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Abstract
Hyperspectral images are being used in various fields. The main objective of the present study was to use hyperspectral imagery
from Hyperion with Spectral Angle Mapper (SAM) and Support Vector Machine (SVM) for discriminating the landuse/
landcover classes in Kozhikode district, Kerala which constitutes a combination of different physiographic land features.
Hyperion functions from a space platform with modest surface signal levels and a full column of atmosphere persuading the
signal, hence, the data derived from this demand careful pre-processing to minimize sensor and atmospheric noise. The atmo-
spheric correction using MODTRAN based FLAASH module as well as the data dimensionality reduction by Principal
Component Analysis (PCA) made the Hyperion to allow discrete reflectance values. Advanced classifiers like SAM and
SVM could describe the pattern and spatial distribution of landcover. From the accuracy assessments, SVM showed better
classified result than SAM with overall accuracy 85.6% and kappa coefficient 0.89. This study suggests that SVM can be used
for landuse/landcover classification of hyperspectral data with high accuracy.
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Introduction

Satellites have been launched to move ahead in our under-
standing on Earth’s environment. These active and passive
satellite sensors imprint data ranging from visible to micro-
wave regions of electromagnetic spectrum. A broad range of
satel l i tes, such as Moderate Resolution Imaging
Spectroradiometer (MODIS); Landsat Thematic Mapper and
Enhanced Thematic Mapper (TM/ETM+); Global Imager
(GLI); ResourceSAT; Advanced Land Imager (ALI) and
Hyperion, are often used in different fields viz., agriculture,

geology, forest, water resources, marine studies, atmospheric
analysis, climatological/ meteorological and surveillance stud-
ies (Liu et al. 2009) and these are of multispectral /
hyperspectral in nature. In general, multispectral remote sens-
ing data have been used worldwide for various applications.
However, one of the major limitations of the multispectral data
is that the sensors function in range of wider wavelength bands
thus have restrictive amount of spectral information available.

However, hyperspectral remote sensing is the quickly
emerging and promising technology in the field of remote
sensing. The major advantage of hyperspectral data is it is
having a wider range of remote sensing applications by giving
plentiful information than the conventional multispectral data.
Hyperspectral images give a absolute depiction of the re-
sponse of the surfaces, generally in the visible and infrared
range. These sets of data permitus to supervise the processes
happening at the surface in a non-intrusive way, whatever may
be the scale i.e., both at the regional (micro), national and even
at global level (macro level) (Lillesand et al. 2009).

Hyperspectral imaging sensors are skillful enough for giv-
ing robust variations of spectra for the materials in the surface,
using the signatures obtained from numerous contiguous spec-
tral channels in the entire visible-to-near infrared (VNIR) re-
gions of the electromagnetic spectrum, which in turn help to
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distinguish those materials from one another. The bands are
very narrow (5 μm to 10 μm) in the hyperspectral images
and it is based on the choice of the imaging sensor, and hence
construct the images with very high spectral resolutions than
the conventional multispectral images.

In general, hyperspectral images (HSI) are possessing high
resolution and it is from decomposing the reflected sonar ra-
diance into large number of bands with minor spectral resolu-
tions, hence the spectra of the different land objects shows a
nearly continuous shape (Liangpei and Du 2012).With
hyperspectral images, classification of various land objects
types inclusive of subclass types by mixing both the spectral
and spatial information is possible. Currently this is the only
technology having a such massive capacity and accurate clas-
sification and hence this technology is finding more and more
users / researchers for different purposes (Landgrebe 2003;
Liangpei and Du 2012; Tuia et al. 2015).

Latest trends and advances in hyperspectral remote sensing
based forest tree classification have recently been summarized
in Fassnacht et al. 2016. They reported that hyperspectral data
tend to consider more species and result in higher accuracies.
It has also been found that continuous spectral information
contained in hyperspectral data seems even more suitable to
differentiate tree species with similar spectral properties
(Dalponte et al. 2012; Ghosh et al. 2014;Trier et al.
2018;Wietecha et al. 2019).

Hyperspectral sensors document the reflected electromag-
netic energy from the surface of earth in the entire electromag-
netic spectrum extending from the visible wavelength region
through the near-infrared and mid-infrared region (0.3 μm to
2.5 μm) in tens to hundreds of narrow (in the order of 10 nm)
contiguous bands. Such narrow bandwidths results in an al-
most continuous and comprehensive spectral response for each
pixel giving precise and accurate information about its constit-
uents and having an advantage over multispectral imaging.

Land cover, Land use maps produced from image classifi-
cation are the most commonly used maps. These maps are
mainly used for urban planning (Taubenböck et al. 2013;
Jacobson et al. 2015), land development activities, agriculture
surveys (Alcantara et al. 2012) or surveying of deforestation
(Vaglio Laurin et al. 2014) etc. However, the quality of land
cover maps is of prime importance and hence many re-
searchers are working on image classification algorithms and
their impact on the final maps, confirmed by ground reality
(Plaza et al. 2009; Mountrakis et al. 2011; Camps-Valls et al.
2014; Linda and Strand 2014; Jacobson et al. 2015; Bradley
et al. 2016). Improving the quality of maps derived from HSI
is more important, as hyperspectral systems are often high
dimensional (number of spectral bands acquired), spatially
and spectrally correlated and affected by noise (Camps-Valls
et al. 2014). The unique features that pose hyperspectral data
challenges to image interpretation are mainly its higher di-
mensionality, the need for calibration and the redundancy in

the information. Generally land cover maps are smooth, in the
sense that neighboring pixels tend to belong to the same type
of land cover (Schindler 2012). But the spectral signatures of
pixels of a same type of cover tend to become more and more
uneven, especially with the increase of spatial resolution.
Hence, hyperspectral imaging classification systems have
the delicate task of describing a smooth land cover using spec-
tral information with a high within-class variability.

However, the high spectral resolution of a hyperspectral
sensor allows us to capture small deviations in the spectral
response of the materials thus aiding in their identification.
Several techniques viz., Artificial Neural network (ANN),
SAM- Spectral Angle Mapper and SVM -Support Vector
Machine; k-nearest neighbors (KNN), sparse representation
and maximum likelihood etc. have been developed to analyze
hyperspectral data (Hegde et al. 2014), which has advanced
and well-organized classification algorithms. Besides differ-
ent machine learning techniques are also available for classi-
fication. However in this study we have attempted SAM and
SVM for landuse/landcover classification. By keeping all
these information’s, a study was initiated with the objective
of analyzing how much efficiently a hyperspectral image can
give information regarding the landuse/landcover within a
specific area and comparing that with multispectral image.

Materials and methods

Study area and datasets

Kozhikode district lies betweenNorth latitudes 11° 08′ and 11°
50′ and East longitudes 75 ° 30′ and 76 ° 8′. It is falling in parts
of Survey of India Toposheets 58 A and 49 M. It is one of the
coastal districts of Kerala. Kozhikode district is bounded on the
north by Kannur district, on the east by Wayanad district, on
the south by Malapuram district and on the west by
Lakshadweep sea. The district can be divided into three geo-
graphical regions - highlands, midlands and low lands.
Kozhikode has a humid tropical climate with a very hot season
extending from March to May. The average annual rainfall for
the district is 3438 mm. The maximum temperature in the
month of May comes to 36 °C. Humidity is very high in the
coastal region. Majority of the population of the district is
dependent directly or indirectly on agriculture for their liveli-

however a drastic reduction in paddy area occurred during the
past decade. Being the first space borne hyperspectral
instrument to acquire both visible near infrared and short
wave infrared through two spectrometers and a single
telescope, the data from EO-1 Hyperion had been used for this
work. The high resolution hyperspectral image with a 30-m
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hood. The main crops grown in the district are paddy, coconut,
pepper, cashew, tapioca, arecanut and plantation crops like
rubber. Paddy occupies the largest area among annual crops,



resolution, is being provided by The Hyperion and it is having
220 spectral bands from 0.4 to 2.5 μm. The Hyperion provide
detailed spectral mapping across all 220 channels with high
radiometric accuracy and it can cover a land area of 7.5 km
by 100 km per image.

In order to allow cross calibration, the last 20 bands of
VNIR sensor are overlapping with the first 20 bands of
SWIR sensor. For hyperspectral analysis, EO-1 Hyperion
product: E01H1450522007049110PZ_1R from United
States Geological Survey (USGS) contains data files either
in Hierarchical Data Format (HDF) or Geographic Tagged
Image-File Format (GeoTIFF) were used. Location map of
the study area with the Hyperion image was provided in
Fig. 1. Table 1 shows the details regarding the dataset attri-
butes and data values.

Data processing methodology

The methodology included major steps as in Fig. 2. The ob-
jective of pre-processing is to make remotely sensed data
amenable for efficient and reliable information extraction.
As discussed in the introduction part, processing of hyper
spectral image of high dimension is a difficult task and mainly
the intricacy is a result of huge volume of data in abundant
spectral bands. Besides, sensor and atmospheric noise needs

to be reduced / minimized to arrive at a useful data and infor-
mation, since Hyperion operates from a space platform with
modest surface signal levels and a full column of atmosphere
attenuating the signals. Specifically, the Hyperion dataset had
to be pre processed for abnormal pixels, striping and smiling
prior to the atmospheric correction. Mainly pre-processing of
these images is done to remove errors occurred during acqui-
sition by the sensor and selection of bands to reduce the data
dimensionality and to minimize the complexity in the compu-
tation. Once the preprocessing stage is over, the Hyperion
image is classified using Spectral Angle Mapper and
Support VectorMachine techniques as in Fig. 2. For this work,
the Hyperion data analysis and classification had done
through image processing software ENVI 5.0.

Fig. 1 Location Map of the study area with the Hyperion Image

Table 1 Hyperion data set attributes and attribute values

Data Set Attribute Attribute Value

Entity ID EO1H1450522007049110PZ_SGS_01

Acquisition Date 2007/02/18

Cloud Cover 10% to 19% Cloud Cover

Orbit Path 145

Orbit Row 52

Fig. 2 Work flow in Step 1
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The Hyperion EO-1 L1R (L1R-Level 1 Radiometric) prod-
uct from the United States Geological Survey (USGS)
website, for the study region had been acquired and it contain
altogether 220 bands, however, calibration was done for only
196 bands. This is because merely 196 unique channels could
be found since there is an overlap between the VNIR and
SWIR focal planes (Beck 2003). The specific bands are 8–
57 for the VNIR and 79–224 for the SWIR, which have been
selected manually and used for calibration. The reason for not
calibrating all 220 channels is mainly due to the detectors’ low
responsivity. For retrieving reflectance values, atmospheric
correction was applied to the resized data using Fast Line-
of-sight Atmosphere Analysis of Spectral Hypercube
(FLAASH) as adopted in the ENVI package. After
FLAASH, bands having low reflectance values were removed
manually, which made the number of bands to 145.

Geometric correction of the data

For the accurate classification, the data should be geo-
metrically corrected. Nowadays, the data from many sensors
are captured with comprehensive information such as details
of acquisition, platform geometry etc., it will help in geometric
rectification using modelsand for the registration of maps. In
order to rectify the Hyperion image, a geo referenced IRS-P6
LISS III image of the study area has been used as the reference
image. The projection for the study area is UTM at Zone
43(North) and Datum: WGS84.

Dimensionality reduction

For the application of land-use or land-cover mapping the
objective may be to use supervised or unsupervised classifi-
cation of the hyperspectral image, which, implies that it is not
essential that the categorization is implemented in the spectral
space. However, since there is a difficulty in verification of
entire ground truth, low-dimensional feature space image clas-
sification may be preferred. There are several statistical tech-
niques viz., principal component analysis (PCA), minimum
noise fraction transformation or independent components ro-
tation, which will aid in classification. For this work, band
reduction was achieved with Principal Component Analysis.
PCA is a statistical technique, which is used to highlight the
variations in the datasets and bring out well-built patterns in a
dataset. Mainly this will help to explore the data in different
forms and also to visualize the same.

In short, PCA smooth the progress of the simplification of
large data sets. The data will be transformed orthogonally to
change aset of observations of possibly correlated variables
into a set of uncorrelated variables (linearly values) called
principal components (Vidhya et al. 2014). This is done by
identifying a new position of orthogonal axes that have their
source at the data mean and are changed to a new coordinate

system so that the spectral variability is maximized. This will
result in PC bands of linear combinations of the unique orig-
inal spectral bands and are uncorrelated. In this technique, It is
feasible to calculate the same number of output PC bands as
input spectral bands. The output will have the largest percent
of data variance for the first PC band and the second PC band
contains the second largest data variance, and likely to contin-
ue in such a way. The last and few final PC bands will be noisy
since they contain very small variance, much of which is due
to noise in the original unique spectral data. The resultant PCA
bands will have more colorful color composite images than
spectral color composite images since the data is uncorrelated.
The software ENVI can be used to complete forward and
inverse PC rotations.

Classification by SAM and SVM

ENVI software was used for the classification of the Hyperion
data. Area of interests of each specific class was given using
the ROI tool. Barren land, Reserved forests, Settlement, Rock
exposure, Coconut, Rubber plantation, Crop land, Water body
and Coconut dominant mixed crop are the classes considered
in the study region. The classification algorithms used are
SAM and SVM. Spectral Angle Mapper (SAM) uses an n-D
angle to match pixels to reference spectra and it is based on a
physical spectral classification (Kruse et al. 1993). This tech-
nique matches up to the angle between the endmember spec-
trum vector and each pixel vector in n-D space. Smaller angles
represent closer matches to the reference spectrum. Pixels
which are away than the particular maximum angle threshold
in radians are usually not classified. This technique is compar-
atively insensitive to albedo effects and light (illumination)
when used on final calibrated reflectance data. Endmember
spectra used by SAM will be derived from spectral librariesor
ASCII files, or can be extracted directly from an image (as
ROI average spectra). The spectral angle is calculated using
the following equation,
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Where.

n is the number of spectral bands,
r as the reflectance of the reference spectrum and
t is the reflectance of the actual spectrum

Another method used in the study is, the Support
Vector Machine (SVM), which is also a classification
method of remote sensing images based on the statistical
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information (Corinna and Vladimir 1995). This is a super-
vised classification method results in good classification
results from complex and noisy data by using statistical
learning theory. This method distinguishes the classes
with a decision surface that take full advantage of the
margin between the classes. The surface is termed as op-
timal hyperplane, and the points of data closest to the
hyperplane are named as support vectors. These support
vectors are the vital elements of the training set. SVM
comprises a penalty parameter that permits a certain de-
gree of misclassification, which is predominantly impor-
tant for non-separable training sets. This penalty parame-
ter controls the trade-off between training errors allowed
and forced rigid margins. It creates a soft margin that
allows some misclassifications, such as some training
points on the wrong side of the hyper plane. If the value
of the penalty parameter is increased means then that will
escalates the errors in misclassifying points and forces the
creation of a more accurate model that may not generalize
well. As same as in SAM, using ROI Tool in ENVI
Classic, training regions was defined for each class.

Results and discussions

Selecting informative bands

The Hyperion data contain 220 bands at the initial stage. It is
through several processing steps, the bands having more in-
formation are selected. Figure 3 shows separate spectral pro-
files for the nine different classes selected for the current study.
Atmospheric correction method, FLAASH were used to
achieve the reflectance values from the same, wherever the
downloaded data have radiance values. The following Fig. 4
shows the output after each pre-processing stages of the
Hyperion image i.e. from the downloaded data to the stage
of dimensionality reduction by PCA.

Geometric correction of image

In order to rectify the Hyperion image, a georeferenced IRS-
P6: LISS III image of the study area acquired by USGS has
been used as the reference image. The projection for the study
area is UTM at Zone 43(North) and Datum: WGS84.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 3 Spectral profiles for the nine different classes (a) Water body (b) Settlement (c) Coconut (d) Rubber plantation (e) Crop land (f) Reserved Forests
(g) Coconut dominant mixed crop (h) Barren land (i) Rock exposure
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Undergoing SAM and SVM classification

An effort was made to classify dimensionality reduced hype-
rion image using SAM and SVM. SAM and SVM algorithm
were used for classification initially with the training samples
directly selected from the image. Some sample sites which are
representative were recognized covering nine major land cov-
er classes existing in the study area. The land cover classes
included Barren land, Reserved forests, Settlement, Rock

exposure, Coconut, Rubber plantation, Crop land, Water body
and Coconut dominant mixed crop.

The Fig. 5 shows the classified output image for both SAM
and SVM.SVM classifier performed much better than SAM
classifier. When compared, different land use classes of the
study area derived using SAM was unsuccessful in spatially
depicting the specific land use. Even if there are nine classes
distinguished at the output stage, percent of each classified
class is different in both. Table 2 shows the percentage of

Fig. 4 a Hyperion FCC b
Hyperion after FLAASH c
Hyperion after Geometric
Correction d Hyperion after PCA

Fig. 5 a SVM classified Hyperion b SAM classified Hyperion
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classification performance for the Hyperion data. The main
limitation of SAM method of classification is the unclassified
pixels within the spectral angle threshold of 0.12 rad. The
SVM classifier was able to classify major land use classes
including Coconut, Crop land, Rock exposure and Reserved
forests more specifically and accurately whereas the SAM
classification showed it poor.

Similarly, the landuse/landcover classes like Settlement
and Barren land could be uniquely delineated in SVM. The
classification result was verified with the data collected from
ground truth. Table 3 shows the overall accuracy and the kap-
pa coefficient calculated for the SVM and SAM classifiers.
Table 3 describes the superiority of SVM over SAM. The
overall accuracy measured are 85.6% and 64.7% for SVM
and SAM, and the kappa coefficient calculated is as 0.89 for
SVM and 0.60 for SAM, respectively. In SAM, the spectral
confusion in pixels while choosing the end members from the
image led to underestimation and overestimation errors.

Apart from this, the main advantage of SVM over SAM is
its ability to work with smaller training samples. The major
reason which may be attributed for this precise classification
accuracy of landuse/landcover classes by SVM is the fact that
this classifier has been designed in such a way to identify an

optimal hyper plane for class separation (George et al. 2012).
The SVM algorithm is sensitive to the size of training set and
dimensionality of the data set. The SVM is a supervised non-
parametric classification algorithm based on statistical learn-
ing theory. It provides some system-inherent advantages in
comparison to otherclassification algorithms. Possibly the
aforementioned points yields good classification results from
complex and noisy data by SVM method. However, the rea-
son for the poor output of SAMmay be due to higher variation
in reflectance values of classes.

Conclusion

The present study was to explore how efficiently a
hyperspectral data like Hyperion can be more informative
for landuse/landcover classification. The pre-processing steps
for Hyperion data included atmospheric correction using
MODTRAN based FLAASH module and Principal
Component Analysis (PCA) for data dimensionality reduc-
tion. Using the training samples from the image itself, ad-
vanced classifiers like Support Vector Machine (SVM) and
Spectral Angle Mapper (SAM) made the classification of
landuse/landcover classes for the Hyperion. The landuse/
landcover classes included Barren land, Reserved Forests,
Settlement, Rock exposure, Coconut, Rubber plantation,
Crop land, Water body and Coconut dominant mixed crop.
SVM classifier showed more specific and consistent result
with higher precision classification and more accuracy indi-
cating its superior performance in classification of landuse/
landcover. SAM resulted in more unclassified pixels and poor
classification accuracy. The present study indicated the poten-
tial of hyperspectral data in providing more spectral informa-
tion by classifying a specific area with nine landuse/landcover
classes.
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