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Abstract
In this study a newmethod for predicting soybean yield over large spatial scales, overcoming the difficulties of scalability, is proposed.
The method is based on the so-called “simplified triangle” remote sensing technique which is coupled with a crop prediction model of
Doorenbos and Kassam 1979 (DK) and the climatological water balance model of Thornthwaite and Mather 1955 (ThM). In the
method, surface soil water content (Mo), evapotranspiration (ET), and evaporative fraction (EF) are derived from satellite-derived
surface radiant temperature (Ts) and normalized difference vegetation index (NDVI). Use of the proposed method is demonstrated in
Brazil’s Paraná state for crop years 2002–03 to 2011–12. The soybean crop yield model of DK is evaluated using remotely estimated
EF values obtained by a simplified triangle. Predicted crop yield by the satellite measurements and from archived Tropical Rainfall
Measuring Mission data (TRMM) and European Centre for Medium-Range Weather Forecasts (ECMWF) data were in good agree-
ment with the measured crop yield. A “d2” index (modified Willmott) between 0.8 and 0.98 and RMSE between 30.8 (kg/ha) to 57.2
(kg/ha) was reported. Crop yield predicted using EF from the triangle were statistically better than the DK and ThM using values of the
equivalent of EF obtained from archived surface data when compared with the measured soybean crop data. The proposed method
requires no ancillary meteorological or surface data apart from the two satellite images. This makes the technique easy to apply
allowing providing spatiotemporal estimates of crop yield in large areas and at different spatial scales requiring little or no surface data.

Keywords Soybean yield modeling . Satellite measurements . Remote sensing . Evapotranspiration . Crop yield in large areas .
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Introduction

Soybean crop is one of the most economically significant crops
worldwide (Mammadov et al. 2018). As such, establishing an

easy to apply and time-effectivemodeling approach for predicting
soybean yield is essential for stable markets at global scale
(Pagano andMiransari 2016). InBrazil in particular, soybean crop
has been the key crop in the increase of the area and grain
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production, totaling a production of 111.5 million tons for the
2018 harvest year alone. In order to determine agricultural pro-
duction, crop yield models are often used. Those models usually
consider meteorological variables, agricultural practices, and soil
parameters as the main physically-driven conditions for the agri-
cultural cyclemodelling (Melo et al. 2008; Ferreira andRao 2011;
Gusso et al. 2017). Specifically, for soybean multiple linear re-
gression models are often utilized to explain yield variations (Tao
et al. 2008; Mercante et al. 2010; Dalposso et al. 2016).

Themost common approach for crop yield estimation is based
on the crop water production functions (CWPF). CWPF relate
crop yield and water in terms of evapotranspiration and applied
water. Crop yield models can also incorporate Geographical
Information Systems (GIS) and geospatial data analysis tech-
niques to analyze agrometeorological data (Berka and Rudorff
2003). In addition, artificial neural networks (ANNs) are widely
applied for estimating crop yield. This is due to their ability to
model highly nonlinear systems in which the relationships be-
tween variables are unknown or very complex (Goyal 2013;
Safa et al. 2015; Kourgialas et al. 2017). Recently, studies have
evaluated the use of ANNs as an estimating tool of the produc-
tivity of soybean cultivars based on different agricultural practices
(e.g. Alves et al. 2018). Some of the key challenges that may
prevent scalability of such modeling approaches include the dif-
ficulty of establishing an extensive monitoring network on large
spatial scale and long computational times of models. Moreover,
meteorological data are often not available at the same time and
spatial scale, while the aggregation of agrometeorological param-
eters at large spatial scale is leading to high uncertainty in model-
ing simulation (Sims et al. 2008).

To overcome these challenges, satellite remote sensing
datasets could be used in synergy with ground-based observa-
tions (Petropoulos and McCalmont 2017; Bao et al. 2018).
Specifically, the use of simplified spectral models based on
the crop cycles has shown a promising potential in crop har-
vest prediction (Mercante et al. 2010; Gusso et al. 2013).
Remote sensing can be used to obtain key parameters in large
areas that can be included in crop productivity models (Huang
et al. 2002). Multi-temporal satellite data can provide infor-
mation on long-term changes in soil moisture or soil nutrients,
surface heat flux, and evapotranspiration (ET) (Lei and Yang
2010; Evett et al. 2012; Liou and Kar 2014; Pandey et al.
2015; Petropoulos et al. 2016; Petropoulos et al. 2018a, b).
Such information can be used in many fields such as clima-
tology, meteorology, agriculture, hydrology, and geography.
Estimates and map-based land surface parameters (such as
available surface moisture and evapotranspiration in large
areas) are necessary for efficient agricultural management
and for predicting crop drought risk in large agricultural areas.
Such decision making systems are extremely effective and
low cost (Feng et al. 2014; Yang et al. 2015).

Several studies provide crop yields from conventional
weather station data. Most of these studies are based on timely

climatic data, usually derived from small experimental plots
(Prasad et al. 2006; Er-Raki et al. 2007). Other researches seek
to complement the mathematical models using remote sensing
data and surface parameters (e.g. Meyer 1990; Pablos et al.
2017). Yet, it is sought to adapt the models using only obtain-
ed variables in orbital images, facilitating the coverage of
large agricultural areas in a short period of time and at low
cost. Recently, the reliability of the physiological meaning of
the enhanced vegetation index (EVI) for the development of a
remote sensing-based procedure to estimate soybean produc-
tion prior to crop harvest was evaluated (Gusso et al. 2017).
The key idea behind all these techniques is that surface radiant
temperature (Ts) - and by association the surface turbulent
energy fluxes - are sensitively dependent on the surface soil
water content (Mo). Avariety of approaches have been devel-
oped for deriving spatiotemporal estimates of Mo and the
surface turbulent energy fluxes from satellite-derived Ts (see
e.g. review by Petropoulos et al. 2009).

A widely used group of remote sensing based approaches
uses the triangle configuration of pixels in Ts and fractional
vegetation cover (Fr) space. This method is referred to as “the
triangle model” (Gillies and Carlson 1995; Gillies et al. 1997;
Carlson 2007; Minacapilli et al. 2016; Zhu et al. 2017). The
triangular method allows expressing changes in land use, such
as trajectories within a triangular domain with all surface
moisture content, Fr and Ts. Lambin and Ehrlich (1996) were
between the first to introduce the use of trajectories within the
triangular domain to quantify the temporal movement of
pixels associated with changes in soil use and cover. A series
of studies have documented the triangular or trapezoidal shape
related to the data of images obtained by remote sensing
(Bastiaassen et al. 2005; Stisen et al. 2007; Petropoulos et al.
2009). Because of the triangle configuration of pixels in Ts/Fr
space (Huang et al. 2002), the boundaries of the triangle, con-
strain the solution for soil moisture and evapotranspiration
(ET). The basic idea of this method is that surface spatial
heterogeneity soil moisture is implied by variations in Ts
(Carlson 2007). Recently, Carlson (2013) and Carlson &
Petropoulos (2019) proposed a new and simple version of this
triangle method to obtain Mo and ET.

This study proposes a new method for predicting soybean
crop yields, which utilises the triangle remote sensing method
and the crop prediction model of (Doorenbos and Kassam
1979), (DK). DK requires knowledge of evapotranspiration
fraction (EF), defined as the ET divided by the net radiation
(Rn). Widely, this ratio is obtained from climatological water
balance models (CWBs) (Thornthwaite and Mather 1995),
which require a series of archived surface data. The method-
ology proposed here presents an advance over existing crop
yield estimation methods, since the EF is derived by simple
remote sensing techniques. Specifically, for assessing soybean
crop yields, a simplified triangle technique is incorporated,
overcoming the difficulties of scalability, giving cost-
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effective predictions at large spatial scale. Use of this new
method to predict soybean crop yield is demonstrated herein
over a large area of Brazil.

Materials and methods

Study area

The study area encompasses the state of Paraná, located in the
southern region of Brazil between latitudes 22°29’S and
26°43’S and meridians 48°2’W and 54°38’W. The area is
characterized by temperate climate with well-distributed
rainfall and hot summers. In winter, the average temper-
ature is below 16 °C, while in the summer the maxi-
mum exceeds 30 °C. Paraná is located in a region of
climatic transition from a mild, northern subtropical cli-
mate to a southern temperate climate with severe win-
ters and a short growing season. The state of Paraná
presents the second largest production of soybean crop
in Brazil (18,307 tons). For this reason, the five munic-
ipalities that showed high levels of average soybean
yield (kg ha−1 within 10 years), based on data from
the Secretary of Agriculture of State Paraná, were selected to
be studied. In the state of Paraná the regions that were consid-
ered are Cascavel, Toledo, Campo Mourão, Apucarana, and
Jaguariaíva (Fig. 1).

Datasets Acquisition & pre-Processing

The study period covers the agricultural years 2002–2003 to
2011–2012, a period of 10 years for soybeans. Key parameters
from satellite imagery were obtained, namely soil surface
moisture (Mo) and EF. Those parameters were acquired from
the MODIS MOD13A2 and MOD11A2 products (specifical-
ly for tile h13v11). These products are 16-day images of the
vegetation index NDVI and 8 daily Ts, at 1 km spatial resolu-
tion. All data were obtained at no cost from NASA (https://
wist.echo.nasa.gov/api) in a sinusoidal projection and
Hierarchical Data Format (HDF). The acquired images were
the first re-projected to WGS-84 projection (EPSG 4326)
processed using the MODIS Re-projection Tool (MRT),
(available from https://lpdaac.usgs.gov/Ipdaac/tools/modis_
reprojection_tool). Then all images were exported in Geo
TIFF format.

In total, 14 NDVI and Ts images were composed in 16- and
8-day periods, respectively (Table 1). The images selected of
each composition comprised the agricultural period of
soybean growth (September to April) totaling 28 images
for each year.

The MOD11A2 product pixel values were then converted
to Kelvin temperature, and subsequently to degrees Celsius
(°C) as follows:

T Kð Þ ¼ MOD11A2*0:002 ð1Þ
T °Cð Þ ¼ TK−273:1 ð2Þ

TheMO13A2 products were also converted to a scale of −1
to 1 by dividing the image numerical values by 10,000, using
the equation below:

NDVI ¼ MOD13A2=10; 000 ð3Þ

The process of mapping the compositions of the soy-
bean crops was made in RGB multi-temporal for the
NDVI images, in order to represent only pixels with
the soybean crop. For this process, the images that rep-
resented the beginning of the harvest (sprout phase)
were first determined. The images that represented the
total development of the plant, from the image to the
beginning of the vegetative cycle were allocated in the
channel Green (G) and the image with the highest value
in the vegetative cycle in the Red (R) channel, while
the image in channel Blue (B) corresponded to the second
lower vegetative value.

Among the various simulations of cuts of gray levels,
for channels of RGB color composition, the best prop-
erties were obtained by determining the RGB composi-
tion range between the channels with the values of R-
180 and G and B -110 for all crop years. This involved
the separation of pixels with gray levels >180 in R and
gray levels <110 in GB channels.

The climatological water balance model of Thornthwaite
and Mather (1995) was parameterised using as inputs param-
eters that were obtained frommeteorological data (rainfall and
average temperature) for the five studied regions. These data
were obtained from three sources: (a) the Technological
Institute SIMEPAR for 2002–03 to 2010, using conven-
tional meteorological stations for each of the five stud-
ied region, (b) rainfall from the TRMM (Tropical
Rainfall Measuring Mission) satellite, and, (c) average
temperature from the Global Atmospheric Model
ECMWF (European Centre for Medium-Range Weather
Forecasts) which covers the entire county. So, based on
the TRMM and ECMWF the corresponding rainfall and
temperature data were estimated for the five studied
regions. The TRMM data are available at no cost
(http://trmm.gsfc.nasa.gov/data_dir/data.html). The
temperature data obtained in raster format from JRC
are also free of charge (TIF) (https://ec.europa.eu/jrc/
en/mars).

Modeling system development

The proposed decision making system incorporates the fol-
lowing components: (1) The soybean yield prediction model
of Doorenbos and and Kassam (1979) (DK); (2) The
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climatological water balance model of Thornthwaite and
Mather 1995 (ThM), and, (3) the simplified triangle remote
sensing method. All the data used in the decision making
system underwent quality control to ensure data integrity, cor-
rectness, and completeness and to identify and address errors
and omissions in the datasets.

The soybean yield prediction model of Doorenbos
and Kassam 1979 (DK)

The multiplicative crop yield model used in this study is based
on DK, as proposed by Rao et al. (1988). This model
(described by Eq. 4 below) estimates the production based
on the evapotranspiration ratio, ET/ETp, where ET is the ac-
tual evapotranspiration and ETp is the potential evapotranspi-
ration. This ratio defines the production according to the water
requirement of soybeans, whereby the water deficit, limits the

crop yield during some stages of the plant growth. This is
expressed as follows:

Ya
Yp

¼ ∏
4

i¼1
1−kyi 1−

ET
ETp

� �
i

� �
ð4Þ

& Yα is the estimated yield (kg/ha);
& Yp, the potential yield (kg/ha);
& ET and ETp (expressed in mm/day) are defined above;

and
& ky is the coefficient of penalization yield due to water

deficiency for each physiological growth stage of the crop

The soybean crop phenological cycle consists of four dif-
ferent physiological growth stages: emergency/formation cot-
yledon, flowering, pod formation/grain filling, and full

Fig. 1 Location of study area where are also shown the studied regions/municipalities

Table 1 NDVI images and
radiometric surface temperature
(Ts) images selected on the same
dates of satellite overpass

Images Ts and NDVI

Scenes 257, 273, 289, 305, 321, 337,353, 001, 017033049065081 and 097

Dates 09/14 09/30 10/16 11/01 11/17 12/03 12/19 01/01 01/17 02/02 02/18 03/06 03/22
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maturation. In this case each stage presents its water and ther-
mal need for the best development of the plant that are, the
yield coefficients (KY) that present the values of water predict-
ed for each vegetative stage: vegetative development 0.2;
flowering 0.4; grain filling 0.8 and maturation 0.2.

Potential yield (Yp) depends on the technological level ap-
plied to agriculture. A maximum value is established for the
growing conditions provided there is no restriction. The value
of the highest yield obtained was increased by 10% to elimi-
nate any environmental effects that might interfere with the
yield potential, according to Moraes et al. 1998 and Martins
and Ortolani 2006 (Table 2). Potential yield is understood as
the highest expected yield for a particular crop in the region in
the condition of commercial cultivation, provided that no cli-
matic restriction occurs. It depends on the region, the cultivar,
the planting season and the technological level used. If these
variables are fixed, so that always is considered the same
technological level (fertilization, phytosanitary control), even
cultivar, planting season and region, it is possible to experi-
mentally estimate the potential yield from a series of crops,
due to climate only.

The description of input typically, in agrometeorological
modeling, the ETand ETp values were obtained from climatic
water balance (CWB) models. Mathematically, ET/ETp (be-
ing a relative evapotranspiration) is very similar to EF (Nehal
et al. 2017). Thus, replacing ET/ETp by the EF, the modified
agrometeorological crop prediction model DK (Eq. 5) is
expressed as:

Ya
Yp

¼ ∏
4

i¼1
1−kyi 1−EFð Þi
� � ð5Þ

The climatological water balance model

In this study, for computing the climatic water balance the
Thornthwaite and Mather 1955 (ThM) model was used. This
is one of the most widely used soil water balance estimation
method for estimating the actual evapotranspiration, soil water
deficit and excess. Based on this method, the actual ET and
potential evapotranspiration (ETp) contributing as part of the
DK model can be estimated from archived data. Detailed
method description can be found in Thornthwaite and

Mather (1995) and other works published (Pereira et al.
2002; Silva et al. 2006; Bruno et al. 2007; Sparovek et al.
2007; Dourado-Neto et al. 2010). Generally, to calculate ET/
ETp obtained from climatological water balance models
(CWBs) requires archived surface data. To overcome this,
remote sensing triangle method was used, covered next.

The simplified triangle method

The solution for EF and Mo, obtained from the triangle ap-
proach was initially proposed by Carlson (e.g. Gillies et al.
1997), a model that does not require any external information
or knowledge of land surface models. The triangular shape of
the pixels indirectly constrains the solution. A triangular shape
of the pixel envelope appears when the radiometric surface
temperature (Ts) is plotted versus the fractional vegetation
cover (Fr), which has been obtained from the normalized dif-
ference vegetation index (NDVI). Details of the triangle meth-
od implementation procedure can be found in Carlson (2013)
and Carlson and Petropoulos (2019).

The simplified triangle method for estimating land surface
moisture and energy fluxes uses the relationship between
scaled Ts and Fr derived from remotely sensed data (Price
1990; Gillies and Carlson 1995; Carlson and Petropoulos
2019; Carlson et al. 1995). To construct the triangle (Fig. 2),
cloud and standing water is required to be removed. Once this
is done, several derivative parameters are determined from the
pixel values of Ts and the NDVI. These are:

& the bare soil and dense vegetation values of NDVI (re-
spectively, NDVIo and NDVIs);

& the Ts for dry/bare soil, which is representative of the
highest values of Ts for pixels found over dry/bare soil
(Ts [max]) and the value of the minimum Ts representative
of cool, wet pixels (Ts[min]) such as found over dense
vegetation.

Fr is derived from NDVI and the values of NDVIo and
NDVIs (Carlson 2007). Because soil moisture has a large
spatial and temporal heterogeneity, it is a difficult surface pa-
rameter to measure directly on a routine basis over large areas
and longer temporal scales. Many techniques and instruments
have been developed to measure soil moisture indirectly, and
these continue to evolve and improve (Barrett and Petropoulos
2013; Zhang and Zhou 2016; Petropoulos et al. 2018a, b;
Srivastava et al., 2019; Bao et al. 2018).

NDVIo, NDVIs, Ts[max] and Ts[min] are used to define
the vertices of the triangle. NDVIs and Tmin, represent dense
vegetation, define the lower left (cold) vertex and the so-called
‘cold edge’ of the triangle shown in Fig. 2. The cold edge
represents the limit of soil wetness and corresponds to the
values of Mo and EF equal to 1.0. Similarly, NDVIo and

Table 2 Values of
predicted yield (Yp) plus
10% for the main soy-
producing regions/
municipalities of Paraná

Regions Yp (kg/ha)

Apucarana 3.630

Campo Mourão 3.630

Cascavel 3.630

Toledo 3.955

Jaguariaíva 3.762
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Ts[max] define the lower right vertex of the triangle. Another
highly important feature, the ‘warm edge’, represents the limit
of soil dryness where Mo = 0 and extends from Ts [max] and
NDVIo to NDVIs, which, for a triangle with a well-defined
upper vertex, occurs at Ts[min]. Note that while Mo equals
zero along the warm edge EF itself is non-zero along the warm
edge except at the lower right vertex.

Two important assumptions are made here. The first, which
is alsomade in almost all Ts/VI methodologies (e.g., Jiang and
Islam 2001), is that transpiration (evaporation from the leaves)
that always equals potential, at least when the vegetation is not
at the wilting point. The second assumption is that the relation
between EF andMo varies linearly across the triangle domain.

That bare soil fraction (equal to Mo), that Mo is the availabil-
ity of moisture on the surface, is the ratio between the lengths of a
/ d, both of these lengths being functions of the scaled radiometric
surface temperature (T*) and Fr. Ts is scaled to a variable T*
where Ts varies between its limits of Ts[min] and Ts[max]. The
variable T* is scaled between 0 and 1 as defined below.

As stated above, both Mo and EF vary linearly within the
triangle between 0 and 1.0, such as (for Mo) between the cold
and warm edges of the triangle. For each value of Fr and EF
from the combined vegetation and bare soil, the canopy EF is
assumed to be the weighted value of EF for the vegetation
fraction of the pixel (EFveg = 1.0, by definition) Thus, the
mathematical framework is expressed by the following simple
definitions:

T* ¼ Ts–Ts minð Þf Þ= Ts maxð Þ–Ts minð Þð g ð6Þ

Fr ¼ NDVI−NDVI0
NDVIs−NDVI0

� 	2

ð7Þ

Mo ¼ 1−T* pixelð Þ=T* warm edgeð Þ ð8Þ
EF ¼ EFsoil 1−Frð Þ þ Fr EF veg ¼ Mo 1−Frð Þ þ Fr ð9Þ
Where EFsoil refers to the ratio of soil evaporation to net
radiation.

An overview of the proposedmethodology implementation
for predicting soybean yield is presented in Fig. 3 below.

Statistical analysis

Statistical analysis was conducted to verify the closeness of fit
between measured crop yields and those derived from DK
using three different sets of estimates of ET/ETp (EF): (1) from
the triangle model, (2) for CWB by SIMEPAR (data surface),
and (3) for CWB by TRMM and ECMWF (meteorological
satellite). Model performance was evaluated by means of sev-
eral statistical measures. In particular, the following statistical
parameters were computed:Mean Absolute Error (MAE), Root
Mean Square Error (RMSE), index of agreement (d1) and d2,
Camargo and Sentelhas coefficient (c), determination coeffi-
cient (R2), and Ea and Es errors. The average random error
(non-systematic) (Ea) results from unpredictable factors and
fluctuations, which cause approximately half of the measure-
ments taken to deviate further, and the other half to deviate less,
affecting the accuracy of the estimate. Systematic error (ES) is
caused by identifiable sources and can in principle be eliminat-
ed or compensated. These errors cause the measurements made
to be consistently above or below the actual value. MAE may
be most appropriate for checking the correctness or accuracy of
estimated data in relation to the measured data. To verify the
final quality of the estimator model, the index of agreement,
“d1” (Willmott et al. 1985) was also used:

d1 ¼ 1−
∑ ei−oið Þ2

∑ jei−oj þ joi−oð Þ2
" #

ð12Þ

where ei is the error, oi the observation and o is the mean of
observations.

Although the statistic d1, as described by Willmott (1981),
is widely used,Willmott et al. (1985) and Legates andMccabe
(1999), reported that using the quadratic function in Eq. 12

Fig. 2 Simple geometry of the
triangle. NDVI varies between its
minimum and maximum values,
respectively NDVIo and NDVIs,
where NDVI is here scaled in Fr

Earth Sci Inform (2020) 13:345–359350



may result in less reliable values of this ratio, even when there
is a good performance of the estimator model. Thus, Willmott
et al. (1985) propose an adaptation called index Willmott
modified, expressed as follows:

d2 ¼ 1−
∑ ei−oið Þ

∑ jei−oj þ joi−ojð Þ
� �

ð13Þ

where d1 and d2 are dimensionless. The range of d1 is bounded
by 0 and 1, with values close to 1 indicating a near perfect fit.
The values of d2 are within −1 and 1.

In addition, the Camargo and Sentelhas coefficient (c) was
computed to indicate the performance of the proposed method
(Camargo and Sentelhas 1997), computed as shown in Eqs.
13–16 below:

R ¼ ∑n
i¼1 xi−xð Þ yi−yð Þ½ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑n
i−1 xi−xð Þ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i−1 yi−yð Þ2
q ð14Þ

Id ¼ 1−
∑n

i¼1 yi−xið Þ2

∑
n

i¼1
yi−xj j þ xi−xj jð Þ2

ð15Þ

c ¼ RId ð16Þ

where: x = measured values; y = estimated values; R =
Pearson’s correlation coefficient; Id =Willmott’s index of
agreement; c = Camargo and Sentelhas coefficient.

The subjective criteria for model assessing based on
Camargo and Sentelhas coefficient are the following: values
>0.85 indicate great performance, values between 0.85 to 0.76
suggest a very good performance, values between 0.75 to 0.66
a satisfactory performance, values between 0.65 to 0.61 me-
dian performance, values between 0.60 to 0.51 unsatisfactory
performance, values between 0.50 to 0.41 poor performance,
and values <0.40 very poor performance (Camargo et al.
2014).

A criterion of 5% was used to ascertain whether there was
any significant difference between the measured crop yield
data and those derived from the simplified triangle method.
For the 5% criterion, it was determined that a total of 400
samples would be required (i.e., 400 points). Accordingly,
200 samples were randomly selected as points on the target
of interest (mask of soybean crops) and 200 samples on other

Fig. 3 Main steps comprising our methodology
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targets; i.e., a stratified random sampling. Thus, the EG and IK
statistical parameters computed using the equations shown
below were determined for soybean production from the
masked images in the analysis:

EG ¼ A
n
*100 ð17Þ

IK ¼ n*∑r
i¼1xij−∑

r
i¼1 xi:*x: j

� �� �
n2−∑r

i¼1 xi:*x: j
� �� � ð18Þ

where: EG is the Global Accuracy, A is the general strike
(sample point with correct answers), IK is the Kappa

coefficient of agreement, n is the number of observations,
and r is the number of rows of the error matrix; xj -
Note that the subscripts refer to Row i and Column j,
where xi. is the total marginal Row I, and xj is the total
marginal Column j.

An EG value (%) close to 100 indicates that the classifica-
tion is significantly better than random. The Kappa
Coefficient can range from −1 to 1. A value of 0 indi-
cated that the classification is no better than a random
classification. A negative number indicates the classification
is significantly worse than random. A value close to 1 indi-
cates that the classification is significantly better than random
(Stein et al. 1998).

Fig. 4 Map with the soybean vegetation during summer for Paraná, crop year 2010–11 (Images NDVI- MODIS- 1 km)

Table 3 Error matrix for two
classifications: vegetation and
rest-of-year vegetation. The col-
umns are reference data, and the
rows are predictions from the
mask for the 2010–11 crop year

Classification Vegetation rest-of-year vegetation Grand total Error of Inclusion (%)

Vegetation 155 45 200 22.5%

Rest-of-year vegetation 30 170 200 15.0%

Grand total 185 215 400 EG = 81.25%

Error of Omission (%) 16.2% 20.9% – IK = 0.62

EG=Global Accuracy; IK =Kappa Index
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Fig. 5 Scatterplot examples obtained in our study from the implementation
of the simplified triangle method for the region of Toledo, for different
months of Crop Year 2011–12. The dotted red lines represent the warm

(dry) edge which intersects the T* axis (the horizontal axis) at Fr = 0. The
vertical axis (the cold edge) is marked by the dotted blue line and corre-
sponds to the value of Mo = 1 and T* = 0

Fig. 6 Schematic representation of triangle method and phenological cycle of the soybean crop for region of Toledo
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Results & discussion

One of the key study goals was to separate the soybean crop
pixels from other crops, according to the planting time of the
analyzed region. As such, a procedure was developed to imple-
ment this task in IDL (Interactive Data Language) programming
environment. RGB color rendering has been transformed to gray
levels (GL) ranging from 0 to 255. The objective of this transfor-
mationwas to normalize the values according to the plus orminus
variation, depending on the agrometeorological conditions in each
crop year. Subsequently, the cutoff values were defined. This
procedurewas performed for each crop year to obtain the soybean
crop mapping. It was found that the one that presented the best
cutting result for mask generation was obtained with R-160_GB-
150 for the crop years, that is, the pixels with GL>160 on chan-
nel R and GL <150 on GB channels.

Pixels were extracted at lower gray values, creating the
soybean crop map (Fig. 4). These were taken as the basis for
comparison with LANDSAT 5/ TM image mosaics as ground
reference.

Studying the behavior of different targets is relevant to
remote sensing because this allows one to construct masks
of these targets based on NDVI (Johann et al. 2012). The
definition this mask, that define pixel of soybean were com-
pared with high spatial resolution (mosaic images Landsat
TM) used for ground reference. The result of this procedure
was to identify a so-called “soy belt,” that extends from the
western to the northern region of the state with a concentration
in the Mid-East region of the state.

The Kappa index (IK), here determined to be 0.62 (Table 3),
corresponds in assessing agreement between measured surface
class types in Fig. 4. This result was a match of 70% of the
samples in the area of interest. So, it can be said that the

classification in the study area had a good representation of the
reliability of the field measurements. Table 2 presents matrix er-
rors of 400 samples used in the analysis for the crop year 2010/11.
Overall accuracy (EG) is 81.25%, suggesting a good reliability of
the created mask in identifying the soybean crops.

Ide and Baptista (2018) evaluated the applicability of time
series of the enhanced vegetation index (EVI), from MODIS,
in the mapping of irrigated areas in the Northeastern region of
Brazil. The MODIS images were classified with the iterative
self-organizing data analysis technique (Isodate) algorithm,
generating a binary map of irrigated and non-irrigated areas
for each year, presenting average Kappa coefficients of 0.26
and 0.00, respectively.

Figure 5, presents an example of scatter plots obtained for
the simplified trianglemethod for different months for the area
around the region of Toledo (crop year 2011–12). By
constraining the pixels within the triangle (as shown in
Fig. 5), interior values of Mo and EF all fall within the limits
of 0 and 1.0. The warm side of the triangle, the sloping right-
hand side, tends to be marked by a rather sharp border; this
feature is referred to as the “warm edge.” The warm edge,
constituting the warmest pixels for each value of Fr, denotes
a dry soil limit, likely corresponding to some minimum soil
surface wetness, Mo = 0.

Table 4 Statistical analysis of index “d1” and “d2”Willmott, coefficient
of determination Rsquared, index “c”, RMSE, MAE, Ea, Es errors, and
lower and upper limit with 95% confidence, the performance measured
crop yields from 2002/03 to 2011/12 in kg/ha−1 versus those predicted
and obtained from DK using estimated EF values obtained from the
triangle method. The regions are listed as Apucarana (Apu), Campo
Maurao (CM), Jaquariaiva (Jaq), Toledo (Tol), Cascavel (Cas). Values
that were superior to those in Tables 5 and 6 are highlighted only for
the statistical parameters d1 and c

Apu CM Jag Tol Cas

d1 0.87 0.98 0.92 0.96 0.92

d2 0.98 1.00 0.99 1.00 0.99

R2 0.60 0.95 0.82 0.88 0.80

C 0.53 0.93 0.75 0.85 0.73

RMSE (Kg /ha−1) 109 78.8 145 149 156

MAE(Kg/ha−1) 47.3 30.8 48.5 51.8 57.2

Ea (Kg/ha−1) 45.4 26.2 43.5 45.5 54.9

Es (Kg/ha−1) 13.2 16.2 21.4 24.9 16.3

Table 5 Same as Table 3 but for results measured and obtained from
DK using SIMEPAR data as input to the CWB

Apu CM Jag Tol Cas

d1 0.79 0.73 0.84 0.89 0.78

d2 0.96 0.92 0.97 0.99 0.95

R2 0.59 0.50 0.71 0.77 0.63

C 0.49 0.36 0.60 0.60 0.49

RMSE (Kg/ha−1) 149 209 261 245 246

MAE (Kg/ha−1) 56.4 72.9 80.5 102.9 76.6

Ea (Kg/ha−1) 46.4 60.8 70.9 90.3 65.9

Es (Kg/ha−1) 32.1 40.2 38.2 49.4 39.0

Table 6 Same as Table 3 but for results predicted and obtained from
DK using TRMM and ECMWF data as input to the CWB

Apu CM Jag Tol Cas

d1 0.83 0.91 0.82 0.81 0.73

d2 0.97 0.99 0.97 0.96 0.93

R2 0.63 0.70 0.76 0.57 0.63

C 0.53 0.63 0.63 0.46 0.46

RMSE (Kg/ha−1) 133 137 260 300 209

MAE (Kg/ha−1) 47.5 74.5 76.6 92.6 65.6

Ea (Kg/ha−1) 31.5 57.3 60.1 68.6 46.7

Es (Kg/ha−1) 35.6 47.6 47.4 62.2 46.1
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For a correct triangle with a well-defined vertex, the
warm edge can be drawn as a straight line from the lower
right-hand corner Ts[max] to the upper point where Fr =
1.0 at the upper vertex, as in the examples shown in Fig. 5.
It can also be determined as the best fit through the
warmest pixels. For a such triangle, the model assumes
the value of T* along the warm edge is therefore equal to
1- Fr. More generally, in the case of a truncated vertex or
where the warm edge line does not line up well with the
edge of the pixel envelope, the warm edge line can be fit
more snugly with the edge of the pixel envelope by
adjusting the value of Ts[max].

The bare soil edge (Fr = 0), referred to as the soil line (Price
1990), is also well delineated by inspection. Similarly, the left-
hand (cold) side of the pixel distribution often tends to have a
fairly sharp edge (the cold edge) and is thought to correspond
to a maximum ET, the potential ET (ETp) for each value of Fr
(Mo = 1.0; EF =1.0). Here it is drawn as a vertical line from
the upper vertex of the triangle to the base.

Estimates of EF and Mo, using the simplified triangle model
were obtained from the triangular scatterplots for Ts* versus Fr,
such as can be seen in Fig. 5 for the five regions of the state of
Paraná, for 10 years of crop data (2002–03 to 2011–12). As a
further example of the triangle shape, the region of Toledo and the
agricultural year 2011–12, show a scattering of pixels for each
satellite image, representing the entire phenological cycle of soy-
bean (Fig. 6). This figure shows the typical triangular dispersion
of pixels in T*/Fr space, where the features described above are
the warm, dry edge (the dashed red line), the wet, cold edge (the
dashed blue line, essentially the vertical axis of the triangle) and
the soil line.Warm and cold edges, respectively, correspond to the
driest and wettest pixels for a given value of Fr (Jiang and Islam
2001; Petropoulos et al. 2009; Garcia et al. 2014). Silva-Fuzzo
and Rocha 2016 obtained good results with this method when
compared to using the climatological water balance, which pro-
vided the basis for thismethodology. Kasim (2015) indicatedwith
some success that the triangle method can estimate Mo at the
superficial layer of the soil.

Table 7 predicted crop yield by the Triangle Method, 2002/03 to 2011/12 in kg ha−1, and data measured by SEAB

Date (year/month) Apucarana Campo Mourão Jaguariaiva Toledo Cascavel

Meas Est Diff % Meas Est Diff % Meas Est Diff % Meas Est Diff % Meas Est Diff %

2002/03 2700 2793 −3.3 3000 3060 −2.0 3000 2965 1.2 3470 3569 −2.8 3300 3156 4.6

2003/04 3000 2985 0.5 3160 2975 6.2 3140 3211 −2.2 2400 2569 −6.6 2750 2658 3.5

2004/05 3300 3256 1.4 2750 2658 3.5 2000 2249 −11.,1 2650 2454 8.0 2355 2159 9.1

2005/06 2660 2980 −10.7 2280 2242 1.7 2800 2900 −3.4 2230 2349 −5.1 2700 2659 1.5

2006/07 2700 2600 3.8 2727 2689 1.4 3250 3150 3.2 3100 3136 −1.1 2851 2658 7.3

2007/08 3200 3156 1.4 3180 3000 6.0 3100 2875 7.8 3479 3258 6.8 2988 2956 1.1

2008/09 3060 3032 0.9 3000 2986 0.5 3000 3072 −2.3 2300 2632 −12.6 2580 2798 −7.8
2009/10 2800 2685 4.3 2500 2457 1.8 3200 3049 5.0 3500 3347 4.6 3322 3256 2.0

2010/11 2900 2859 1.4 3300 3256 1.4 3420 3008 13.7 3200 3185 0.5 3200 2986 7.2

2011/12 2800 2512 11.5 3173 3080 3.0 2700 2689 0.4 3124 2968 5.3 2726 2365 15.3

Table 8 Measured crop yield with SIMEPAR, 2002/03 to 2011/12 in kg/ha−1, and data measured by SEAB

Date (year/month) Apucarana Campo Mourão Jaguariaiva Toledo Cascavel

Meas Est Diff % Meas Est Diff % Meas Est Diff % Meas Est Diff % Meass Est Diff %

2002/03 2700 2900 −6.9 3000 3200 −6.3 3000 3539 −15.2 3470 3500 −0.9 3300 3421 −3.5
2003/04 3000 3386 −11.4 3160 3547 −10.9 3140 3280 −4.3 2400 2800 −14.3 2750 2965 −7.3
2004/05 3300 3018 9.3 2750 2751 0.0 2000 2400 −16.7 2650 2100 26.2 2355 2411 −2.3
2005/06 2660 2689 −1.1 2280 2890 −21.1 2800 2900 −3.4 2230 2400 −7.1 2700 2963 −8.9
2006/07 2700 2800 −3.6 2727 2896 −5.8 3250 3575 −9.1 3100 2800 10.7 2851 3057 −6.7
2007/08 3200 3350 −4.5 3180 3048 4.3 3100 3210 −3.4 3480 3563 −2.3 2988 3356 −11.0
2008/09 3060 3100 −1.3 3000 3023 −0.8 3000 3258 −7.9 2300 2800 −17.9 2580 3210 −19.6
2009/10 2800 2900 −3.4 2500 2900 −13.8 3200 3300 −3.0 3500 3500 0.0 3322 3211 3.5

2010/11 2900 3000 −3.3 3300 3400 −2.9 3420 3235 5.7 3200 3300 −3.0 3200 3358 −4.7
2011/12 2800 2900 −3.4 3173 3106 2.2 2700 3153 −14.4 3124 3080 1.4 2726 3058 −10.9
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Recently, Tian et al. (2013) implemented the triangle using
MODIS images for the Heibe River basin, located in the arid
region of northeastern China during the growing season of
2009. Their results showed that the pixel envelopes formed
from Ts and Fr produced an estimate of the ET in which
different domain sizes (land uses) had little effect on the spa-
tial pattern of ET. In their study, the Pearson correlation coef-
ficient (R) ranged from 0.94 to 1.0 between measured and
predicted ET data in different domain scales.

Measured crop yields were compared to estimated yields
derived from the simplified triangle model using the evapo-
transpiration fraction (EF) (in place of ET/ETp) in the
agrometeorological crop model DK. This comparison was car-
ried out for the five regions as shown in Fig. 1. Table 4 shows
the validation results for the five regions (Apucarana, Campo
Mourão, Jaguariaiva, Toledo, and Cascavel) between measured
soybean yields and those calculated from remote estimates of
the evapotranspiration fraction (EF), derived from the
triangle method. In addition, estimated soybean yield
by the ThM and DK modeling approaches were com-
pared to measured soybean yields (Tables 5 and 6). In
order the satellite image data to be compatible with the
crop measurements, satellite estimates of EF for individual
pixels were averaged over an area around each region.

To make these figures easier to evaluate, only the statistical
parameters d1 and c are highlighted in Tables 4-6. Highlighted
numbers in Table 4 indicate that their values are higher (better)
than their counterparts in the other two tables. Except for the case
of “c” for Apucarana, which showed no difference in this param-
eter, the soybean yield estimation model presented generally bet-
ter results when used with the data obtained by the simplified
triangle method for the other parameters in the Table.

The results shown in Table 4 indicate that the values are higher
(better) than their counterparts in the other two tables, that is, the
soybean yield values estimated using data from the triangle meth-
od showed higher values than the othermodels, of Tables 5 and 6.

One reason for the slightly lower agreement between field
measurements and those derived from TRMM or SIMEPAR
data is that TRMM data pertains to a larger surface resolution
of approximately 25 km, whereas SIMEPAR data are field-
specific and therefore not as well-suited for a large areas.

In overall, Table 4 shows close agreement between mea-
sured and predicted crop yields, such as the index of agree-
ment d1 which values were reported between 0.8 and 0.95 in
most cases. Similar trends were also observed for the coeffi-
cient c (values close to 1), except for Apucarana which
showed lower values, indicating poorer performance. MAE,
RMSE, Ea, Es, depict high variability from one region to
another, while the values of these parameters generally ex-
press differences amounting to a very small fraction of the
yield itself according to Tables 7, 8 and 9.

Conclusions

In this study a new method was proposed for predicting soy-
bean yield over large spatial scale. This method is based on the
simplified triangle remote sensing technique, coupled with the
crop prediction model of Doorenbos and Kassam 1979 (DK)
and the climatological water balance model of Thornthwaite
and Mather 1995 (ThM). Use of the method was demonstrated
for a large agricultural region in Brazil. Crop yield predictions
by the technique proposed here were compared versus field
measurements of soybean crop yield which formed our refer-
ence dataset. In addition, results were compared with the crop
prediction model of Tao et al. (2008) and the climatological
water balance model of Thornthwaite and Mather (1995).
Soybean yields for five regions in Brazil, when compared to
those estimated from DK using values of EF, obtained from the
simplified triangle method, showed satisfactory agreement.
Moreover, for the studied five regions, the soybean yields esti-
mated by the triangle were slightly better than the

Table 9 estimated crop yield with TRMM/ECMWF, 2002/03 to 2011/12 in kg/ha−1, and data measured by SEAB

Date (year/month) Apucarana Campo Mourão Jaguariaíva Toledo Cascavel

Meas Est Diff % Meas Est Diff % Meas Est Diff % Meas Est Diff % Meas Est Diff %

2002/03 2700 2985 −9.5 3000 3104 −3.4 3000 3245 −7.6 3470 3614 −4.0 3300 3458 −4.6
2003/04 3000 3156 −4.9 3160 2985 5.9 3140 3281 −4.3 2400 3000 −20.0 2750 2863 −3.9
2004/05 3300 3256 1.4 2750 2689 2.3 2000 2569 −22.1 2650 2896 −8.5 2355 2896 −18.7
2005/06 2660 2630 1.1 2280 2189 4.2 2800 3152 −11.2 2230 2856 −21.9 2700 2896 −6.8
2006/07 2700 2956 −8.7 2727 3100 −12.0 3250 3426 −5.1 3100 2820 9.9 2851 3268 −12.8
2007/08 3200 3058 4.6 3180 3256 −2.3 3100 3180 −2.5 3479 3350 3.9 2988 3102 −3.7
2008/09 3060 3121 −2.0 3000 2985 0.5 3000 3156 −4.9 2300 2600 −11.5 2580 2890 −10.7
2009/10 2800 2900 −3.4 2500 2863 −12.7 3200 3575 −10.5 3500 3289 6.4 3322 3212 3.4

2010/11 2900 3059 −5.2 3300 3257 1.3 3420 3200 6.9 3200 3400 −5.9 3200 3156 1.4

2011/12 2800 2900 −3.4 3173 3106 2.2 2700 2984 −9.5 3124 2860 9.2 2726 2812 −3.1
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corresponding crop yields obtained by DK and ThM modeling
approaches using surface data.

The challenge of acquiring a vast amount of surface data re-
quired for climatological water balance models implementation at
large spatial scales were overcame by this new method, that is
able to provide cost-effective predictions of soybean yield. The
simplified triangle method and its derivative EF are potentially
very useful and appropriate for use over large regions where there
is lack of abundant surface observations. The technique is simple
to apply, requires no ancillary surface or atmospheric information,
and uses only remotely sensed images of NDVI and surface
radiometric temperature (obtained, for example, from MODIS
sensor). Yet, it is possible to use only data obtained by images
from remote sensors, to adapt the models using only obtained
variables in orbital images, facilitating the coverage of large agri-
cultural areas in a short period of time and at low cost. This work
has the potential to be downscaled to local scale or transferred to
other countries with different production systems such as in the
Mediterranean basin. So, using smaller scalability, for instance
small properties, in which an extensivemonitoring network could
easier be established, the simplified trianglemethod can be further
tested/evaluated based on different crop assessment models.
Especially for tree crops, the implementation of such remote sens-
ing techniques in combination with emerging wireless sensor
network technologies remains a challenge for future work. The
wider applicability and evaluation of the proposed method accu-
racy in other regions of the world, representative of a variety of
climatological and environmental conditions, remains to be seen.
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