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Abstract
Flood occurs as a result of high intensity and long-term rainfalls accompanied by snowmelt which flow out of the main river
channel onto the flood prone areas and damage the buildings, roads, and facilities and cause life losses. This study aims to
implement extreme gradient boosting (EGB) method for the first time in flood susceptibility modelling and compare its perfor-
mance with three advanced benchmark models including Frequency Ratio (FR), Random Forest (RF), and Generalized Additive
Model (GAM). Flood susceptibility map is an efficient tool to make decision for flood control. To do this, the altitude, slope
degree, profile curvature, topographic wetness index (TWI), distance from rivers, normalized difference vegetation index, plan
curvature, rainfall, land use, stream power index, and lithology were fed to the models. To run the models, 243 flood locations
were detected by field surveys and national reports. The same number of locations were randomly created in the study regions
and considered as non-flood locations. The flood and non-flood locations were split in 70% ratio for the training dataset and 30%
ratio for the testing dataset. Both flood and non-flood locations were fed into the models and output flood susceptibility maps
were produced. In order to evaluate the performance of the algorithms, receiver operating characteristics (ROC) curve was
implemented. The results of the current research show that the RF model and EGB have the best performances with the area
under ROC curve (AUC) of 0.985, and 0.980, followed by the GAM and FR algorithms with AUC values of 0.97, and 0.953,
respectively. The results of variable importance by the RF model show that distance from rivers has an important influence on
flood susceptibility mapping (FSM), followed by profile curvature, slope, TWI, and altitude. Considering the high performances
of the RF and EGB models in flood susceptibility modelling, application of these models is recommended for such studies.

Keywords Data mining . Flood susceptibility . GIS . Extreme
gradient boosting

Introduction

In the recent past, floods have occurredmore frequently as a result
of climate changes like the variations in air temperature and rainfall
amount and intensity.Apart from the increase of the flood frequen-
cy, inappropriate land use planning and management has en-
hanced both damages costs and life losses. In order to manage
the situation and decrease the damages or even forbid them, it is
essential to first determine the flood-prone areas (Lee et al. 2017).

Regarding the complicated hydrological features of the wa-
tershed and the ever-increasing anthropogenic impacts, floods
are hard to be predicted implementing simple non-linear algo-
rithms (Khosravi et al. 2018). For this reason, machine learn-
ing and statistical models have been implemented in flood
prediction, landslide, and gully susceptibility as well as
groundwater potential studies because of their higher efficien-
cy (Bui et al. 2019; Chen et al. 2020b, 2020c; Li and Chen
2020; Zhao and Chen 2020a, 2020b).
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Some examples of these models are: artificial neural
networks (Sahoo et al. 2006; Youssef et al. 2011), support
vector machines (Shafapour et al. 2015), logistic regression
(Nandi et al. 2016), evidential belief function and decision trees
(Rahmati and Pourghasemi 2017), frequency ratio (Rahmati
et al. 2016) random forest and boosted-tree (Lee et al. 2017),
Genetic Algorithm Rule-Set Production (GARP) and Quick
Unbiased Efficient Statistical Tree (QUEST) (Darabi et al.
2019), weakly labeled support vector machine (WELLSVM)
(Zhao et al. 2019), Reducederror pruning trees (REPTree) with
Bagging (Bag-REPTree) and Random subspace (RS-
REPTree) ensemble frameworks (Chen et al. 2019), classifica-
tion and regression trees and alternating decision tree
(Janizadeh et al. 2019), and alternating decision tree (ADT),
functional tree (FT), kernel logistic regression (KLR), multilay-
er perceptron (MLP) and quadratic discriminant analysis
(QDA) (Janizadeh et al. 2019). Additionally, some other stud-
ies indicated that hybrid models, such as ensemble of Decision
Tree, weights-of-evidence and support vector machines
(Tehrany et al. 2014a, 2019), neuro-fuzzy system integrated
with metaheuristic algorithms (Bui et al. 2016; Termeh et al.
2018), logistic model tree with bagging ensembles (Chapi et al.
2017), swarm optimized neural networks (Ngo et al. 2018),
RF,ANN, SVM (Zhao et al. 2018), ensemble of evolutionary
models and ANFIS (Hong et al. 2018), ensemble of multivar-
iate discriminant analysis, CART, and SVM (Choubin et al.
2019), ensemble of multi-criteria decision making (Wang
et al. 2019a), fuzzy rule based ensembles (Bui et al. 2019),
ensemble of RF, Stochastic Gradient Boosted Model, and
Extreme Learning Machine (Shin et al. 2019), had better per-
formances than their single models. Investigating the literature

refers that different kinds of algorithms have been used for
modelling flood susceptibility, but there still need to use newer
and more advanced models to find the best solution to control
flood disaster regarding its complicated behavior. Therefore,
this study aims to model flood susceptibility by the new model
EGB and compare its performance with three benchmark
models i.e., FR, RF, and GAM. The FR, RF, and GAMmodels
have been successfully implemented in the flood susceptibility
modelling and different other fields (Rahmati et al. 2016;
Golkarian et al. 2018; Motevalli et al. 2019; Naghibi et al.
2019a; Vafakhah et al. 2020). Therefore, the method of the
EGB is used in flood susceptibility mapping (FSM) in this
paper. The fundamental advantage of the EGB is the imple-
mentation of the boosting method, which produces strong pre-
dictions by “combining several weak learners”. Application of
the EGB can diminish the impact of “over-fitting issue” in the
final model and produce more generalized outputs.

Material and methods

At first, the flood locations were determined based on field
surveys and national reports. Additionally, non-flood loca-
tions were produced with a “random-systematic” strategy.
Then, we prepare the flood conditioning factors and classify
them into training and testing datasets. These datasets are used
in order to model flood susceptibility. The output susceptibil-
ity maps were validated by Accuracy, and Kappa indices as
well as receiver operating characteristics (ROC) curve. A de-
tailed methodology flow chart is shown in Fig. 1.

Fig. 1 Flowchart of the methodology in the current study
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Study area

The Talar watershed is a mountainous region and has an area
of roughly 1765 km2. (Yousefi et al. 2017) showed that this
river has been impacted by many floods in the past years. The
elevation in the Talar River watershed varies from 221 to
3944 m above sea level with an average value of
1966 m a.s.l.. The average width of the Talar River at the
outlet of the basin is about 25.5 m (Fig. 2). There are different
land-use classes in the Talar watershed including bare land,
agriculture, forest, rangeland, and residential areas (Fig. 3).
The average annual rainfall and temperature in the Talar wa-
tershed are 610 mm, and 11 C, respectively. The Talar water-
shed has a Mediterranean climate. The main soil textures in
the study region is loamy-silty, clay-silty, loamy-clay, and
clay-loamy (Maghsood et al. 2019).

Flood dataset

In order to detect the flood locations in the Talar watershed,
several field surveys were carried out in the lowland areas of
the watershed. Further, we used the reports of the Mazandaran
RegionalWater Authority as well as gaining information from
the residents. In addition, hydrology and flood reports as well
as the findings of Motevalli and Vafakhah (2016) and Yousefi

et al. (2017) were used. Overall, 243 flood locations were
detected in the study area. In order to apply the machine learn-
ing models, which need non-occurrence or in this study non-
flood locations, 243 locations were systematic-randomly se-
lected. First, the points were generated in ArcGIS, and then
they investigated in order to check whether they have been
correctly selected. Based on investigation of the literature in
FSM (Tehrany et al. 2014b; Wang et al. 2019b; Chen et al.
2020c; Pourghasemi et al. 2020) and other geospatial sciences
(Naghibi et al. 2018, 2019b, 2020; Motevalli et al. 2019; Li
and Chen 2020), the presence and absence locations i.e., the
flood and non-flood locations were categorized into training
and testing groups covering 70% and 30% of the points, re-
spectively (Fig. 2).

Flood conditioning factors

This study considered several flood susceptibility conditioning
factors based on the literature (Tehrany et al. 2014a; Shafapour
et al. 2015; Rahmati et al. 2016; Hong et al. 2018; Khosravi et al.
2018; Termeh et al. 2018; Vafakhah et al. 2020) and data avail-
ability. The input factors include altitude, slope, profile curvature,
topographic wetness index (TWI), distance from rivers, normal-
ized difference vegetation index (NDVI), plan curvature, rainfall,
land use, stream power index (SPI), and lithology. The altitude of

Fig. 2 Location of the study area in Iran, Mazandaran province, and location of the training (flood and non-flood) and testing (flood and non-flood)

53Earth Sci Inform (2021) 14:51–67



the study region was obtained from the ASTER-Global digital
elevation model (DEM) having a 30×30 m spatial resolution.
Generally, higher altitudes have high drainage density and low
discharge, while the situation is different in the lowland areas.
Slope impacts the water flow velocity over the ground surface
and in the channels. This factor was calculated usingDEMand is
presented in Fig. 4b. The study area has slopes ranging from 0 to
69 degrees.

Plan and profile curvature were created using the DEM of
the study region and used in the modelling process (Fig. 4c).
These curvatures influence the water flow velocity as well as
erosion and deposition processes (Fig. 4d).

SPI presents the river strength for the erosion process. SPI
has a direct influence on flood occurrence because it increases
with slope and upland watershed area (Lee et al. 2018).

SPI can be computed as follows (Dewan and Yamaguchi
2008) (Fig. 4e):

SPI ¼ As� tanb ð1Þ

where, As depicts certain basin area, and b slope degree at

each point of the basin.
TWI can be calculated as follows (Beven and Kirkby 1979)

(Fig. 4f):

TWI ¼ ln
a

tanb

� �
ð2Þ

where, a is the cumulative area to a specific pixel, and b is
slope angle at any given pixel.

Distance from river influences the discharge and spread of
the flooding in a given area (Wan et al. 2010; Glenn et al.
2012). Distance from river layer was created by the
Euclidean distance function (Fig. 4g).

Land use and NDVI are indicators of land cover in an area.
Land use was created by a “supervised learning algorithm”
which is a common way of classifying land use (Myint et al.
2011; Alganci et al. 2013; Kantakumar and Neelamsetti 2015;
Basukala et al. 2017; Thakkar et al. 2017). We used Landsat
OLI images for four dates including 31May 2017, 2 July 2017,
20 September 2017, and 22 October 2017 to derive land use
maps by Maximum Likelihood Classification algorithm
(Kamali Maskooni et al. 2020). The full methodology and

14 February 2018 14 February 2018

14 February 201816 July 2019

Fig. 3 Four different locations
affected by flood in Talar
watershed (photos by Sajjad
Mirzaei, Zirab City)
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results of this part can be found in Mirzaei et al. (2020). The
Talar River watershed was classified into five classes of range-
land, agriculture, forest, residential areas and bareland (Fig.
4h). The vegetated parts of the watershed have a lower

susceptibility to the flood incidence because there is a reverse
relationship between flooding incidence probability and vege-
tation cover (Tehrany et al. 2013). NDVI was computed re-
garding the red and infrared bands of an image on 2

Fig. 4 Input predictor variables: (a) altitude, (b) slope angle, (c) plan curvature, (d) profile curvature, (e) SPI, (g) distance from the river, (h) land-use, (i)
NDVI, (j) lithology, and (k) rainfall
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July 2017 (Row: 35, Path: 163) from Landsat OLI-IRS
(Mirzaei et al. 2020).

Rainfall data were obtained from 14 raingauges and clima-
tological stations in and around the study region (Table 1).

In this study, universal and ordinary Kriging and Co-kriging
interpolation methods by circular, spherical, exponential,
Gaussian, Stable, J-Bessel, K-Bessel, Hole Effect, Rational
Quadratic models, Inverse Distance Weighting (IDW), Radial
Basis Function (RBF), Global Polynomial Interpolation (GPI),
Local Polynomial Interpolation (LPI), General and local esti-
mators were evaluated using ArcGIS software. After
performing the interpolation operation by geostatistical and de-
terministic methods for comparing, evaluating and selecting
suitable interpolation method, Root Mean Squares Error
(RMSE) index was used. Results showed that, in the case of
annual rainfall, Ordinary Kriging by J-Bessel model was the
most appropriate. The spatial variation of annual rainfall is

shown in Fig. 4k. The lithology of the study basin was obtained
from the Geology Survey of Iran (GSI) (1997). Lithology im-
pacts on soil permeability and has an important role in flooding
and its magnitude. There are 26 different lithology classes in the
study region (Table 2; Fig. 4j).

It needs to be clarified that the RF, GAM, and EGB used the
continuous form of the factors except the ones that are categor-
ical such as land use, and lithology. Whereas to apply the FR
method, we needed to classify the continuous factors to
distinguishing classes. To do so, NDVI was classified into five
classes with equal classification algorithm; plan and profile cur-
vatures were classified into three classes of < −0.00, (− 0.001) -
(0.001), and > 0.001 representing convex, flat, and concave
curvatures, respectively; since most of the floods occurred in
approximations of the rivers, we classified it to five classes of
0–50, 50–100, 100–150, 150–200, and > 200 to better distin-
guish the relationship between this factor and flood occurrence.

Table 1 Average annual rainfall
at the rain-gauge stations, their
location and height

Station name Average annual rainfall (mm) Latitude Longitude Height (m)

Talar 1032 36° 18’ 52° 46’ 102

Babol 668 36° 31’ 52° 40’ 0

Vastan 614 36° 20’ 53° 9’ 378

Shirgah 1033 36° 17’ 52° 53’ 270

Kiakola 677 36° 33’ 52° 48’ −5
Sangdeh 853 36° 3’ 53° 13’ 1337

Babolsar 896 36° 43’ 52° 39’ −21
Gharakhil 559 36° 27’ 52° 46’ 14.7

Doshan Tappeh 264 35° 42’ 51° 20’ 1209.2

Abali 537 35° 45’ 51° 53’ 2465.2

Firouzkooh 290 35° 55’ 52° 50’ 1975.6

Semnan 145 35° 35’ 53° 33’ 1130.8

Firouzkooh bridge 412 35° 43’ 52° 24’ 2985.7

Baladeh 304 36° 12’ 51° 48’ 2120

Fig. 4 (continued)
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Classification models

Frequency ratio

FR was introduced by Bonham-Carter (1994) and is ex-
plained as the probability of incidence of a specific event.
This model has been used in many studies in order to define
the relationship between target factors such as flood, gully,
forest fire, and groundwater spring and their conditioning
factors. The output of the FR is simple and helps managers
and stakeholders to understand the relationships between
input and output factors (Nourani and Komasi 2013). FR
can be calculated as below:

FR ¼ F=FF
A=AA

ð3Þ

where, F is the number of floods in each class, FF is the total
number of floods in the study region, A is the number of
pixels in each class, and AA is the total number of pixels in

the study region. It is noteworthy to mention that the final
FR value is obtained by summing the FR values for all
factors. FR values are assigned to the pixels by “lookup”
function in ArcMap and they are summed by the
“weightedsum” function.

Random forest

RF could be regarded as an ensemble algorithm created by
several decision trees as predictors and is implemented for
classification and regression topics (Breiman 2001). RF is a
flexible and strong algorithm that applies random trees by a set
of cases through a bootstrapping method. The cases that are
not considered in constructing each tree is called out of bag
(Catani et al. 2013; Hong et al. 2017). There are two indices to
define the contribution of the factors in RF model such as
“mean decrease accuracy and mean decrease Gini”
(Naghibi et al. 2016). RF is appropriate for working with large
data sets and produces satisfactory outputs (Arabameri et al.
2019). In RF, a voting is done between the outputs of the

Table 2 Lithological
characteristics of the study area FID Lithological description

1 Alternation of dolomite, limestone and shale

2 Basaltic volcanic tuff

3 Conglomerate and sandstone

4 Conglomerate, sandstone and shale with coal seams

5 Dark grey medium - bedded to massive limestone

6 Dark grey shale and sandstone

7 High level piedmont fan and valley terrace deposits

8 Light-red coarse grained, polygenic conglomerate with sandstone intercalations

9 Light grey, thin - bedded to massive limestone (LAR FM)

10 Light- red to brown marl and gypsiferous marl with sandstone intercalations

11 Low level piedmont fan and valley terrace deposits

12 Marl, calcareous sandstone, sandy limestone and minor conglomerate

13 Marl, gypsiferous marl and limestone

14 Limestone

15 Polymictic conglomerate and sandstone

16 Red conglomerate and sandstone

17 Red marl, gypsiferous marl, sandstone and conglomerate (Upper red Fm.)

18 Thick - bedded to massive limestone

19 Thick bedded grey o’olitic limestone; thin - platy, yellow to pinkish limestone with worm tracks and well
to thick - bedded dolomite and dolomitic limestone

20 Thick bedded to massive, white to pinkish orbitolina bearing limestone

21 Undifferentiated limestone, shale and marl

22 Undifferentiated lower Paleozoic rocks

23 Undifferentiated unit, composed of dark red micaceous siltstone and sandstone

24 Upper cretaceous, undifferentiated rocks

25 Well - bedded to thin - bedded, greenish - grey argillaceous limestone with intercalations of calcareous
shale (DALICHAI FM)

26 Well bedded green tuff and tuffaceous shale
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constructed trees and predicts the target variable, in this case,
flood susceptibility. To run this model, randomForest package

in R software was implemented and the maps were prepared
and classified in ArcMap 10.2.

Table 3 Results of the FR model
for different classes of the factors Factor Class Floods (%) Classes area (%) Frequency Ratio

Elevation (m) 220–1000 51.9 11.1 4.7

1000–1650 28.8 20.8 1.4

1650–2185 15.2 25.3 0.6

2185–2700 4.1 28.6 0.1

2700–3944 0.0 14.2 0.0

Land use Barren land 7.8 14.1 0.6

Agriculture 69.5 9.2 7.5

Forest 3.3 34.3 0.1

Rangeland 8.2 41.2 0.2

Residential areas 11.1 1.1 9.7

NDVI < 0.1 2.1 1.3 1.6

0.1–0.25 40.3 22.1 1.8

0.25–0.50 39.1 30.7 1.3

0.50–0.75 17.7 19.3 0.9

> 0.75 0.8 26.6 0.0

Plan curvature < −0.001 64.3 48.5 1.3

(− 0.001) - (0.001) 5.3 1.2 4.6

> 0.001 30.1 50.3 0.6

Profile curvature < −0.001 7.8 46.4 0.2

(− 0.001) - (0.001) 1.6 1.2 1.4

> 0.001 90.6 52.4 1.7

Rainfall (mm) 408–524 17.7 33.4 0.5

524–617 26.8 33.5 0.8

617–728 32.5 24.6 1.3

728–880 23.0 8.5 2.7

Distance from the rivers (m) 0–50 15.2 3.7 4.2

50–100 25.5 2.4 10.7

100–150 14.4 2.8 5.2

150–200 23.9 2.4 10.1

> 200 21.0 88.7 0.2

Slope

(degree)

0–2 2.5 0.5 5.5

2–5 2.9 2.5 1.2

5–8 0.8 4.2 0.2

8–15 0.8 18.5 0.0

15–70 93.0 74.3 1.3

SPI 2.5–80 0.2 0.2 12.3

80–400 1.8 1.8 1.6

400–800 3.5 3.5 0.2

800–1000 2.0 2.0 0.4

> 1000 92.5 92.5 1.0

TWI 7–10.2 4.5 43.3 0.1

10.2–11.8 23.5 37.4 0.6

11.8–14.1 20.6 14.0 1.5

14.1–18.3 14.4 4.3 3.3

18.3–28.2 37.0 1.0 36.5

58 Earth Sci Inform (2021) 14:51–67



Generalized additive model

GAM is categorized as a “semi-parametric” regression
method (Hastie and Tibshirani 1990; Chambers and
Hastie 1992). Response curves of this model are predicted
by smooth functions; this leads to an extensive variety of
response curves to be predicted (Maggini et al. 2006;
Pourtaghi et al. 2016). An advantage of the GAM is that it
could be interpreted easily, unlike other data mining, black-
box, complex models (Goetz et al. 2011). GAM is able to
model non-linear features that are influenced by many fac-
tors like flood susceptibility (Petschko et al. 2014). The
main difference between the generalized linear model and
GAM is that the first one implements the parametric impact
of solitary variables, while the second one has smoother
additive terms (Vorpahl et al. 2012). GAM was applied
using caret and mgcv packages in R software.

Extreme gradient boosting

EGB method was introduced by Chen and Guestrin (2016) is a
new application of the “gradient boosting machine”. The foun-
dation of EGB is on the basis of the “boosting” which could be
explained as creating a “strong learner” by combining the out-
puts of several “weak learners” (Fan et al. 2018a). The EGB
attempts to tune the parameters without making themodel over-
fitted. The procedure of optimization in EGB begins with cre-
ating the first learner to the whole dataset of the variables and

follows with creating the next model on the residuals. The
procedure finishes when it reaches “stopping criteria” (Fan
et al. 2018a). EGB also utilized parallel processes which dimin-
ishes the required computation time (Fan et al. 2018b; Naghibi
et al. 2020). It gets stronger comparing with other algorithms in
the case of missing data availability in the dataset. To apply the
EGB, we used the caret package in the R statistical software.

Results and discussion

Flood susceptibility maps obtained by the used
algorithms

Frequency ratio

The results of the FRmodel are presented in Table 3. Based on
the results, the highest FR is related to the elevation class of

Table 4 Area percent of flood susceptibility classes for the FR, GAM,
RF and EGB algorithms

Class FR GAM RF EGB

Low 72.9 90.4 77.6 91

Moderate 19 0.7 14.2 2.2

High 7 0.9 4.3 1.7

Very high 1.1 8.0 3.9 5.1

Fig. 5 Flood susceptibility map
obtained by the FR algorithm
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220–1000 m with an FR value of 4.7. The class of 1000–
1650 m has the second-highest FR value of 1.4. In the case
of land use, it can be seen that agriculture and residential areas
have the highest FR values of 7.5 and 9.7, respectively. FR for
NDVI depicts that classes of less than 0.75 have high FR
values. NDVI class of 0.1–0.25 and NDVI class lower than
0.1 have the highest FR values of 1.8 and 1.6, respectively.
For plan curvature, the findings indicated that class of (−
0.001) - (0.001) had the highest FR value of 4.6. In the case
of profile curvature, a class more than 0.001 has the highest
FR value of 1.7. Rainfall classes of 725–880 and 617–728
have the highest FR values of 2.7 and 1.3, respectively. In
the case of distance from rivers, it can be seen that classes of
50–100 and 150-200 m have the highest FR values of 10.7
and 10.1, respectively. FR results for slope showed that clas-
ses of 0–2 (FR = 5.5) and 15–70 (FR = 1.3) have higher FR
values than other classes. In the case of SPI, it can be seen that
the class of 2.5–80 has a high FR value of 12.3. Regarding
TWI, the results showed that TWI class of more than 18.3 has
the highest FR value of 36.5. It should be mentioned that this
class only covers 1 % of the study region; thus, it does not
have much importance in this model. The second highest FR
value was observed for the TWI class of 14.1–18.3. Figure 5
shows the flood susceptibility map produced by the FR model
classified by the natural break classification scheme. Area
percent of flood susceptibility classes showed for the FR,
GAM, RF and EGB algorithms in Table 4.

Random forest

The RF model was optimized for the training dataset with a
node size of 3, mtry of 2, and 1000 trees. The confusion matrix
for predictions of the RF on training data is shown in Table 5.
Based on Table 6, the RF has predicted 161 non-flood cases
and 164 flood cases correctly, while 10 non-floods and 5 floods
are predicted incorrectly. This leads us to a class error of 0.0584
for non-flood prediction and a class error of 0.0295 for flood

prediction. The importance of the factors in flood susceptibility
mapping was defined through the calculation of mean decrease
Gini and is presented in Table 5. Based on the results, altitude,
distance from rivers, TWI, slope, and land use had the highest
importance in modelling flood susceptibility. On the contrary,
lithology, NDVI, and SPI were reported to be the least impor-
tant factors. For defining the flood susceptibility classes, we
used natural break classification scheme with four classes ac-
cording to the literature (Termeh et al. 2018; Khosravi et al.
2019). Figure 6 shows the flood susceptibility map produced by
the RF model. According to the flood susceptibility map, low,
moderate, high, and very high susceptibility classes cover 77.6,
14.2, 4.3, and 3.9% of the study area, respectively.

Generalized additive model

The GAMwas optimized by a select parameter of FALSE with
accuracy and Kappa indices of 0.98 and 0.97, respectively. For
optimizing the GAM, the tuning parameter of the method was
selected to be “generalized cross-validation Cp”. Figure 7 shows
the flood susceptibility map produced by the GAM. Based on
the flood susceptibility map classified by natural break, low,
moderate, high, and very high susceptibility classes occupy
90.4, 0.7, 0.9, and 8% of the studied region, respectively.

Extreme gradient boosting

Based on the results, the final EGB model was optimized
with rounds of 100, of 0.1, an α of 0.1, and ƞ of 0.3

Table 5 Importance of the factors
in modelling flood susceptibility
in the study area

Factors Mean decrease accuracy Importance by the EGB

Distance from the rivers 51.20 100

Profile curvature 22.61 1.53

Slope 19.35 8.42

TWI 15.76 3.48

Altitude 13.18 2.59

NDVI 10.85 10.06

SPI 9.76 1.73

Land use 9.59 1.33

Rainfall 5.77 1.01

Plan curvature 5.22 0.37

Lithology 1.28 0

Table 6 Confusion matrix of the RF model for the training dataset

Non-
Flood

Flood Class error

Non-Flood 161 10 0.0584

Flood 5 164 0.0295
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(Fig. 8). Further it can be seen that 100 iterations produces
the best accuracy for different alpha and regularization
terms. The accuracy and Kappa values of the optimum
EGB algorithm were calculated as 0.95, and 0.90. Low,

moderate, high, and very high classes of susceptibility cov-
er 91.6, 14.2, 4.3, and 3.9%, respectively (Fig. 9). The find-
ings of the EGB in Fig. 5 also depicted the high importance
of the distance from the rivers, NDVI, slope, and TWI.

Fig. 6 Flood susceptibility map
obtained by the RF algorithm

Fig. 7 Flood susceptibility map
obtained by the GAM algorithm
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Lower contribution of the lithology, plan curvature, rainfall
and land use were also reported.

Evaluating the performance of the models

Due to the importance of the performance evaluation step, this
study used ROC curve for this purpose. ROC is a common
and strong method for evaluating the binary issues and has
been used in different fields of study including groundwater,
flood, floodspreading, and landslide (Naghibi et al. 2017,
2018; Rahmati et al. 2018; Golkarian et al. 2018; Chen et al.
2019, 2020a, 2020c; Kordestani et al. 2019; Chen and Li
2020; Wang et al. 2020; Zhao and Chen 2020b, a; Lei et al.
2020a, 2020b; Li and Chen 2020; Chen and Chen 2021).
ROC curve plots “sensitivity” against “1-specificity” at differ-
ent cut-off values (Conoscenti et al. 2016; Naghibi and
Moradi Dashtpagerdi 2016). The area under the curve
(AUC) of ROC varies from 0 to 1 where an AUC close to
one shows a high-performance model and an AUC close to 0

depicts a low-performance model (Sangchini et al. 2016;
Hong et al. 2017; Mousavi et al. 2017). Based on the results
of the ROC curve in Table 7, it can be seen that the RF and
EGB are the leading models with the highest AUCs of 0.985,
and 0.98, respectively. The GAM and FR models had lower
accuracy than the leading models with AUC scores of 0.94
and 0.953, respectively. Based on the accuracy scores, RF had
the highest performance with an accuracy of 0.965, followed
by the EGB and GAM. The Kappa index also showed high
performance of the RF and EGB compared to other models.

Discussion

Flood occurs frequently in different countries particularly in
theMiddle Eastern countries as a result of lack of proper water
resources management plans and strategies. This leads the
researchers to more advanced algorithms to generate high-
accuracy flood susceptibility maps and prepare some initial

Fig. 8 Training results of the
EGB-Linear
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information for further actions to reduce the damages and save
lives. This study made use of EGB as a new MLA and
assessed its performance for this purpose. Based on Fressard
et al. (2014), all the algorithms produced excellent predictions
(or AUC > 0.9). Further to AUC, Accuracy and Kappa were
also calculated for the algorithms and showed that the RF and
EGB had the best performances, followed by the GAM and
FR algorithms. The higher performance of the RF could have
resulted from its strong features. RF is robust to noise and
outliers (Sameen et al. 2019), the issues that are frequent in
geospatial studies like flood susceptibility. RF is capable of
predicting the importance or influence ratio of the input fac-
tors in the modeling process (Naghibi et al. 2016). This capa-
bility makes this model more interpretable than other black-
box tree-based models (Pal 2005). RF is able to handle and
work with multiple different inputs without an act of factor
removal (Naghibi and Pourghasemi 2015; Sameen et al.
2019). RF is able to work with huge data. GAM and FR have

also shown acceptable performances. EGB on the other hand,
applied boosting technique, which is known as a strong fea-
ture in data mining models resulting in better outputs for clas-
sification issues. “Gradient boosting method” suffers from a
lack of “strong regulation parameter”, that had made it vulner-
able to “over-fitting”, but the regularization parameter in EGB
makes overcomes this shortcoming (Georganos et al. 2018).
The impact of boosting was also confirmed in another study
i.e., Naghibi et al. (2017) where they used the FR model to
combine the results of some data mining models. Their en-
semble model constructed on the basis of boosting had better
performance, which is consistent with the results of this re-
search. The results of Georganos et al. (2018) in object-based
land-use classification proved a superior performance of the
EGB comparing to other models like RF and support vector
machines. In another study, Naghibi et al. (2020) also implied
the superior efficiency of the EGB in groundwater potential
studies which is in line with our findings. Babajide Mustapha
and Saeed (2016) clarified that the EGB operated well in clas-
sifying biological datasets and they pointed to the fact that
EGB is capable of handling both “homogenous and heterog-
enous” datasets. It also does not require handling missing
cases which enhances its computational speed (Timofeev
and Denisov 2020). FR as a statistical model provides an easy
to interpret outputs that could be useful for the managers as
well as stakeholders (Nourani et al. 2014). Therefore, the se-
lected models in this study provide both complex high-
performance and simple interpretable results. This feature

Fig. 9 Flood susceptibility map
obtained by the EGB algorithm

Table 7 Results of area under the ROC curve (AUC)

Test result variable(s) AUC Accuracy Kappa

RF 0.985 0.965 0.931

EGB 0.98 0.9452 0.8902

GAM 0.970 0.945 0.8901

FR 0.953 0.664 0.328
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might have caused superior performance than two other
models of GAM and FR with simpler structures.

The results of factor importance by the RF model as the
best algorithm in this research showed that distance from the
rivers had an important influence on flood susceptibility,
followed by profile curvature, slope, TWI, and altitude. The
results of Khosravi et al. (2018) showed that altitude had the
highest importance inmodelling flood susceptibility, followed
by distance from the river, NDVI, soil type, and slope. This
shows that in spite of differences between the importance of
factors affecting the flood susceptibility, there are some shared
results, for instance, for distance from the river, and slope. The
differences between the important values in this study and
Khosravi et al. (2018) could be related to the physical, topo-
graphical, and hydrological characteristics of the watersheds.
Floods occur in certain distances from rivers; thus, this factor
has had a high contribution to the modelling. Higher slopes
are related to higher elevations where drainage density is
higher and flood discharge is lower. Therefore, we do not
expect flood occurrence in those areas. A range of slopes
betweenmountainous and plain areas where discharge reaches
higher amounts is more susceptible to flood occurrence.
Profile curvature, TWI as secondary topographical factors as
well as altitude impact the drainage development in different
parts of the watershed, runoff speed, and erosion and sediment
ratio.

Conclusion

The current study approved the high performance of the EGB
in FSM compared with the RF as the benchmark algorithm in
such studies. The RF and EGB models had AUC values of
more than 0.98, which is regarded as excellent prediction abil-
ity in classification issues. Therefore, it can be concluded that
the EGB can be utilized for FSM. In addition to the perfor-
mance analysis, the importance of the factors was also
assessed and depicted that the high importance of the dis-
tance from the river, profile curvature, slope, TWI, and
altitude in the modelling process of flood occurrence. It
is also concluded that the topographical of DEM-derived
factors have great influence. This finding gives insight to
researchers to target the factors for future studies and select
them in a better way. The current study gives a regional
perspective to flood control sector to focus on potentially
disastrous areas and mitigate the damages. More precisely,
the northern parts of the watershed are more susceptible
and flood control strategies should be concentrated to those
spots. For future studies, it is recommended to apply dif-
ferent optimization algorithms to enhance the performance
of the EGB and produce more reliable flood susceptibility
maps.
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