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Abstract
Generally, traditional convolutional neural networks (CNN) models require a long training time and output high-dimensional
features for content-based remote sensing image retrieval (CBRSIR). This paper aims to examine the retrieval performance of the
MobileNets model and fine-tune it by changing the dimensions of the final fully connected layer to learn low dimensional
representations for CBRSIR. Experimental results show that the MobileNets model achieves the best retrieval performance in
term of retrieval accuracy and training speed, and the improvement of mean average precision is between 11.2% and 44.39%
compared with the next best model ResNet152. Besides, 32-dimensional features of the fine-tuning MobileNet reach better
retrieval performance than the original MobileNets and the principal component analysis method, and the maximum improve-
ment of mean average precision is 11.56% and 9.8%, respectively. Overall, the MobileNets and the proposed fine-tuning models
are simple, but they can indeed greatly improve retrieval performance compared with the commonly used CNN models.
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Introduction

With the development of Earth observation technology, the
number of high-resolution remote sensing (RS) images has
grown rapidly(Bapu and Florinabel 2020; Shao et al. 2018).
This has led to the challenge of efficiently retrieving objects or
scenes of interest to users from the increased RS image data-
base (Li and Ren 2017; Shao et al. 2020). Therefore, content-
based remote sensing image retrieval (CBRSIR), which can
rapidly acquire similar images from a large-scale dataset by

using RS image features, has become research hotspots in the
RS domain(Ge et al. 2018; Napoletano 2018).

Currently, a considerable literature has grown up around the
theme of image feature extraction for CBRSIR. Initially, themid/
low level features are often directly extracted from RS images to
represent their contents, such as HSV (hue, saturation, value)
color space, bag of visual words, Gabor texture features and
others (Du et al. 2016; Zhou et al. 2018; Zhou et al. 2015).
Subsequently, various high-level deep learning features are be-
coming popular due to their high efficiency and effectiveness
(Hou et al. 2019; Zhou et al. 2017). For example, Zhou et al.
(2018) and Hou et al. (2019) employed various convolutional
neural networks (CNN, i.e. AlexNet, VGG16, VGG19 and
ResNet) to evaluate the performance of their CBRISR datasets,
respectively. As described in the literature(Sudha and Aji 2019;
Tong et al. 2019), scholars mainly useAlexNet, CaffeNet, VGG-
M, VGG16, VGG19, GoogLeNet, ResNet, DenseNet and their
variants or combination to carry out research on CBRSIR.
Surprisingly, the effects ofMobileNets networks, which is nearly
as accurate as VGG16 in image classification while having less
compute intensive(Howard et al. 2017), have not been closely
examined in CBRSIR. In fact, experiments in literature(Qi et al.
2017) demonstrate that retrieval performance for natural images
is improved by adding a hash layer to MobileNets compared to
other hashing methods.
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In general, the above high-level features directly extracted
from deep learning methods are high dimensional with thou-
sands of codes, which can lead to low retrieval efficiency,
especially in a large image database(Ge et al. 2017; Tong
et al. 2019). Therefore, several studies have attempted to com-
press high-level features as low dimensional features for better
retrieval performance(Wang et al. 2020). For instance, Ge
et al. (2017) used principal component analysis (PCA)method
to compress CNN features to different dimensions and indi-
cated that high-level features with 32 dimensions perform bet-
ter. Tong et al. (2019) also demonstrated that the PCAmethod
is effective for compressing CNN features and the optimized
dimensions for CBRSIR are in the range of 8–32.

Unlike the above methods using the PCA compression,
Xiao et al. (2017) treated the fully connected layers of CNN
methods as ordinary neural networks and set 4096, 1024, 256,
64 dimensions of the second fully connected layer of Alexnet
and VGG-16 to evaluate the retrieval performance. They con-
cluded that the 64-dimensional features achieve the best re-
trieval results compared with other dimensional features and
PCA-based features. Similarly, Cao et al. (2020) added a fully
connected layer with a lower dimension in their proposed

triplet network to condense the final features and also used
PCA dimension reduction. Experimental results show that the
PCAmethod has better performance than the fully connected-
based method and the 32-dimensional features achieve the
best retrieval results. Overall, there seems to be some evidence
to indicate that the final fully connected layers can be treated
as an ordinary neural network and directly modifying its di-
mension can achieve a similar dimensionality reduction effect
as PCA methods(Cao et al. 2020; Hinton and Salakhutdinov
2006; Xiao et al. 2017). However, far too little attention has
been paid to dimensionality reduction by modifying the di-
mension of the final fully connected layers in other deep learn-
ing methods.

Inspired by this and the efficient learning ability of the
MobileNets, this paper investigates the retrieval performance
of the MobileNets and exploits low dimensional features from
the fine-tuning MobileNets for CBRSIR by changing the di-
mensions of the final fully connected layer. Our main contri-
butions are as follows.

(1) We provide comprehensive comparisons between
MobileNets and other commonly used deep learning

Table 1 Details of the six
benchmark datasets used in this
paper

Dataset Class Image number Images per class Sources Size

NWPU 45 31,500 700 Google Earth imagery 256

AID 30 10,000 220–420 Google Earth imagery 600

PatternNet 38 30,400 800 Google Earth imagery 256

VArcGIS 38 59,071 1504–1904 ArcGIS World Imagery 256

VBing 38 58,944 1500–1880 Bing World Imagery 256

VGoogle 38 59,404 1502–1847 Google imagery map 256

Fig. 1 Architecture of the original and fine-tuning MobileNets for CBRSIR
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methods on the six benchmark datasets, by giving a
summary of retrieval performance and training time.
Experimental results show that MobileNets achieves
better retrieval performance than other CNN models
while having shorter training time.

(2) We fine-tune the MobileNets to learn low dimensional
representations by directly changing the dimensions of
the final fully connection layer, and give the optimal
dimensions of the fine-tuning model by experimental
comparison. Experimental results indicate that 32-
dimensional features achieve the best result, compared
with the original MobileNets and PCA compression
method.

The remainder of this paper is organized as follows.
Section II outlines the methodological framework of the
fine-tuning MobileNets, followed by extensive experiments
and analysis in Section III. Section IV provides conclusions
and future work.

Fine-tuning MobileNets networks for CBRSIR

MobileNets is a recent efficient CNN model, which is de-
signed for various recognition tasks on mobile devices or un-
der limited hardware conditions (Howard et al. 2017). It re-
quires less computation than VGG16 model with only a small
reduction in classification accuracy on the imagenet dataset
(Howard et al. 2017). The reduction in classification accuracy
may be the reason why no scholars have used the MobileNets
in CBRSIR, whose main goal is to improve retrieval accuracy.

Figure 1 shows the architecture of the original and fine-
tuning MobileNets for CBRSIR. Compared with other CNN
models, it contains 13 depthwise separable convolutional
layers and 13 pointwise convolutional layers, each of which
is followed by each depthwise separable convolutional layer

and is omitted in Fig. 1. Besides, each convolutional layers is
followed by a batchnorm and ReLU nonlinearity. In the orig-
inal MobileNets, the final fully connected layer is 1024 di-
mensions. In this paper, the final fully connected layer of the
MobileNets is treated as output layer of ordinary neural net-
works and is fine-tuned to 512, 256, 128, 64, 32, 16, 8 and 4
dimensions, respectively, for learning low dimensional fea-
tures. To evaluate the retrieval performance of the fine-
tuning MobileNets, the PCA method is also adopted to com-
press the high dimensional features from the original
MobileNets.

Experiments and analysis

The experiments are implemented by using the Keras library
with TensorFlow backend in Python language, and performed
on the same desktop with Intel Core 3.70 GHz i7-8700K
processor and 2 NVIDIA GeForce GTX1080Ti GPUs.

Datasets and experimental setup

Six benchmark datasets of NWPU (Cheng et al. 2017),
AID(Xia et al. 2017), PatternNet(Zhou et al. 2018),
VArcGIS, VBing and VGoogle(Hou et al. 2019) are selected
as the experimental data to demonstrate the retrieval accuracy
of the MobileNets. Table 1 reports the details of these public
datasets. As shown in Table 1, there are both datasets with the
same source and different classification systems, as well as
datasets with different sources and the same classification sys-
tems in the six datasets. This diversity can promote the cred-
ibility of evaluation results.

In total, six kinds of current state-of-the-art CNN models,
which have been widely used for RSIR, are selected as com-
parison standard. In detail, our selections include VGG16,
VGG19, ResNet50, ResNet101, ResNet152 and

Table 2 The results of the seven deep learning models on the six datasets

PatternNet AID NWPU Vgoogle VArcGIS VBing

ANMRR mAP ANMRR mAP ANMRR mAP ANMRR mAP ANMRR mAP ANMRR mAP

VGG16_f1 0.6383 0.3070 0.8159 0.1469 0.8689 0.1108 0.6681 0.2641 0.6869 0.2444 0.6702 0.2592

VGG16_f2 0.5031 0.4407 0.7183 0.2184 0.7421 0.2040 0.5493 0.3816 0.5712 0.3571 0.5424 0.3860

VGG19_f1 0.6625 0.2992 0.8229 0.1409 0.8681 0.1092 0.7101 0.2445 0.7216 0.2311 0.7045 0.2430

VGG19_f2 0.4468 0.5034 0.7308 0.2081 0.7381 0.2047 0.4822 0.4534 0.4945 0.4386 0.4740 0.4579

ResNet50 0.2913 0.6542 0.6885 0.2042 0.7189 0.1988 0.4066 0.5004 0.4535 0.4497 0.4009 0.5074

ResNet101 0.1208 0.8548 0.5916 0.2985 0.5778 0.3360 0.1972 0.7498 0.2188 0.7186 0.2136 0.7237

ResNet152 0.1148 0.8625 0.5724 0.3177 0.5565 0.3592 0.2014 0.7461 0.2012 0.7403 0.1893 0.7550

DenseNet 0.1834 0.7795 0.5895 0.2969 0.5857 0.3222 0.2921 0.6323 0.3294 0.5881 0.2961 0.6261

MobileNets 0.0208 0.9745 0.1708 0.7616 0.2359 0.7151 0.0569 0.9255 0.0638 0.9128 0.0664 0.9117
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DenseNet201. In particular, the first and second fully-
connected layers of VGG16 and VGG19 are both selected
as features for comparisons, which are named as VGG16_f1,
VGG16_f2, VGG19_f1 and VGG19_f2, respectively. For the
ResNet and DenseNet201, the last global average pooling
layer is selected as features.

In our experiments, the batch size is 32, the initial learning
rate is 0.00001 and epoch number is set to 20 as described in
literature (Tong et al. 2019). Besides, the most commonly
used categorical cross entropy is selected as loss function to
measure difference between actual output (probability) and
the desired output (probability). 50 images from each class
in the six datasets are randomly selected as query images

and the remaining images are randomly split into a training
set and a validation set, respectively. In particular, 50 images
from each class are separated for validation set and the rest
images are served as training set. Taking VGoogle dataset as
an example, a total of 1900,1900 and 55,604 images are se-
lected query images, validation set and training set,
respectively.

Euclidean distance is used to measure similarity in our
experiments. The nearer the distance between visual features
of query image and other images is, the more similar these
images are, and vice versa.

Average Normalized modified retrieval rank (ANMRR),
mean average precision (mAP), precision at k (Pk, the per-
centage of the number of ground truth images within the top k
position of the retrieval results), which are three kinds of stan-
dard retrieval measures, are adopted to evaluate the
results(Cao et al. 2020). The k value is set as 5,10,20,50,100
and 1000 in this paper. Especially, lower values of the
ANMRR indicate better retrieval performance, while for
mAP and Pk, higher is better(Hou et al. 2019; Zhou et al.
2018).

Investigating retrieval performance of theMobileNets

We perform several experiments to investigate retrieval
performance of the MobileNets. Table 2 shows the per-
formance of the seven deep learning models on the six
datasets. The best performance of these models is
achieved by the MobileNets on the six datasets. Except

(a) PatternNet (b) AID (c) NWPU

(d) VGoogle (e) VArcGIS (f) VBing
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Fig. 2 Results of precisions at top 5,10,20,50,100 and 1000 on the six datasets

Table 3 The training time of the seven deep learning models on the six
datasets

Training time (second)

PatternNet AID NWPU VGoogle VArcGIS VBing

VGG16 4508 1567 4336 9246 9115 9163

VGG19 4686 1570 4579 9642 9569 9538

ResNet 50 4552 1576 4135 9330 9274 9445

ResNet101 6269 1831 6411 12,646 12,897 12,850

ResNet 152 8704 2460 8846 17,995 17,890 17,838

DenseNet 10,425 2246 7904 18,078 18,188 18,328

MobileNets 2339 1533 2497 4806 5005 4770
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for the MobileNets, the ResNet152 performs best.
However, the mAP values of the MobileNets improve
by 11.2% to 44.39% than the ResNet152, which indicates
that the retrieval performance of the MobileNets is much
higher than other CNN models.

Figure 2 shows the results of precisions at top
5,10,20,50,100 and 1000 on the six datasets. We can see
that the MobileNets still performs much better than other
models when only the top 5,10,20,50,100 and 1000 re-
sults are returned. The top 100 precisions of the
MobileNets on the PatternNet, VGoogle, VArcGIS and
VBing datasets all achieve between 97.71% and 99.07%,
the other two datasets reach between 83.92% and 86.81%,
while the top 100 precisions of other CNN models are
between 21.28% and 95.02%.

To test the efficiency of the various models, we directly
select training time under the same conditions as an evaluation
indicator rather than floating-point operations (FLOPs). This
is because that the actual training time of models with similar
FLOPs can vary by at least one order of magnitude(Almeida
et al. 2019). Table 3 represents the training time of the seven

deep learningmodels on the six datasets. It can be seen that the
MobileNets spends less training time than other models with a
maximum difference of 4 times, especially for the larger-scale
datasets of VGoogle, VArcGIS and VBing.

Overall, the above comprehensive comparisons further il-
lustrate that the MobileNets achieves better retrieval perfor-
mance than other deep learning models while being smaller
training time.

Exploiting low dimensional features from the fine-
tuning MobileNets

To exploit low dimensional representations from the fine-
tuning MobileNets, we conduct several experiments with dif-
ferent dimensions. Table 4 shows the results of different di-
mensions of the fine-tuningMobileNets. It can be seen that the
best low dimensions of the fine-tuning MobileNets are 32.
Specifically, the maximum improvement of the mAP value
is 11.56% compared with the mAP of the original
MobileNets. Besides, the result of 16, 64 and 128 dimensions
are very close to the results of 32 dimensions.

To prove that the precision of the top retrieval results was
not sacrificed in the fine-tuningMobileNets, we take VGoogle

Table 4 The results of different dimensions of the fine-tuning MobileNets

Dimensions PatternNet AID NWPU VGoogle VArcGIS VBing

ANMRR mAP ANMRR mAP ANMRR mAP ANMRR mAP ANMRR mAP ANMRR mAP

4 0.1670 0.8249 0.5204 0.4086 0.5096 0.4307 0.2643 0.7144 0.2329 0.7366 0.2448 0.7341

8 0.0347 0.9621 0.2982 0.6307 0.2731 0.6893 0.0373 0.9550 0.0543 0.9353 0.0439 0.9458

16 0.0108 0.9870 0.1677 0.7781 0.1590 0.8105 0.0202 0.9732 0.0237 0.9680 0.0250 0.9667

32 0.0095 0.9882 0.1384 0.8094 0.1384 0.8307 0.0183 0.9746 0.0215 0.9700 0.0247 0.9659

64 0.0121 0.9851 0.1403 0.8039 0.1611 0.8037 0.0221 0.9693 0.0246 0.9644 0.0286 0.9595

128 0.0122 0.9850 0.1425 0.7980 0.1822 0.7782 0.0298 0.9594 0.0317 0.9546 0.0349 0.9518

256 0.0137 0.9831 0.1687 0.7657 0.2022 0.7542 0.0387 0.9482 0.0392 0.9447 0.0481 0.9350

512 0.0176 0.9785 0.1669 0.7678 0.2227 0.7306 0.0487 0.9355 0.0517 0.9284 0.0582 0.9230

1024 0.0208 0.9745 0.1708 0.7616 0.2359 0.7151 0.0569 0.9255 0.0638 0.9128 0.0664 0.9117

Table 5 Different dimensions’ precisions at top 5,10,20,50,100 and
1000 on VGoogle dataset

Dimensions P5 P10 P20 P50 P100 P1000

4 0.8747 0.8751 0.8745 0.8723 0.8676 0.7646

8 0.9877 0.9879 0.9868 0.9857 0.9846 0.9686

16 0.9904 0.9905 0.9904 0.9901 0.9893 0.9788

32 0.9937 0.9929 0.9925 0.9917 0.9907 0.9797

64 0.9919 0.9915 0.9913 0.9905 0.9896 0.9778

128 0.9912 0.9903 0.9898 0.9889 0.9877 0.9716

256 0.9918 0.9910 0.9899 0.9886 0.9866 0.9639

512 0.9914 0.9904 0.9894 0.9876 0.9856 0.9564

1024 0.9919 0.9911 0.9890 0.9862 0.9837 0.9496
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Fig. 3 Training time of different dimensions of the fine-tuning
MobileNets on VGoogle dataset
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dataset for example and give its different dimensions’ results
of precisions at top 5,10,20,50,100 and 1000 in Table 5. We
can see that 32 dimensions of the fine-tuning MobileNets also
achieve the best performance at top 5,10,20,50,100 and 1000
results, while it only takes around 2 min longer than the orig-
inal MobileNets (as shown in Fig. 3).

Besides, we also adopt the PCA method to compress the
high dimensional features from the original MobileNets into
32 dimensions for comparisons. Table 6 shows the results of
32 dimensions of the fine-tuning MobileNets and PCA-based
method. It can be seen that the fine-tuningMobileNets offers a
slightly better performance than PCA-based method and the
maximum improvement of the mAP value is 9.8%.

Conclusions

In this paper, we examine the retrieval performance of the
MobileNets model and fine-tune it by changing the dimen-
sions of the final fully connected layer to learn low dimen-
sional representations for CBRSIR. Experimental results indi-
cate that the MobileNets outperforms other commonly used
CNN models in term of retrieval accuracy and training speed.
It also can be concluded that 32-dimensional features of the
fine-tuning MobileNets achieves better retrieval performance
comparedwith the originalMobileNets and PCA compression
method. Our future work will concentrate on exploiting low
dimensional features from other MobileNets models and ex-
ploring their applications in multilabel remote sensing image
retrieval.
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