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Optimal level of wavelet decomposition for daily inflow forecasting
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Abstract
Amethodology to select the maximum level of wavelet decomposition to forecast seven days of daily inflows by a hybrid model
wavelet-based artificial neural network (WANN) is proposed. The wavelet decomposition was employed to decompose an input
time series into approximation and detail components, and the approximations were used as inputs to artificial neural networks
(ANN) forWANN hybrid models. In this study, it was used daily inflows from January 1931 to December 2010 to three Brazilian
reservoirs with different discharge patterns, and evaluated the accuracy of theWANNmodels when using seven different mother-
wavelets, including Haar, Daubechies, Biorthogonal, Biorthogonal Reverse, Symlet, Coiflet and Discrete Meyer. It was found
that the model performance is dependent on the input sets and the selected mother-wavelets. Based on the obtained results, it was
observed that the maximum level of decomposition was five, because upper than this level, independently on the inflow
magnitude, there is no guarantee that the WANN hybrid models would perform better than the ANN model.
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Introduction

The inflow forecasting is one of the most active research areas
in surface water hydrology. Currently, there have been a great
number of relevant studies, and many methods and models
could be used to perform inflow forecasting (e.g., Fernando
and Jayawardena 1998; Toth et al. 1999; Shamseldin and
O’Connor 2001; Xiong and O’Connor 2002; Moradkhani
et al. 2004; Goswami et al. 2005; Kentel 2009; Kagoda et al.
2010; Jothiprakas and Maga 2012; Liu et al. 2012; Danandeh
et al. 2014; Terzi and Ergin 2014; Akrami et al. 2014; Yaseen
et al. 2015; Afan et al. 2020).

Inflow forecasting is a need for an adequate water manage-
ment and reservoir operation. Currently, the Brazilian National
System Operator (ONS), which is responsible for the operation
of the hydroelectric power plants reservoirs in Brazil, uses sto-
chastic models to subsidize their work. However, these models
have limited precision and, therefore, it is necessary to develop
more efficient tools to plan and operate such a system (Hidalgo
et al. 2012; Santos and Silva 2014; Freire et al. 2019).

Artificial neural networks (ANN) have already shown good
results in inflow forecasting (Karunanithi et al. 1994; Campolo
et al. 1999; Danh et al. 1999; Lauzon et al. 2000; Sivakumar
et al. 2002; Cigizoglu 2003; Kumar et al. 2004; Cigizoglu and
Kisi 2005; Cheng et al. 2005; Farias et al. 2013; Farias and
Santos 2014). Therefore, they could be used as an alternative
to stochastic models, or in conjunction with other models to
improve the operation of the interconnected systems.

Recently, the ANNs forecasting results have been im-
proved by pre-processing the input data through some type
of signal filter such as wavelet transform, which transforms
the raw input time series into high frequency (details) and low
frequency (approximation) components. The recent studies
show that the use of signal pre-processed by wavelet trans-
form improves the results obtained by the regular ANN in the
inflows forecasting (Cannas et al. 2005; Kisi 2009;
Adamowski and Sun 2010; Pramanik et al. 2010; Krishna
et al. 2011; Tiwari and Chatterjee 2011; Krishna 2013;
Maheswaran and Khosa 2013; Wei et al. 2013; Santos et al.
2014, 2019; Honorato et al. 2018).

The main objective here is to investigate the influence of
the raw signal decomposition level choice on wavelet-based
daily inflow forecasting. Thus, this paper describes the meth-
od for discrete wavelet decomposition of time series, the daily
inflow time series registered in three different reservoirs used
as study cases, and the forecasting results using WANN
models with inputs of different decomposition levels.
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Material

Study area

The selected reservoirs are Sobradinho, 14 de Julho, and Itaipu
(Fig. 1). Sobradinho Reservoir is in the São Francisco River, in
north-eastern Brazil, in the Bahia State, the 14 de Julho
Reservoir is in the Antas River, Cotiporã city, Rio Grande do
Sul State, southern Brazil, and Itaipu Reservoir is in the Paraná
River located on the border between Brazil and Paraguay.

Sobradinho has a hydroelectric plant that is located in the
São Francisco River at 748 km far from its mouth, with a
drainage area of 498,968 km2. This reservoir has the second
largest artificial lake in the world, with about 320 km long, a
water surface of 4214 km2 and a storage capacity of 34.1 billion
m3 at the depth of 392.50 m. This lake is the largest water
reservoir of north-eastern Brazil, and through the São
Francisco Hydroelectric Company, it regulates the São
Francisco River downstream inflow. The 14 de Julho
Hydroelectric Plant has a generation capacity of 100 MW, with
amaximum height of 33.5m and a flooded area of 6 km2. Itaipu
has an installed generation capacity of 14 GW, with 20 gener-
ating units providing 700 MW each with a hydraulic design

head of 118 m. This lake is the seventh largest in Brazil
(1350 km2), but has the best rate of use of water to produce
energy among the largest Brazilian reservoirs.

Inflow data

The data used in this paper correspond to the natural daily
inflow into those reservoirs, for the period from 1 January
1931 to 31 December 2010, which were obtained from the
ONS, which is also responsible for developing forecasting
and scenario generation of average daily natural flow, weekly
and monthly to all hydroelectric development sites in Brazil.

Figure 2 shows the daily hydrograph of the inflows into the
studied reservoirs. Sobradinho Reservoir, with an average in-
flow of 2656 m3/s, a maximum of 18,525 m3/s and a mini-
mum of 400 m3/s. The 14 de Julho Reservoir, with an average
inflow of 285 m3/s, a maximum of 6912 m3/s and a minimum
of 2 m3/s. Itaipu Reservoir, with an average inflow of 10,209
m3/s, a maximum of 42,322 m3/s and a minimum of 2512 m3/
s. These data comprehend 80 years (29,220 days) measured
from the 1931 to 2010. The first 77 years of the inflow data
(28,124 days, 96% of the whole data set) were used for the
calibration, which was divided into three sets for the ANN

Fig. 1 Location of the selected reservoirs

1164 Earth Sci Inform (2020) 13:1163–1173



training, validation and testing. The remaining three years
(1096 days, 4% of the whole data set) was used for the final
test. The statistical indices of these data sets are presented in
Table 1 for each period.

Methods

Discrete wavelet transform (DWT)

The DWT is generally used in the decomposition and filtering
of time series (Wang and Ding 2003; Ravansalar et al. 2015),

because it does not cause coefficient redundancies between
the scales, and the information about the time location of cer-
tain events is not lost in the process (Daubechies 1990;
Alessio 2016).

For the calculation of DWT, the simplest and most efficient
method was introduced by Mallat (1989), in which the scale
and position parameters are chosen based on power of 2. This
simple algorithm turns the DWT function a bypass filter, by
calculating quickly the wavelet coefficients and thus
decomposing the input signal into low and high frequency
components (Misiti et al. 1996). The approximations corre-
spond to the low frequency components and represent the

Table 1 Descriptive statistics for the daily inflow data used in the study

Reservoir Period Descriptive statistics

Minimum
(m3/s)

Maximum
(m3)/s

Average
(m3/s)

Mode
(m3/s)

Median
(m3/s)

Standard
deviation
(m3/s)

Coefficient of
variation

Coeficient of
skewness

Sobradinho 1931–2010 400 18,525 2656 1054 1868 2041 0.77 1.78

1931–2007 400 18,525 2676 1381 1871 2058 0.77 1.78

2008–2010 436 6205 2127 1054 1634 1424 0.67 0.93

14 de Julho 1931–2010 2 6912 285 65 146 433 1.52 4.96

1931–2007 4 6912 283 65 144 429 1.52 4.87

2008–2010 2 6835 329 2 188 531 1.61 5.99

Itaipu 1931–2010 2512 42,322 10,209 6421 8883 5129 0.50 2512.00

1931–2007 2512 42,322 10,127 6421 8793 5118 0.51 1.19

2008–2010 4931 31,522 12,327 8633 11,079 4955 0.40 0.85

Fig. 2 Daily hydrograph of the three studied reservoirs: (a) Sobradinho, (b) 14 de Julho and (c) Itaipu (1931–2010)
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general behavior of the series, whereas the details correspond
to the high frequency components and could be understood as
the noises present in the series, depending on the level of
decomposition (Santos et al. 2013, 2019; Freire et al. 2019).

The decomposition could continue in an iterative process,
with the approximations being decomposed in turn; then, the
original signal is broken down into several lower resolution
components. This process is called wavelet decomposition
tree as illustrated in Fig. 3. Thus, the maximum number of
decompositions (lmáx) of each wavelet subfamily for the stud-
ied reservoirs was determined according to criterions: (a) the
size of the series – known as criterion on the signal; and (b) the
wavelet subfamily used – known as entropy criterion (Misiti
et al. 2006):

lmax ¼
log

lx
lw−1ð Þ

� �

log2
ð1Þ

where lx is the size of the time series (lx = 29.220) and lw is the
filter size associated with the orthogonal or biorthogonal
wavelet.

The value of lw ranged from 2 to 102, depending on the
subfamily used, then the calculated lmáx ranged from 8 to 14.

Thus, the value 8 was chosen to be the maximum level of
signal decomposition, because this value caters for all studied
families. For example, Fig. 3 shows the approximations (low
frequency) and the details (high frequency), both in eight
levels of decomposition for the data of daily natural inflows
to Sobradinho Reservoir. It is notorious by a simple visual
checking that approximations above level eight would be dis-
tant from the hydrograph form of the raw signal.

Artificial neural network (ANN)

In this paper, the ANN inputs were formed by the inflow
observed in the current day t (Qt) and in the previous four days
(Qt-1, Qt-2, Qt-3 and Qt-4); thus, the input layer had five neu-
rons. As for the WANN, the input was formed by the signal
approximation of such raw signal. The output layer of both
models had only one neuron, which corresponds to the fore-
casted inflow seven days ahead (Qt + 7).

The architectures of ANN and proposed WANN were a
feed-forward network, with 20 hidden neurons whose activa-
tion function was the sigmoid (hidden layer) and a linear func-
tion for the output layer. The Levenberg-Marquardt algorithm
was used as the learning algorithm, because it is considered

Fig. 3 Multiple decomposition up to the chosen maximum level of the Sobradinho Reservoir inflow time series using one selected mother-wavelet:
approximations in the left, and details in the right
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one of the fastest methods for training (Renno et al. 2015). The
error verification on the training data set in the ANN and
WANNwas done by calculating the mean square error (MSE):

MSE ¼ 1

N
∑
N

t¼1
Qct−Qot

� �2 ð2Þ

whereQct andQot are respectively the calculated and observed
inflows at time t.

Performance evaluation

In the present paper, three statistical indices were used to eval-
uate the accuracy of the forecasting results: (a) the root mean
square error (RMSE), (b) the Nash-Sutcliffe coefficient
(NASH) and (c) the correlation coefficient (R):

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
∑ Qc−Qoð Þ2

r
ð3Þ

NASH ¼ 1−
∑ Qo−Qcð Þ2

∑ Qo−Qo

� �2 ð4Þ

R ¼
∑ Qo−Qo

� �
Qc−Qc

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑ Qo−Qo

� �2
r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑ Qc−Qc

� �2
r ð5Þ

where Qc is the calculated inflow; Qo is the observed in-

flow; Qc is the mean calculated inflow; and Qo is the mean
observed inflow.

The root mean square error is the square root of the mean
square error (MSE), whose optimal value is RMSE = 0. The
Nash-Sutcliffe coefficient is considered one of themost important
statistical criteria to evaluate the accuracy of hydrologicalmodels,
which can range from –∞ to 1, whose optimal value isNASH = 1.
The correlation coefficient can range from −1 to 1 and indicates
the degree of collinearity between forecasted and observed
values; if R = 1, a perfect positive linear relationship exists.

Results and discussion

In order to improve the ANN efficiency, the input and output
data were normalized and, then, scaled before training, in the
interval [−1, 1] (Demuth and Beale 2005). For each simula-
tion, 70% of the original data were used in the training, 15%
for validation and 15% for testing. The forecasted results
using the ANN model presented RMSE = 457.5096 m3/s,
NASH = 0.8967, and R = 0.9479, for Sobradinho Reservoir;
RMSE = 511.7921 m3/s, NASH = 0.0658, and R = 0.2624, for
14 de Julho Reservoir; and RMSE = 2299.3335 m3/s,NASH =
0.7844, and R = 0.8862, for Itaipu Reservoir.

In order to improve the forecasting efficiency, as aforemen-
tioned, the raw signal was pre-processed using 54 wavelet sub-
families to break it down into approximations and details up to
the maximum level set (i.e. 8). Then, the approximations were
used as ANN inputs to forecast the inflows seven days ahead,
totalling 432 WANN models (i.e., 54 × 8), for each reservoir.

Figure 4 shows the performance of the WANN models,
based on RMSE, in which the dots below the red line means

Fig. 4 Performance of the WANN models based on RMSE index
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that the WANN models were successful in relation to the
regular ANN model, whereas the dots above the red line
means that the WANN models were not successful. It is ob-
served that with the use of the approximations A1 to A5 as
inputs, the RMSE decreases in many cases, independently on
the studied reservoir. After that, the error substantially in-
creases, and one may note that it is not worthwhile to use

the A6, A7, A8 or even higher approximations, because those
approximations were not able to provide any forecasting im-
provement. Exceptionally, for reservoirs with small inflow
volumes (e.g., 14 de Julho Reservoir), the A6 and A7 approx-
imations could be used. The same is observed when analysing
the NASH (Fig. 5) and R (Fig. 6) indices. In both figures, the
dots above the red line means again that the WANN models

Fig. 5 Performance of the WANN models based on NASH index

Fig. 6 Performance of the WANN models based on R index
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were successful in relation to the regular ANN model and the
dots below the red line means that they were not successful in
relation to the ANN model. Then, it is confirmed that the use
of A6, A7, A8 or higher approximations is not indicated to be
used as ANN inputs, because such a procedure would not
improve the performance of the WANN models. The A6 and
A7 approximations could be used exceptionally for inflow
time series composed by small volumes.

Figure 7 shows the quantitative success of WANN models
in relation to ANN model, according to the results shown in

Figs. 4, 5 and 6. From the quantitative point of view, the best
approximation was A4, which obtained 100.00% success for
all analysed indices for 14 de Julho Reservoir and Itaipu
Reservoir. For the Sobradinho Reservoir, the best approxima-
tion was A1, which obtained 92.59% success for all indices, as
54 wavelet subfamilies were evaluated and this approximation
was successful in 50 subfamilies. The second-best approxima-
tion for Sobradinho Reservoir was A3 with 87.04% success
for all indices, followed by A4 and A2 with 83.33% and
77.78% success, respectively. Finally, A5 presented 66.67%
success, whereas the other approximations (A6, A7, A8) did
not have success as stated earlier. For the 14 de Julho
Reservoir, the second-best approximation was A3 with
98.15% success for all indices, followed by A5 with 96.30%
success for RMSE andNASH indices and 100.00% success for
the R index, followed by A7 and A6 with 96.30% and 94.44%
success for all indices, respectively. Finally, A2, A1 and A8

presented 74.07%, 38.89% and 14.81% success for RMSE and
NASH indices and 87.04%, 31.48% and 16.67% success for
the R index, respectively. For the Itaipu Reservoir, the second-
best approximation was A5 with 98.15% success for all indi-
ces, followed by A3 and A2 with 88.89% and 83.33% success,
respectively. Finally, A6 and A1 presented 70.37% and
66.67% success, respectively, whereas the other approxima-
tions (A7, A8) did not have success as aforementioned.

However, when analysing the values of these indices, it
was observed that (a) for the Sobradinho Reservoir, the
RMSE ranged from 400.0489 to 473.3114 m3/s for A1, from
302.5705 to 504.5766 m3/s for A2, from 94.3232 to
537.4780 m3/s for A3, from 203.4392 to 579.0129 m3/s for
A4 and from 371.0106 to 642.2430 m3/s for A5; (b) for the 14
de Julho Reservoir, the RMSE ranged from 506.9577 to
519.2857 m3/s for A1, from 350.1133 to 543.8587 m3/s for
A2, from 347.3893 to 564.1586 m3/s for A3, from 378.6133 to
507.4274m3/s for A4 and from 429.7828 to 562.1094m3/s for
A5; and (c) for the Itaipu Reservoir, the RMSE ranged from
1825.7296 to 2396.7418 m3/s for A1, from 1555.2176 to
2491.0735 m3/s for A2, from 728.4548 to 2380.0655 m3/s
for A3, from 1229.3971 to 2114.6630 m3/s for A4 and from
1771.7477 to 2323.0118 m3/s for A5, as can be seen in
Table 2. Table 2 also shows the variation of all performance
indices for all ANN input configurations. By analyzing
Table 2, it could be noted that (a) for the Sobradinho
Reservoir, the A3 approximation improved the forecasting
by up to 79% decrease in RMSE, 11% increase in NASH and
5% increase in R, whereas the A4 approximation improved the
forecasting by up to 56% decrease in RMSE, 9% increase in
NASH and 4% increase in R; while A1 improved only RMSE
by 13%, NASH by 3% and R by 1%; (b) for the 14 de Julho
Reservoir, the A3 approximation improved the forecasting by
up to 32% decrease in RMSE, 766% increase in NASH and
189% increase in R, whereas the A2 approximation improved
the forecasting by up to 32% decrease in RMSE, 755%

Fig. 7 Quantitative success of WANN models against the ANN model,
based on the performance indices (RMSE,NASH andR) for each reservoir
(a) Sobradinho, (b) 14 de Julho and (c) Itaipu
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increase inNASH and 186% increase in R; while A4 improved
only RMSE by 26%, NASH by 643% and R by 167%; and (c)
for the Itaipu Reservoir, the A3 approximation improved the
forecasting by up to 68% decrease in RMSE, 25% increase in
NASH and 12% increase in R, while A4 improved only RMSE
by 47%, NASH by 20% and R by 9%.

Thus, a qualitative analysis of the successes of WANN
models in relation to the ANNmodel is necessary and can be
observed in Table 3. The negative sign in the RMSE column
of Table 3 means an improvement in such index; then, the
best value is close to 0.0. On the other hand, the plus sign in
the NASH and R columns shows an improvement of such
indices, and the best values are close to 1.0. From the qual-
itative point of view, the best approximation was A3, for all
analysed indices of each analysed reservoir, which showed
an improvement range from 0.06 to 79.38% for RMSE, from
0.01 to 11.03% for NASH and from 0.06 to 5.26% for R in
the Sobradinho Reservoir; for the 14 de Julho Reservoir this

approximation showed an improvement range from 1.37 to
32.12% for RMSE, from 38.76 to 765.60% for NASH and
from 30.37 to 189.39% for R; for the Itaipu Reservoir the
improvement range of this approximation was from 6.13 to
68.32% for RMSE, from 3.27 to 24.72% for NASH and from
1.80 to 11.62% for R. The second-best approximation was
A4 for Sobradinho and Itaipu reservoirs with an improve-
ment range from 6.13 to 55.53% and from 8.03 to 46.53%
for RMSE, from 1.37 to 9.24% and from 4.24 to 19.62% for
NASH and from 0.66 to 4.41% and from 2.20 to 9.31% for
R, respectively. For the 14 de Julho Reservoir, the second-
best approximation was A2 with an improvement range
from 0.08 to 31.59% for RMSE, from 2.29 to 755.31% for
NASH and from 0.44 to 186.06% for R. The A4 approxima-
tion ranked third for the 14 de Julho reservoir with an im-
provement range from 0.85 to 26.02% for RMSE, from
24.11 to 642.74% for NASH and from 34.20 to 166.77%
for R and the A1 approximation ranked fifth for the

Table 2 Variation of the performance indices for the ANN (raw data) and WANN (A1 to A8) models for each reservoir

Reservoir Inputs RMSE NASH R

Minimum Median Maximum Minimum Median Maximum Minimum Median Maximum

Sobradinho raw data 457.5096 457.5096 457.5096 0.8967 0.8967 0.8967 0.9479 0.9479 0.9479

A1 400.0489 442.3452 473.3114 0.8895 0.9035 0.9210 0.9444 0.9516 0.9609

A2 302.5705 415.3662 504.5766 0.8744 0.9149 0.9548 0.9366 0.9574 0.9775

A3 94.3232 333.6860 537.4780 0.8575 0.9451 0.9956 0.9271 0.9727 0.9978

A4 203.4392 298.5179 579.0129 0.8346 0.9560 0.9796 0.9159 0.9781 0.9898

A5 371.0106 427.2326 642.2430 0.7965 0.9099 0.9321 0.8935 0.9541 0.9655

A6 505.9062 569.5803 1039.0498 0.4674 0.8399 0.8737 0.6985 0.9171 0.9355

A7 650.6293 795.9037 1395.4518 0.0393 0.6875 0.7912 0.3736 0.8322 0.8937

A8 1273.6083 1394.7793 1541.7995 −0.1728 0.0402 0.1997 −0.1121 0.2446 0.5911

14 de Julho raw data 511.7921 511.7921 511.7921 0.0658 0.0658 0.0658 0.2624 0.2624 0.2624

A1 506.9577 512.4453 519.2857 0.0382 0.0634 0.0834 0.2288 0.2568 0.2924

A2 350.1133 489.7175 543.8587 −0.0549 0.2893 0.5628 0.2292 0.4112 0.7506

A3 347.3893 414.6564 564.1586 −0.1352 0.3868 0.5696 0.2217 0.6237 0.7593

A4 378.6133 416.5873 507.4274 0.0817 0.3810 0.4887 0.3521 0.6246 0.7000

A5 429.7828 455.1488 562.1094 −0.1269 0.2611 0.3412 0.3481 0.5136 0.5850

A6 448.7201 482.0309 529.4274 0.0003 0.1713 0.2819 0.2154 0.4189 0.5312

A7 478.4639 495.7818 531.8130 −0.0087 0.1233 0.1835 0.0841 0.3516 0.4344

A8 509.1452 518.2585 538.8718 −0.0357 0.0420 0.0754 −0.0038 0.2118 0.3130

Itaipu raw data 2299.3335 2299.3335 2299.3335 0.7844 0.7844 0.7844 0.8862 0.8862 0.8862

A1 1825.7296 2276.0376 2396.7418 0.7658 0.7884 0.8641 0.8758 0.8885 0.9304

A2 1555.2176 2138.2865 2491.0735 0.7470 0.8136 0.9014 0.8655 0.9030 0.9495

A3 728.4548 1564.8443 2380.0655 0.7690 0.9001 0.9784 0.8784 0.9492 0.9893

A4 1229.3971 1548.5311 2114.6630 0.8177 0.9022 0.9384 0.9058 0.9501 0.9687

A5 1771.7477 1878.2263 2323.0118 0.7800 0.8562 0.8720 0.8846 0.9254 0.9338

A6 2070.5670 2197.1710 3620.6149 0.4655 0.8032 0.8252 0.6945 0.8976 0.9087

A7 2336.6894 2713.6642 4515.0494 0.1689 0.6997 0.7774 0.4761 0.8413 0.8830

A8 4194.9657 4549.3134 5936.9070 −0.4371 0.1562 0.2825 0.1419 0.4286 0.5788
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Sobradinho reservoir with an improvement range from 0.46
to 12.56% for RMSE, from 0.11 to 2.71% for NASH and
from 0.02 to 0.83% for R.

Conclusions

The use of the wavelet transform to eliminate the noise pre-
sented in the raw signal showed to be extremely important to
improve the ANN forecast performance; i.e., the WANN
models performed significantly better than the ANN model
to forecast the Sobradinho, the 14 de Julho and the Itaipu
reservoir inflows seven days ahead.

Seven wavelet families were analysed, for which the max-
imum decomposition level of each wavelet subfamily was
calculated for the inflow data of the Sobradinho Reservoir,
the 14 de Julho Reservoir and the Itaipu Reservoir based on
the signal criterion (size of the series) and entropy criterion
(wavelet subfamily). Thus, the maximum level of decompo-
sition was chosen equal to eight, because such decomposition
caters for all the studied subfamilies.

A total of 432 WANNmodels were tested against a regular
ANN for each reservoir, and it was observed that the best

forecastings of the WANN models were for the approxima-
tions between level A1 and A5, from which the A4 approxi-
mation was the most successful, followed by the A3 approxi-
mation for 14 de Julho Reservoir and the Itaipu Reservoir.
Although for the Sobradinho Reservoir, the A1 approximation
obtained the highest amount of success followed by the A3

approximation. The A3 approximation was chosen as the best
approximation to be used as ANN inputs, because such an
approximation provided the best forecasting results for all
reservoirs: (a) with RMSE ranging from 94.3232 to
537.4780 m3/s, NASH ranging from 0.8575 to 0.9956 and R
ranging from 0.9271 to 0.9978 for Sobradinho Reservoir; (b)
with RMSE ranging from 347.3893 to 564.1586 m3/s, NASH
ranging from 0.1352 to 0.5696 and R ranging from 0.2217 to
0.7593 for the 14 de Julho Reservoir; and (c) with RMSE
ranging from 728.4548 to 2380.0655 m3/s, NASH ranging
from 0.7690 to 0.9784 and R ranging from 0.8784 to 0.9893
for Itaipu Reservoir, while indices for A1 approximation
ranged from 400.0489 to 473.3114 m3/s for RMSE, from
0.8895 to 0.9210 for NASH, and 0.9444 to 0.9609 for R for
Sobradinho Reservoir and the indices for A4 approximation
ranged from 378.6133 to 507.4274 m3/s and from 1229.3971
to 2114.6630 m3/s for RMSE, from 0.0817 to 0.4887 and from

Table 3 Percentage of
improvement of the forecasting
performance using the WANN
models compared to the ANN
model

Reservoir Inputs RMSE NASH R

Sobradinho A1 −0.46% to −12.56% 0.11% to 2.71% 0.02% to 0.83%

A2 −1.16% to −33.87% 0.26% to 6.48% 0.14% to 3.11%

A3 −0.06% to −79.38% 0.01% to 11.03% 0.06% to 5.26%

A4 −6.13% to −55.53% 1.37% to 9.24% 0.66% to 4.41%

A5 −1.25% to −18.91% 0.29% to 3.94% 0.04% to 1.85%

A6 ― ― ―

A7 ― ― ―

A8 ― ― ―

14 de Julho A1 −0.02% to −0.94% 0.44% to 26.69% 0.38% to 11.43%

A2 −0.08% to −31.59% 2.29% to 755.31% 0.44% to 186.06%

A3 −1.37% to −32.12% 38.76% to 765.60% 30.37% to 189.39%

A4 −0.85% to −26.02% 24.11% to 642.74% 34.20% to 166.77%

A5 −2.74% to −16.02% 76.84% to 418.53% 32.66% to 122.95%

A6 −1.63% to −12.32% 45.92% to 328.36% 24.09% to 102.44%

A7 −1.28% to −6.51% 36.22% to 178.88% 18.45% to 65.57%

A8 −0.03% to −0.52% 0.74% to 14.65% 2.36% to 19.30%

Itaipu A1 −0.33% to −20.60% 0.05% to 10.15% 0.04% to 4.98%

A2 −0.12% to −32.36% 0.07% to 14.91% 0.03% to 7.14%

A3 −6.13% to −68.32% 3.27% to 24.72% 1.80% to 11.62%

A4 −8.03% to −46.53% 4.24% to 19.62% 2.20% to 9.31%

A5 −3.31% to −22.95% 1.79% to 11.16% 0.93% to 5.37%

A6 −0.60% to −9.95% 0.33% to 5.20% 0.18% to 2.53%

A7 ― ― ―

A8 ― ― ―
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0.8177 to 0.9384 for NASH, and from 0.3521 to 0.7000 and
from 0.9058 to 0.9687 for R for the 14 de Julho and Itaipu
reservoirs, respectively.

Finally, it can be concluded that by decomposing a daily
inflow time series up to the fifth level and using the A5 ap-
proximation as ANN inputs, i.e., eliminating the D1, D2, D3,
D4 and D5 details, it is possible to often obtain better forecast-
ing results than using the raw data as input data (regular ANN
model). However, if the D1, D2 and D3 details could be as-
sumed as noise of the raw signal, then the A3 approximation
could be used as ANN inputs, and such procedure would
provide the best WANN forecasting results, regardless of the
river discharge patterns and the chosen mother-wavelet or
wavelet subfamily.
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