo geological model. The result of the uncertainty
assessment is shown below.

Probability distribution of stratigraphic interface

To analyze the spatial uncertainty of the structural model in
each location, we discretized the study area into a 3D field
with a resolution of 15 × 15 × 1 m. By analyzing the main
tectonic directions, the coordinate system (U, V, Z) was set up.

We analyzed the sample data to evaluate the measurement
errors of boreholes and sections. Some of the contact data with
few measurement errors were treated as hard data, while other
data were converted into probability distributions as soft data.
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We considered the quality standard of the data we used, and
set up the error distribution for the data by referring to the
previous research (Wellmann et al. 2010; Pakyuz-Charrier
et al. 2018; Hou et al. 2019). For example, according to the
quality standard of the geological survey data (e.g., the mea-
surement error of the borehole should not be higher than 1‰
of the drilling length; in geological profile, the root mean
square error of the geological boundary should correspond
with the scale of profile), some contact positions from the
boreholes and profiles were described with Gaussian distribu-
tions (estimated values as mean and their root mean square
errors as standard deviation). For the data with direct contact
missing, uniform distribution was used to represent the uncer-
tainty of the missing part. For the virtual borehole given by
geologist, we made educated guesses based on expert knowl-
edge and used probability distribution to represent the contact
point position. The rest of data assumed to contain no errors
were treated as hard data.

The experimental covariance function that expresses the
spatial variation in the interface elevation was computed using
the contact data. Using the experimental covariance fitting and
the assistance of expertise, the parameters of the covariance
model were determined. We used samples (both soft data and
hard data) and their covariance function to calculate the PDF
of the interface elevation at each location (u, v) by the BME
method. Considering the data error, the randomness pattern of
the interface elevation became a non-Gaussian distribution.
With the help of the established model and the kriging predic-
tion, the likelihood functionwas calculated to update the BME
PDF. Finally, the posterior PDFs of all of the interfaces were
calculated. The comprehensive uncertainty that is expressed in
the posterior PDFs integrates the data error, the randomness of
spatial variation, and the cognitive uncertainty.

We chose the interface between strata T2b
2 and T2b

1 (as
shown in Fig. 6) as an example of the uncertainty integration

of data error and spatial variation. At the interface, the inter-
face elevation Z(u) is anisotropic. The covariance functions of
the two directions, U and V, are different. The experimental
covariance functions and the fitted spherical models of the two
directions were calculated, as shown in Fig. 8. For the case in
which the sills were observed to be equal in the directions U
and V, we set up an anisotropic nested covariance function.
The nested structural model is as follows:

C 0ð Þ ¼ C0 þ C1; h ¼ 0

C hð Þ ¼ C1⋅ 1−
3

2
⋅
h
au

þ 1

2
⋅
h3

a3u

� �
; 0 < h≤au

C hð Þ ¼ 0; h > au

8>><
>>:

ð10Þ

In the nested spherical model, the ranges of two directions
are au = 1000 m and av = 500 m. The separation distance of

isotropic is expressed as h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2u þ K⋅hvð Þ

q
2, with the aniso-

tropic ratio K ¼ au av. The sill is the sum of the nugget C0 =
0.25 and the partial sill C1 = 25000. This covariance model
reflects structural information and the randomness of the ele-
vation Z(u) of the interface between strata T2b

2 and T2b
1.

A location u = (u0, v0) (as shown in Fig. 6) is chosen in the
study area to show the uncertainty update of the interface
between strata T2b

2 and T2b
1. At the location u = (u0, v0),

the elevation of the interface in the established model is z-
m = 561.2 m, the kriging prediction of this interface is zk =
574.7 m, and the prediction variance of the kriging is
σ2
k ¼ 210:3. In Fig. 9, the red solid curve is the probability

distribution p(Z|D) from the kriging prediction. This proba-
bility distribution expresses the random uncertainty of the
geological variable Z(u). The red vertical line is the kriging
estimated value zk. The green vertical line represents the ele-
vation zm of the interface model. The green solid curve is the

Fig. 8 Covariance functions in
two directions
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uncertainty p(Z|D,K) before considering data error. The blue
dotted curve is the BME prediction p(Z|De) that integrates data
error and the randomness of the spatial variation. The BME
PDF is a non-Gaussian distribution. The red dashed curve is
the comprehensive uncertainty p(Z|De,K) that integrates the
data error, the randomness of spatial variation, and the cognitive
uncertainty. From a variance perspective, the conditional vari-
ancesVar ZjDð Þ ¼ σ2

k ¼ 210:3,Var(Z|De) = 242.5 andVar(Z|
De,K) = 446.8 reflect that the uncertainty of geological inter-
face increases with considering more uncertainty factors.

Likewise, the probability distributions of the interface be-
tween the strata T2b

2 and T2b
1 at all of the locations were

calculated and shown in Fig. 10. The probability density at
each location means the occurrence probability that the inter-
face extends through this grid cell. It is observed that, in the
p(Z|D) stage, a high probability appears around the observa-
tions. The occurrence probability of the interface gathers
around the prediction of the kriging estimation. In the p(Z|
De) stage, considering the impact of the data error, the occur-
rence probability in the observation area decreases and the
confidence interval width of interface increases. In addition,
the occurrence probability in the area far away from observa-
tions increases slightly. In the process of integration of data
error and spatial variation (p(Z|D)→p(Z|De)), the changes
(increase or decrease) of the probability distribution of inter-
face are shown in Fig. 11a. In the p(Z|De,K) stage, the prob-
ability density is condensed around the interface model. In
contrast, the occurrence probability decreases rapidly outside
of the model coverage. In the process of uncertainty update
considering cognition (p(Z|De)→p(Z|De,K)), the changes
(increase or decrease) of the probability distribution of inter-
face are shown in Fig. 11b.

Probability field of geological models

After the uncertainties of each interface have been integrated
separately, the probability of each stratigraphic type was cal-
culated with the Eq. (A1). The contact relationships are

depositional or erosional between adjacent strata in this study
area. According to the contact relationships, a conditional
probability field of all the stratigraphic types was obtained
by the iterative update Eqs. (A2) and (A3). Each location in
this conditional probability field stores a vector of 22 condi-
tional probabilities of all of the stratigraphic types. This multi-
stratigraphic type probability field represents the comprehen-
sive uncertainty of every stratum.

Similar to what is shown in Fig. 12, for each stratigraphic
type, high probabilities mainly occur in the outcrop and in the
interior of the stratum. In addition, the probability gradually
decreases from the interior to the boundary between the pres-
ent stratum and its neighbor. At the observation location, con-
sidering the measurement error, the probability of each strat-
igraphic type in the sample is close to, but not exactly, 0 or 1.
Around the section area, the interpretation error of the section
is much higher than the boreholes’ error; therefore, the reli-
ability at this location is lower than that at the drilling area, and
the probability is slightly farther from 0 or 1.

Comprehensive uncertainty field

We calculated the information entropy based on the condition-
al probability of each stratigraphic type to quantify the struc-
tural uncertainty of the entire model. The entropy value rep-
resents the quantity of the comprehensive uncertainty of the
model at any given location. In order to demonstrate the in-
fluence of data error on the uncertainty assessment, we also
calculated the model uncertainty only considering spatial var-
iation and cognitive bias (without data error). The 3D struc-
tural model and its uncertainty fields are shown in Fig. 13.

In the comprehensive uncertainty field (Fig. 13c), the high
entropy mainly appears in the area where more than one stra-
tummay exist. The low entropy mostly occurs in the area near
the observations or where there is only one single stratum.
Sample information from the observation reduces the uncer-
tainty of the spatial variation. It is easy to understand why low
entropy usually occurs at a location that only has one single

Fig. 9 PDFs of Z(u) under
different conditions
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Fig. 11 Probability changes in
the uncertainty integration: (a)
Probability changes after
integrating data errors. The area
near observations is enlarged and
displayed. (b) Probability
changes after considering the
cognitive uncertainty

Fig. 10 Probability density
distribution of the interface
between strata T2b

2 and T2b
1 in

different stages of integration: (a)
the interface model; (b)
perspective view of probability
density distribution; (c) side view
of probability density distribution
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stratum because there are few other possibilities. The maxi-
mum entropy in the study area is approximately 2.359 bit,

which occurs in the aggregation area of the six different strata.
In the interlayer of the adjacent interfaces, if the thickness of

Fig. 13 3D structural model of Huangtupo slope and its uncertainty field
(unit of entropy: bit): (a) subsurface model of Huangtupo slope; (b)
uncertainty field considering spatial variation, and cognitive bias; (c)

comprehensive uncertainty field considering data error, spatial
variation, and cognitive bias; (d) influence of data error on model
uncertainty

Fig. 12 Probability distribution of the four stratigraphic types (T2b
1, T2b

2, Slip Zone andQdel‐su
T2b

2 ). In the overlay area of the strata, a location is selected to
show the profile of the probability from the base to top of each stratum
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the stratum is small, then more types of possible stratigraphic
types appear in this complex area. The entropy range of 1 ~
1.58 bit is common in the interlayer area. The low entropy
usually appears on the surface because the field data are much
easier to collect on the ground. Most of the high entropy re-
gions near the ground congregate around the stratigraphic
boundary. Some other high entropy areas are caused by a lack
of observations and a reliance on the extrapolations from the
modeler’s experience in the modeling software. As a contrast,
Fig. 13b shows the uncertainty field without considering data
error. In Fig. 13d, we can see the influence of data error on
model uncertainty clearly: entropy increases at the locations of
geological interface in the model and decreases at the areas
that far away (in height) from geological interface. The com-
plex errors from diverse data affect the distribution of uncer-
tainty of subsurface structure. With the consideration of data
error, the uncertainty of geological interface increased.

Discussion

In the prediction of a geological variable, the PDF calculated
by BME is more credible than that calculated by kriging
(Christakos and Li 1998). However, to estimate the likelihood
function L(Z|K), we still need the help of the kriging variance.
In the result of p(Z|D) (as shown in Fig. 10), it is observed that
the local maximum probabilities from the kriging prediction
vary around the observations, and the model is deterministic
in the observation positions. As the distance departs from the
observation values, the variance of Z(u) increases, which in-
dicates that the randomness of the spatial variation is increas-
ing and the occurrence probability of the interface is decreas-
ing. After the data error is integrated by BME, the uncer-
tainties in the observations increase. The observed determin-
istic value becomes randomly distributed with the observation
error. As the uncertainty is propagated, the occurrence proba-
bilities of the interfaces decrease near the observations and
increase far away from the observations (as shown in
Fig. 11a). Considering the modeler’s subjective cognition,
the occurrence probabilities of the interface increase in the
corresponding model region and decrease outside of this re-
gion (as shown in Fig. 11b). In the area where the model
approximates the BME prediction, the probability remains
approximately unchanged. These results are consistent with
our expectations for the propagation of multi-source uncer-
tainties in the modeling process. Our approach further con-
siders the data error and the modeler’s cognitive bias relative
to previous work.

The uncertainty analysis is essentially a model-based spa-
tial analysis. This spatial analysis process may introduce,
propagate, or even amplify the uncertainty of the original
model (Shi 2009). Usually, the modeler and the analyst of a
model’s uncertainty are not the same person. In the

uncertainty analysis of an established model, the original pa-
rameter settings and interactive modifications employed by
the modeler are difficult to obtain and to reproduce. A discrep-
ancy between the uncertainty assessment and the theoretical
accuracy of modeling will inevitably appear when different
methods and parameters are adopted in the analysis versus
the modeling process. Different uncertainty analysis methods
will lead to different assessment results for the same model
(Bárdossy and Fodor 2004). The selection of methods de-
pends on the subjective cognition and the empirical knowl-
edge of the analyst. Similarly, the established model contains
the modeler’s cognitive bias. Therefore, the uncertainty as-
sessment of the established model is not only affected by the
data error and the randomness of spatial variation, but is also
influenced by the cognitive uncertainty of both the modeler
and the analyst (Caers 2011). Whether in modeling or in un-
certainty analysis, the influence of a human’s subjective cog-
nition is hard to avoid (Shi 2009).

In this research, modeler’s empirical knowledge is assumed
to be conditional independent with sample data (no matter
whether considering data error or not). In fact, the Bayesian
inference method in the Section 2.3.2 is Naive Bayes model.
In practical application, it does not always confirm to the
assumption on conditional independence. This is a problem
of estimation in condition of incomplete information, because
we have no further information about the correlation of the
variables. Some studies indicate that (Rish 2001; Zhang 2004;
Kupervasser 2014), for the case that the correlation is un-
known, the Naive Bayes model maybe not exact, but optimal
solution. In our case, the Naive Bayes model is applicable. In
addition, we assume that our object of analysis is the best
guess model using mathematical or empirical criteria. If there
misconceptions or inaccurate knowledge exists in the mod-
eler’s cognition, the “best guess” assumption is perhaps no
longer valid. In this situation, some other methods should be
considered to quantify cognitive uncertainties.

Conclusions

We developed a new method for performing uncertainty as-
sessments of geological models. This method applies to the
comprehensive evaluation of spatial uncertainty in structural
models. The multi-source uncertainties derived from data er-
rors, spatial variations, and cognitive bias are considered.
Under the constraints of observations and geological rules,
the various uncertainties of a geological model are quantified
as probabilities. Using this method, multi-source uncertainties
are integrated into the posterior probability of each interface
and assembled according to the contact relationships. To de-
termine the uncertainty of the integral structure, a comprehen-
sive uncertainty field is calculated based on the posterior prob-
ability of the interfaces and their contact relationships. The
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assessment result can be treated as a representation of the
modeler’s confidence in the model after integrating all avail-
able information.

In this paper, we employ BME to integrate multi-source
uncertainties. The BMEmethod can integrate information that
contains a variety of error distributions and prior knowledge,
however the information sources for BME need to satisfy a
conditional independence assumption (Allard et al. 2012).
The information integration methods suitable for more general
condition will be considered in future studies. Expert knowl-
edge is useful for evaluating the possibility of geological phe-
nomena (Guillen et al. 2008; Howard et al. 2009; Wellmann
et al. 2014). More examples of expert knowledge, such as the
stratum thickness and conceptual graphs of the geological
structure, will be considered in the next stage.
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by China University of Geosciences (Wuhan).

Appendix: Combining uncertainties
according to stratigraphic relations

The contact relationships of strata are divided into two types:
depositional and erosional. By assembling the deposition and
erosion interfaces on the basis of stratigraphic sequences, the
stratigraphic type probability fields can be consistent with the
actual geological structure.

First, we define the occurrence probability of each strati-
graphic type. Since the (U, V, Z) coordinate system of differ-
ent interfaces are not the same, to consider multiple interfaces,
the calculation of probability field is in (X, Y, Z) coordinate
system. Assuming that at location (x, y, z) in the study area,
there are n strata sequentially numbered from bottom to top,
the occurrence probability of the ith stratum, Li (i = 1,…n), is
P(Li). pi(z) is the PDF of the interface of stratum Li and stratum
Li + 1. P(Li) can be calculated using the integral of pi(z):

P Lið Þ ¼ F x; y; zð Þ ¼ ∫
Li
pi zð Þdz: ðA1Þ

In the case of a depositional contact, the stratigraphic type
probabilities are calculated from bottom to top, and the prob-
ability fields are updated iteratively on the basis of stratigraph-
ic sequence. The iterations depend on the total number of
strata. The iterative process in the case of a depositional con-
tact is:

PN Lið Þ ¼ PN−1 Lið Þ; i ¼ 1; 2;…;N−2
PN LN−1ð Þ ¼ PN−1 LN−1ð Þ 1−P LNð Þ½ �

PN LNð Þ ¼ P LNð Þ− ∑
N−2

j¼1
P LNð Þ⋅PN−1 Lj

� �
8>><
>>:

ðA2Þ

In the formula, Li is the ith stratum from the bottom up.
PN(Li) is the conditional probability of the stratigraphic type,
Li, at the Nth iteration; P(LN) is the probability of stratigraphic
type, LN, without considering the impact of other strata. In the
Nth iteration, the probabilities of all the strata under LN in the
stratigraphic sequence are considered and updated. The itera-
tive update ends after the iteration N = n.

Faults and discordance interfaces appear as discontinuities
in the stratigraphic sequence and can be treated as erosion
interfaces. Because erosion does not belong to the deposition-
al process, it needs to be treated separately. When the interface
of Li and Li + 1 is an erosional interface, the probability field is
updated as follows:

PN Lið Þ ¼ PN−1 Lið Þ 1−P LNð Þ½ �; i ¼ 1; 2;…;N−1
PN LNð Þ ¼ P LNð Þ

�
ðA3Þ

Based on the principle of mutual exclusion of stratigraphic
type and the full probability formula, the cumulative probabil-
ity of all possible strata at each location is equal to 1.
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