
RESEARCH ARTICLE

A probabilistic framework for weighted combination
of multiple-feature classifications of hyperspectral images

Reza Seifi Majdar1 & Hassan Ghassemian2

Received: 6 July 2019 /Accepted: 27 August 2019
# Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
Spatial information such as texture and shape features as well as spatial contextual information play a key role in representation
and analysis of hyperspectral images. Spatial information improves the classification accuracy and addresses the common
problem of pixel-wise classification methods, i.e. limited training samples. In this article, a new combination of spectral, texture
and shape features, as well as, contextual information in the probabilistic framework is proposed. The texture features are
extracted utilizing Gabor filters and the shape features are represented by morphological profiles. The spectral, texture and shape
features are separately fed into a probabilistic support vector machine classifier to estimate the per-pixel probability. These
probabilities are combined together to calculate the total probability on which three weights determine the efficacy of each
one. Finally, the classification result obtained in the previous step is refined by majority voting within the shape adaptive
neighbourhood of each pixel. Instead of the simple majority vote we applied the majority vote in the probabilistic framework
on which the reliability of the labels in the region is also considered. Experiments on three hyperspectral images: Indian Pines,
Pavia University, and Salinas demonstrate the efficiency of the proposed method for the classification of hyperspectral images,
especially with limited training samples. Moreover, after comparing with some recent spectral–spatial classification methods, the
performance of the proposed method is demonstrated.

Keywords Hyperspectral image . Spectral-spatial classification . Texture features . Shape features . Probabilistic SVM

Introduction

Because of the key role of the classification in hyperspectral
imaging, there have recently donemany efforts to designmore
accurate classifiers (Camps-Valls et al. 2014; Canty 2014).
The support vector machine (SVM) classifier is one of the
best classifiers which has shown good performance in
hyperspectral image classification even with limited reference

data (vapnik 2000). However, in SVM and also other pixel-
wise classifiers the information of each pixel is only used for
classification on which the abundant spatial information of the
hyperspectral, especially high resolution, images and the rela-
tionship between neighbouring pixels is not considered.
Therefore, the salt-and-pepper error appears in the classifica-
tion map (Fauvel et al. 2013). Furthermore, recent studies
have shown that spatial information can be used to achieve
better classification accuracy (Benediktsson and Ghamisi
2015). In addition to the spectral features, the texture, shape
and size features can be applied to distinguish the pixels be-
longing to different classes better (Khodadadzadeh et al. 2014;
Golipour et al. 2016; Wang et al. 2016a, b). An improved
SVM classifier with multiple kernels, based on the spectral
and spatial features, is proposed by Wang and Duan 2018.
Since, the spectral kernel is constructed through each pixel’s
spectral features, and the spatial kernel is modeled by using
the extended morphological profile method. In some works,
Markov Random Field (MRF) has been used to model the
spatial correlation between adjacent pixels. MRF intuitively
represents the spatial information which used for
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classification. In these works, the classification results are re-
fined using spatial contextual information and by minimizing
a suitable energy function (solberg et al. 1996; Tarabalka et al.
2010a; Zhang et al. 2011; Wang et al. 2016a, b). In another
work (Wang and Duan 2019), the authors proposed a combi-
nation of the techniques of algebraic multigrid (AMG), hier-
archical segmentation (HSEG) and MRF for spectral-spatial
classification of hyperspectral images. In this method, a novel
segmentation method is developed by combining the AMG-
based marker selection approach and the conventional HSEG
algorithm to construct a set of unsupervised segmentation
maps in multiple scales. On the other hand, an improved
MRF energy function is proposed for multiscale information
fusion. Some other represented works are based on the fea-
tures extraction. Extended attribute profiles (EAP) and extend-
ed multi-attribute profiles (EMAP) have been used for
extracting spatial features and modelling spatial information
(Dalla Mura et al. 2010). The spatial features are generated
based on the morphological attribute filters and multilevel
analysis. An extinction profile (EP) is an impressive and re-
cent feature extraction (FE) method for hyperspectral images
(Fang et al. 2018a). In FE by EP, the spatial information and
the geometrical characteristics are represented better than the
previous spectral-special methods. In Fang et al. (2018b) a
novel local covariance matrix representation method is repre-
sented on which the correlation between different spectral
bands and the spatial–contextual information is described
when conducting FE from hyperspectral images.

Another important category of spectral-spatial classifica-
tion methods is the object-based classification (Li and Wan
2015; Zehtabian and Ghassemian 2015; Fang et al. 2015).
After extracting objects from the image, a feature or a set of
features assigned to each object. A classifier is applied to
classify the image, object by object. All pixels of an object
share the same label assigned to that object.

The other well-known schemes of this category are
those which utilize texture features. Texture is one of the
main features of the image which reveals the spatial in-
formation. Gabor filters, gray-level-co-occurrence matri-
ces (GLCMs) and wavelet transformation are three main
methods used to extract texture features (Guo et al. 2014;
Wang et al. 2016a, b; Mirmehdi 2008). In Huo and Tang
(2011) the spectral features and the extracted texture fea-
tures are stacked in one feature vector and used for clas-
sification. Extended expression of the stacked features ap-
proach can be found in Mirzapour and Ghassemian
(2015). Various combinations of spectral, texture and
shape features are stacked together. Four different types
of spectral features, i.e. original spectral data, features
extracted by linear discriminant analysis (LDA); principal
component analysis (PCA); and non-parametric weighted
feature extraction (NWFE) (Jia et al. 2013) were consid-
ered as spectral part of stacked features. More than 50

different combinat ions were evaluated on three
hyperspectral data using SVM classifier and the best
combination of each data set was reported. In Fang et al.
(2017) the spectral, texture and shape features are com-
bined by adaptive sparse representation (MFASR) meth-
od. The sparse coefficients of these multiple-feature ma-
trix are used to determine the label of each pixel.

Multi-scale superpixel-based spectral–spatial classification
(Li et al. 2016) is another novel technique for spectral-spatial
classification. Superpixel-based classification and segmenta-
tion are performed in each scale on which the classification
accuracy is improved using the segmentation results. Finally,
the multi-scale classification result is obtained by the majority
voting.

Some other widely used methods are based on the combi-
nation of the pixel-wise classification with segmentation or
clustering techniques. Tarabalka et al. (2010b) used an SVM
classifier for pixel-wise classification and a watershed
transformation to generate segmentation map. The improved
classification results were obtained by combining
classification and segmentation maps through majority
voting approach within the watershed regions. Seifi Majdar
and Ghassemian (2017a) investigated the efficiency of this
method in functional data analysis framework. A three steps
spectral-spatial classification method based on joint bilateral
filtering and graph cut segmentation is proposed by Wang
et al. 2016a, b in which the regions obtained by the spectral-
spatial segmentation are properly labelled.

The prominent potential of the Neural network (NN) for
hyperspectral image classification has recently proved. In con-
ventional NNs the typical pooling layers are fixed and cannot
be changed adaptively for feature downsampling. On the other
hand, the sampling locations of traditional convolutional
kernels cannot be changed based on the complex spatial
structures in hyperspectral images. Zhu et al. (2018) proposed
a deformable CNN-based hyperspectral image classification
method in which a deformable convolutional sampling loca-
tions with adaptive size and shape can be adjusted according
to the spatial information. In Fang et al. (2018c), a squeeze
multibias network (SMBN) is proposed for hyperspectral im-
age classification. In this method, a multibias module is placed
behind the convolutional layer to decouple feature maps to
multiple maps according to the magnitudes of responses.
Then, the combination of the response maps by the subse-
quent layer is used to reach a better classification accuracy.

Integrating of the spectral data and the spatial information
in the probabilistic framework (Liu and Lu 2016) is one of the
newest spectral–spatial classification approaches. The per-
pixel probability is separately estimated for spectral data and
spatial information and then the joint probability is obtained
using these two probabilities. We can find outstanding results
in this method, but still remained some issues to be addressed.
This method only applied in fixed-size window and is not
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considered the border effects between regions. In another
work, a spectral-spatial classification method was proposed
in probabilistic framework. At first, spectral and texture fea-
tures were separately classified by a probabilistic SVM clas-
sifier to estimate the per-pixel probability. Then, the total
probability was calculated by a linear combination of the pre-
vious probabilities for each pixel. Finally, one pixel was
assigned to a class with maximum total probability (Seifi
Majdar and Ghassemian 2017b). Texture features is the only
spatial information which applied in this method to enhance
the classification results and it had not been used of the shape
features and contextual information.

To address the above issues and to enhance the classifica-
tion results further, a new combination of spectral, texture
and shape features, as well as, contextual information in the
probabilistic framework is proposed to improve the classifi-
cation of the hyperspectral images, especially with limited
training samples. Texture features are extracted by Gabor
filters and the shape features are represented by MPs. The
spectral and spatial features are separately fed into a proba-
bilistic support vector machine (SVM) classifier to estimate
the per-pixel probability. These probabilities are combined
together to calculate the total probability, on which three
weights determine the efficacy of each one. Finally, the clas-
sification result obtained in the previous step is refined by
major i ty vot ing wi th in the shape adapt ive (SA)
neighbourhood of each pixel. Instead of the simple majority
vote, we applied themajority vote in the probabilistic frame-
work onwhich the reliability of the labels in the region is also
considered. The main contributions of this article contain
three-folds: 1)weighted combination of the spectral, texture,
shape features and the contextual information in probabilis-
tic framework is the main contribution of this article that
didn’t appear in the previous works in which all extracted
spatial information are combined with the spectral data by
using probability distribution functions, 2) Unlike some
spectral-spatial classification methods which use of the
fixed-window neighbourhood, in this article, the contextual
information in a SA neighbourhood is used to enhance the
classification results, 3) in the previousworks, the number of
the similar and dissimilar labels in the neighbourhood is used
to refine the label of the central pixel, but the reliability of the
neighbourhood labels is not considered. In the proposed
method, the number of labels and the reliability of that labels
are considered to determine the label of the central in a SA
neighbourhood. The remaining parts of this article are orga-
nized as follows: In the next section, the mentioned methods
to extract the texture and the shape features are introduced
briefly. In the Proposed classification method section, we
explain the proposed method. The hyperspectral data sets
and the experimental results are represented in the
Experimental results and discussions section, and the con-
clusion is drawn in Conclusion section.

Main components of the proposed method

In this study we exploit spatial information using Gabor filters
as texture features and MP as shape features. In the following
subsections, we introduce them briefly.

Texture feature extraction using Gabor filters

Gabor filters have widely been conducted in image process-
ing, pattern recognition and computer vision (Mirmehdi
2008). They can provide accurate time-frequency location
and robust against contrast and brightness of the images.
Two-dimensional Gabor filters are used to extract texture fea-
tures. Daugman (1985) extended the Gabor filters in two-
dimensions for the first time. A two-dimensional Gabor wave-
let consists of a complex plane wave modulated by an ellipti-
cal Gaussian envelope (Zhang et al. 2012). 2-D Gabor func-
tion can be represented as follows:
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Where (x,y) implies the spatial position of a pixel in the

image, k
!

is the frequency vector, d and s are direction and
scale respectively. The number of oscillation under Gaussian
envelope is determined by δ = 2π. The convolution of the
image I with the Gabor function in a specific scale and direc-
tion is performed to generate the Gabor texture features:

Fs;d x; yð Þ ¼ Gs;d x; yð Þ*I x; yð Þ ð2Þ

The Gabor texture features of one pixel are given as fol-
lows:

vtexture x; yð Þ ¼ F1;1 x; yð Þ;…; Fs;d x; yð Þ� �
∈Rsd ð3Þ

Shape features representation by morphological
profiles

Mathematical morphology, developed by Matheron (1975);
Serra (1983), is a powerful methodology which shows some
operators to extract image components used to represent the
region shape. Erosion and dilation, two fundamental morpho-
logical operations, act on an image by using structuring ele-
ment (SE) of arbitrary size and shape to evaluate the geomet-
rical structures of the image. More complex morphological
operations, opening and closing, are obtained by the combi-
nation of erosion and dilation. The morphological opening is
defined as an erosion of an image followed by a dilation.
Moreover, the morphological closing has an opposite
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definition of the opening operation which is defined as a dila-
tion, followed by an erosion operation. Reconstruction is a
morphological transformation which tends to restore the shape
of the objects that remain after morphological opening or
closing. When opening by reconstruction or closing by recon-
struction operators act on an image, preserve the objects that
can contain SE, while the other objects are completely re-
moved (Soille 2013). Applying these operators on a grayscale
image I with m disk-shaped SE of radius λ ∈ {1, 2,…,m},
lead to a stack of (2 n + 1) features,

MP Ið Þ ¼ Πi

:
Πi ¼ Πϕλ

with λ ¼ m−1þ ið Þ;∀λϵ 1;m½ �
Πi ¼ Πγλ with λ ¼ i−m−1ð Þ;∀λϵ mþ 1; 2mþ 1½ �:

	

ð4Þ

WhereΠϕλ
andΠγλ are closing and opening by reconstruc-

tion operators with a disk-shaped SE of radius λ, respectively.

Probabilistic SVM

SVM is a versatile method for the classification of
hyperspectral images with linear or nonlinear models. The
nonlinear SVMmodel, using kernel functions, provides better
classification accuracies rather than the linear model (Camps-
Valls and Bruzzone 2005). In this article, all of the spectral and
spatial features are fed into the multiclass one-versus-one
SVM classifier with a polynomial kernel, K(x, y) = (γxTy +
r0)

d. For simplification and fair comparisons, the default
values are considered as kernel parameters, d = 3, γ = 1/num-
ber of features, and r0 = 0. The SVM classifier cannot directly
generate the estimation of probability. Therefore, different
techniques are used to estimate per-pixel probability by com-
bining all pair-wise comparisons (Wu et al. 2004). The popu-
lar LIBSVM library is employed to implement the SVM clas-
sifier and to estimate per-pixel probability (Chang and Lin
2011).

Proposed classification method

The flowchart of the proposed classification method is shown
in Fig. 1. We have d-band hyperspectral image X = {xi ∈ Rd,
i = 1, 2,…n}; n is the number of pixels. In this method, at first,
Gabor and MP features are extracted from the first principal
components (PC) of the original data (Zhang et al. 2012;
Mirzapour and Ghassemian 2015). In the second step, the
spatial features, Gabor and shape features, as well as spectral
data are separately classified using the probabilistic SVM clas-
sifier. Therefore, three per-pixel probabilities are obtained for
each pixel of the image.

Suppose there are K different classes {w1,w2,…wK} in the
image. The estimation of the probability based on the spectral,
texture and shape features are computed as follows:

pspc xið Þ ¼ pspck xið Þ ¼ pspc y ¼ kjxið Þ; k ¼ 1; 2;…K; i ¼ 1; 2;…n

 � ð5Þ

ptxt xið Þ ¼ ptxtk xið Þ ¼ ptxt y ¼ kjxið Þ; k ¼ 1; 2;…K; i ¼ 1; 2;…n

 � ð6Þ

pshp xið Þ ¼ pshpk xið Þ ¼ pshp y ¼ kjxið Þ; k ¼ 1; 2;…K; i ¼ 1; 2;…n
n o

ð7Þ

Where ‘spc’, ‘txt’, and ‘shp’ are the abbreviations of spec-
tral, texture, and shape, respectively.

Now, three probability distributions are obtained, i.e., the
spectral distribution calculated from the spectral data, the spatial
distributions computed from the texture and shape features. In
the third step, the spectral, texture and shape probability distri-
bution are combined together on which three positive weights,
ω = {ω1,ω2,ω3}; ωj > 0, determine the efficacy of each one. It
means that for each feature, the larger ωj represents the more
important role of that feature in the combination. Therefore,
total probability distributions defined as follows:

ptotal xið Þ ¼ ω1pspc xið Þ þ ω2ptxt xið Þ þ ω3pshp xið Þ

¼ ∑
3

j¼1
ω jpfeature j xið Þ ð8Þ

Where feature = {spc, txt, shp} and also we have the fol-
lowing constraint

∑
3

j¼1
ω j ¼ 1 ; ω j > 0 ð9Þ

In the final step, the spatial contextual information is ap-
plied to enhance the classification performance. For this pur-
pose, Instead of defining a fixed-size window, a shape adap-
tive (SA) window is assumed for each pixel xi (Fu et al. 2016).
We know that the label of central pixel xi can be modified by
two factors of the neighbouring pixels. The first one is the
inter-pixel class dependence assumption on which one pixel
with a specific label has tendency to have neighbouring pixels
with the same label (Tarabalka et al. 2010b). The second one is
the classification reliability of the neighbouring pixels in
which the neighbouring pixels with higher reliability have
more influence on the label of pixel xi (Negri et al. 2014).
Negri et al. (2014) determined the classification reliability of
one-pixel x as follows:

f SVM xð Þ ¼< w; x > þb ð10Þ

Where, w is the orthogonal vector to the separating hyper-
plane and b

wk k determines the offset of the hyperplane from the

origin along w. The notations <, > and ‖‖ represents the inner
product and the vector normal, respectively. In a given
neighbourhood of a pixel xi, the influence of each neighbouring
pixel is proportional to the reliability of that pixel.
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In our proposed method, the classification reliability of the
pixels is determined by per-pixel probability which obtained
previously. Accordingly, in a specific class, the classification
reliability of a pixel with probability near one is high and the
classification reliability of a pixel with probability near zero is
low. For instance, Fig. 2 shows the per-pixel probability of the
pixels x1 and x2, we supposed that there are only two different
classes in the sense. As shown in this figure the probability of
belonging pixel x1 to class1 is high but there is a lower prob-
ability of belonging pixel x2 to class1. As a result, it can be
said that the classification reliability of pixel x1 is higher than
the classification reliability of pixel x2 in class1. Accordingly,
we can say with high reliability that the red pixel belongs to
the class1 while for blue pixel the degree of reliability is low.

The general idea of applying spatial contextual information
to regularize the initial classification maps are given in Fig. 3.
In this procedure, at first, a neighbourhood with SA is consid-
ered for each pixel xi. Then the total probability of pixel xi and
its neighbourhood, which obtained in the previous step, are
summed together:

pSA xið Þ ¼ ptotal xið Þ ð11Þ

Where Ni is the set of neighbouring pixels of a given pixel
xi. Finally, the pixel xi is assigned to the class with the highest

probability.

label xið Þ ¼ argmaxKk¼1p
SA xikð Þ ð12Þ

It should be noted that this procedure occurs when there is
at least one pixel with the different label in the neighbouring
pixels.

Our proposed method to use of the contextual information
of the neighbouring pixels is the same as the majority voting
model but it has a main advantage. The simple majority voting
model is just based on the inter-pixel class dependence as-
sumption in which all pixels within a region are assigned to
the most frequent label of that region and the reliability of the
neighbourhood pixels are not considered. On the other hand,
in our proposed majority voting in the probabilistic frame-
work, the regularization of the classification map is performed
based on the number of labels and the reliability of the
neighbourhood patterns. The former indicates that one pixel
with a specific label has tendency to have neighbouring pixels
with the same label, while the latter means that the
neighbouring pixels with higher classification reliability have
more influence on refining the classification maps. When the
probabilities of one pixel and its neighbouring pixels collected
together, these two assumptions considered simultaneously.

The mentioned details of the proposed spectral-spatial clas-
sification method can be found in Fig. 1. The proposed

Fig. 2 Example of using
probability estimates of one pixel
to determine the classification
reliability

Fig. 1 Flowchart of the proposed classification method
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method for each data set with different scheme of training
samples will be introduced in the next section. The only draw-
back of the proposedmethod is the best selection of weights ωj

correspond to each feature. In the proposed method, the best
set of these weights are derived experimentally. The effects of
the weights on the classification results are given in the next
section.

Experimental results and discussions

In this article, three hyperspectral data sets are used to evaluate
the proposed method and to compare it with some recent
spectral–spatial classification methods: (1) Indian Pines data
set has a low spatial resolution image and it contains agricul-
tural and forest land covers which gathered by AVIRIS sensor
over the Indian Pines test site. (2) Pavia University data set
was captured by the ROSIS sensor over Pavia with a high
spatial resolution and it contains urban structures. (3) Salinas
data set contains agricultural land cover with a high spatial
resolution which were acquired by the AVIRIS sensor over
Salinas Valley.

Hyperspectral data sets

(1) Indian Pines data set: Indian Pines data set is a high
spectral resolution hyperspectral image but it has a low
spatial resolution (20 m). It relates to non-urban,
agricultural/forest land covers which captured by the
AVIRIS sensor over North-western Indiana in
June 1992. It has 145 × 145 pixels and 224 spectral
bands on which 24 water absorption and noisy bands
(104–108, 150–163, 220) were excluded and the remain-
ing 200 bands are used in the experiment. This image
contains 16 different classes in which six classes with the
small number of samples are removed and ten classes
will be applied for the experiments. The false-colour
and the ground truth image are shown in Fig. 4.

(2) Pavia University data set: Pavia University data set
which has a very high spatial resolution (1.3 m) acquired
by the ROSIS-3 sensor over the urban area of Pavia
University, northern Italy. It has made of 610 × 340
pixels, and 115 spectral bands in which 12 most noisy
bands were omitted and the remaining 103 spectral
bands were used in our experiment. The false-colour
and the ground truth image are shown in Fig. 5.

(3) Salinas data set: Salinas data set is a high spectral reso-
lution and also it has a high spatial resolution (3.7 m)
which captured by AVIRIS sensor over Salinas Valley,
California. This data set comprises 512 × 217 pixels, 16
classes, and 224 bands, while 20 water absorption bands
(108–112, 154–167 and 224) were discarded. The false-
colour and the ground truth image are shown in Fig. 6.

General description

In order to evaluate the performance of the proposed method,
it is applied to three data sets described in advance. In all data
sets, the texture and shape features are extracted by Gabor
filters and MP, respectively.

In Gabor function, the direction and scale parameters are
d = 12 and s = 5 (Zhang et al. 2012). Therefore, 5 × 12 = 60
Gabor filters are applied on the first PC. Accordingly, the
texture features for one pixel of the hyperspectral image are
represented by 60 features, vtexture ∈ R60. To extract MP fea-
tures, the first PC is used. The parameter m is arbitrarily cho-
sen 25, therefore, the disk-shaped SE of radius λ∈ {1, 2,
…,25}, leads to a stack of 51 features (Mirzapour and
Ghassemian 2015). It should be noted that, we used of first
PC because it contains as much of the variability in the image
as possible and has the most spatial information.

The probabilistic SVM with a polynomial kernel, K(x,
y) = (γxTy + r0)

d, is used in all classifications. The default
v a l u e s a r e c on s i d e r e d a s k e r n e l p a r ame t e r s ,

Fig. 3 The procedure of applying spatial contextual information to refine the classification maps (the numbers in the tables were arbitrarily selected)
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d ¼ 3; γ ¼ 1
number of features ; and r0 ¼ 0. In all experiments the

training samples of each class are randomly selected from the
entire scene to train the classifier, however, the remaining
samples are used as testing samples. Each experiment is run
ten times with ten different sets of training samples and the
average results are reported. Three schemes for the number of
training samples is considered in all experiments which called
set A, set B and set C respectively: (1) ill-posed classification
problem i.e. ni = 10 < N < d; (2) poorly-posed classification
problem i.e. ni = 50 < d < N; (3) a proportional scheme i.e.
we select 1% of samples from each class as training set; where
ni is the number of training samples of class i, N is the number
of all training samples and d is the number of spectral bands of
hyperspectral image. All schemes relate to the limited training
samples problems. It should be noted that we consider type 1
and 2 for Indian Pines and Pavia University data sets and type
3 only for Salinas data set in order to make fair comparison
between the proposed method and the other spectral–spatial
methods. The number of training samples in each scheme for
three data sets are shown in Table 1.

Three measures of accuracy were used: overall accuracy
(OA), average accuracy (AA) (Kianisarkaleh and
Ghassemian 2016)) and kappa coefficient (κ) (Cohen 1960).
The experiments are conducted on a computer with an Intel
Pentium (R) Dual-Core 2.2 GHz processor and 4 GB RAM
running Windows 7 64Bit operating system. In addition,
MATLAB version 2018a is used to implement the algorithms.

Results

At first, effectiveness of the different values of ω1, ω2 and ,ω3

on the proposed weighted combination of multiple-features
classification in probabilistic framework has been evaluated
(Fig. 7). This experiment demonstrates that by selecting dif-
ferent values for these weights, the classification results are
changed considerably. With set A, in Indian Pines image, the
effectiveness of the shape probability distribution is higher
than the texture and the spectral probability distribution. We
can find almost the same effects in Salinas image, but in Pavia

100 m

N

(a) (b)

Asphalt

Meadows

Gravel

Trees

Metal sheets

Bare soil

Bitumen

Bricks

Shadows

Background

Fig. 5 Pavia University image: a
false-colour image b ground truth

500 m

N
(a) (b)

Fig. 4 Indian Pines image: a
false-colour image b 16-class
ground truth
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University image, the texture probability distribution has more
effectiveness. With set B, the classification results of the three
data set are almost the same. In these condition the effective-
ness of the shape and texture probability distribution are
higher than the spectral probability distribution. It can be see
that the effectiveness of the weights increases by decreasing
the number of training samples.

Our experiment with different set of training samples dem-
onstrate that various reasons, such as hyperspectral image,
spatial resolution and the number of training samples, have
effect to select the optimum weights ω1, ω2 and ,ω3 to reach
the best classification results. The best choices of these param-
eters were derived experimentally and in each case are given
in Fig. 7. Automatically selecting the weights in different sit-
uation, can be investigated in future works.

Now, the classification results of the spectral, texture and
shape features are obtained on three hyperspectral images with
two schemes of the training samples, set A and B, and com-
pared with the classification results of the proposed method to
show its superiorities.

1) Indian Pines image: the pixel–wise classification results
of spectral, texture, shape features and the proposedmeth-
od with limited training samples are given in Table 2. The
low spatial resolution and the problem of highly mixed
pixels of the Indian Pines image leads to the low classifi-
cation accuracies with spectral and texture features, espe-
cially with set A. It can be seen that among these features,
the shape one reveals better results than the spectral and
texture features with set A. Moreover, the texture features
reveal better results with set B. The OA, AA and κ of the
shape features with set A are 74.75%, 77.74%, and
71.16%, respectively. On the other hand, the OA, AA
and κ of the texture features with set B are 88.20%,
91.68%, and 86.36%, respectively. On the other hand,
the OA, AA and κ of the proposed method with set A
are 84.86%, 89.80%, and 82.63%, respectively and with
set B are 96.54%, 97.70%, and 95.97%, respectively. If
we compare these results, we can see the considerable
improvement in classification accuracies. The proposed
method improves the OA accuracy about 25%, 27% and

200 m

(a) (b)

Fig. 6 Salinas image: a false-
colour image b ground truth

Table 1 The number of spectral
bands and the total number of
training samples for three data
sets

Data set Number of
bands

10 training
samples

50 training
samples

1% training
samples

Indian Pines
(10-classes)

200 100 500 97

Pavia University 103 90 450 426

Salinas 204 160 800 543
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10% in comparison with pixel–wise spectral, texture and
shape features classification with set A, respectively.
Similar improvements, but of lesser degree, can also be
found with set B. The classification maps of set A and set
B are shown in Fig. 8.

2) Pavia University image: as Indian Pines image, the clas-
sification accuracies of the spectral, texture and shape
features; the proposed method are given in Table 3. It
can be seen that among all features, shape features have
the best performance with all schemes of training sam-
ples. On the other hand, the proposed method improves
the classification accuracies about 10% with set A and
about 5% with set B in comparison with the shape fea-
tures. The classification maps of set A and set B are
shown in Fig. 9.

3) Salinas image: as previous data sets, OA, AA and κ of the
classification results with set A and set B are listed in
Table 4. We can also see the benefits of the proposed
weighted combination method in probabilistic framework
with this data set. The classification maps are given in
Fig. 10.

The simplest conclusion which can be drawn from the
previous experiment is that the classification results of the
proposed method depend on the data set and the number
of training samples. On the other hand, we could not find
a unique set of weights for all data sets to give the best
results with different schemes of training samples. But the
proper weights can improve the classification results

Fig. 7 The evaluation of the weighted combination with some different values of ω1, ω2 and ω3 on three data sets and with training samples set A and set
B, in each case the best weights are given
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considerably. We select the optimum weights experimen-
tally in this article. The benefits of the proposed combi-
nation method are more considerable with set A, ill-posed
training samples, in comparison with set B, poorly–posed
training samples.

Overall time complexity analysis

Since the run time of the competing methods are not accessi-
ble to compare with our method, the overall time complexity
of the proposed method is studied. The overall time complex-
ity of the proposed method is studied here. The most time-

consuming parts are texture features extraction by Gabor fil-
ters, shape features extraction by MP and spatial contextual
information extraction by shape-adaptive algorithm. Because
of the use of SVM classifier with a polynomial kernel, without
tuning the kernel parameters, the classification of all pixels
based on the spectral, Gabor and MP features is not time-
consuming. In addition, the process of combining probability
distributions and applying spatial contextual information of
the neighbouring pixels are not complex and they are not
considered in total time complexity. Therefore, the time com-
plexity of Gabor features extraction, MP extraction, shape-
adaptive algorithm and SVM classification are denoted by

Table 2 Classification results of Indian Pines image

Classes SVM (Spectral Features) SVM (Texture Features) SVM (Shape Features) Proposed method

Class Name No. of Samples Set A Set B Set A Set B Set A Set B Set A Set B

Corn- no till 1428 26.72 72.46 08.39 78.11 56.69 77.10 61.14 89.47

Corn-min till 830 23.17 62.94 72.07 96.92 86.09 92.05 96.46 99.48

Grass-pasture 83 63.84 91.28 72.30 95.64 75.26 87.38 87.94 97.92

Grass-trees 730 91.38 94.72 42.50 83.45 88.19 91.50 97.63 99.70

Hay-windrowed 478 99.35 99.76 99.14 100 99.14 99.06 100 100

Soybean-no till 972 72.76 76.81 59.77 89.92 77.75 76.59 87.62 95.88

Soybean-min till 2455 61.63 52.22 51.61 81.45 69.89 87.44 77.99 95.59

Soybean-clean till 593 54.03 85.81 80.44 96.31 60.89 91.34 98.62 98.89

Woods 1265 74.74 94.738 71.39 95.06 82.39 95.06 90.27 99.50

Building-Grass-Trees-Drives 386 57.44 72.32 92.81 100 81.11 86.60 61.14 89.47

AA 62.51 80.31 65.04 91.68 77.74 88.41 89.80 97.70

OA 59.56 74.36 56.44 88.20 74.75 87.24 84.86 96.54

κ 53.60 70.64 50.37 86.36 71.16 85.19 82.63 95.97

Fig. 8 Indian Pines image: the ground truth image and comparison of the classification maps of spectral, texture and shape features and proposed method
with training samples set A and set B
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O(Gabor), O(MP), O(SA) and O(SVM). Accordingly, the
overall time complexity of the proposed method is calculated
by:

n−Nð Þ
� O Gaborð Þ þ O MPð Þ þ O SAð Þ þ 3� O SVMð Þ½ � ð13Þ
Where, n is the number of pixels in the image and N.

Comparison with some recent spectral–spatial
classification methods

The proposed method with set B for Indian Pines and Pavia
University images and set C for Salinas image are compared
with some recent spectral–spatial classification methods in
order to evaluate the capability of the proposed method in
hyperspectral image classification (Tables 5, 6 and 7). For

Indian Pines and Pavia University images, the proposed meth-
od is quantitatively compared with the extended morphologi-
cal profiles (EMP) (Benediktsson et al. 2005), edge-
preserving filter (EPF) (Kang et al. 2014), SVM-composite
kernel (SVM-CK) (Camps-Valls et al. 2006), generalized
composite kernel-based multivariate logistic regression
(GCK-MLR) (Li et al. 2013), superpixel-based classification
via multiple kernels (SC-MK) (Fang et al. 2015), multiple
nonlinear feature learning with multivariate logistic regression
(MNFL) (Li et al. 2015), EPs with a stacking manner (EPs-
stacking) (Ghamisi et al. 2016), EPs-fusion (EPs-F) (Fang
et al. 2018a, b, c). The spatial information in EMP and EPF
are extracted by the morphological profiles and edge-filtering,
respectively. In the SVM-CK method, the spectral and spatial
features are combined together by the composite kernel on
which the weights for each features are selected manually.
Similarly, in the GCK-MLR method, the generalized

Fig. 9 Pavia University image: the ground truth image and comparison of the classification maps of spectral, texture and shape features and proposed
method with training samples set A and set B

Table 3 Classification results of Pavia University image

Classes SVM (Spectral Features) SVM (Texture Features) SVM (Shape Features) Proposed method

Class Name No. of Samples Set A Set B Set A Set B Set A Set B Set A Set B

Asphalt 6631 71.39 86.47 49.93 66.97 64.44 91.80 88.25 99.20
Meadows 18,649 71.39 78.06 90.80 92.99 81.75 95.69 88.45 99.10
Gravel 2099 50.40 78.83 47.86 83.60 85.83 93.17 79.88 97.49
Trees 3064 94.07 89.83 10.83 19.20 73.73 96.15 75.36 95.67
Metal sheets 1345 42.39 92.17 99.02 97.65 52.13 97.41 99.60 99.60
Bare Soil 5029 42.35 81.91 47.34 74.36 68.71 94.26 65.11 98.22
Bitumen 1330 81.21 83.13 45.22 85.51 94.69 90.26 91.36 100
Bricks 3682 76.22 80.98 76.68 88.73 76.44 67.69 94.65 94.56
Shadows 947 100 100 67.55 76.55 100 100 95.66 98.55
AA 69.66 85.71 68.65 76.17 77.52 91.83 85.46 98.04
OA 69.02 82.04 58.47 80.21 76.58 92.41 86.44 98.33
κ 60.48 77.03 58.23 73.55 69.73 90.02 80.90 97.79
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composite kernel is constructed by the spectral–spatial infor-
mation. A superpixel approach in the SC-MK method is used
to extract the spatial and spectral information. Various extract-
ed features are combined together in the MNFL method for
better classification of hyperspectral images. A fusion frame-
work in the EPs-F method is used to draw out the spatial
information of the EPs. On the other hand, for Salinas image,

the proposed method is compared with the extended morpho-
logical profiles (EMP) (Benediktsson et al. 2005), the Logistic
regression via variable splitting and augmented Lagrangian-
multilevel logistic (LORSAL-MLL) (Li et al. 2011), the
sparse representation classification-pixelwised (SRC-
pixelwised), the joint sparse representation model (JSRM)
(Chen et al. 2011), the nonlocal weighting sparse

Table 4 Classification results of Salinas image

Classes SVM (Spectral Features) SVM (Texture Features) SVM (Shape Features) Proposed method

Class Name No. of Samples Set A Set B Set A Set B Set A Set B Set A Set B

Brocoli-green-weeds-1 2009 98.58 99.37 74.66 88.89 95.79 100 100 100

Brocoli-green-weeds-2 3726 94.60 95.11 76.07 85.25 66.54 98.16 100 100

Fallow 1979 68.03 99.57 70.166 86.09 98.03 99.52 98.97 99.89

Fallow-rough-plow 1394 98.03 99.32 65.72 75.90 91.19 99.24 99.63 99.78

Fallow-smooth 2678 92.13 97.64 73.75 77.55 95.42 98.50 95.66 98.18

Stubble 3959 94.28 96.83 74.50 85.90 95.38 98.48 99.84 99.89

Celery 3579 87.14 99.00 81.04 89.52 69.73 99.29 99.97 99.94

Grapes-untrained 11,271 67.43 78.09 73.79 87.57 99.15 86.86 99.67 100

Soil-vinyard-develop 6203 97.38 98.30 73.89 84.45 87.98 98.72 100 100

Corn-senesced-green-weeds 3278 81.85 86.12 69.26 85.26 98.62 93.67 98.58 99.35

Lattice- romaine-4wk 1068 97.63 95.86 72.91 88.47 99.45 96.55 100 100

Lattice- romaine-5wk 1927 99.39 99.89 66.89 86.45 96.89 97.21 99.52 99.84

Lattice- romaine-6wk 916 98.39 99.88 63.48 73.44 89.96 100 98.12 100

Lattice- romaine-7wk 1070 90.25 93.99 75.49 69.48 40.21 94.29 99.52 98.01

Vinyard-vertical-trellis 7268 56.29 56.17 75.77 87.64 81.30 66.66 98.69 99.49

Vinyard-vertical-trellis 1807 73.84 97.55 74.66 84.33 95.79 98.83 99.10 100

AA 87.20 87.43 72.73 83.51 87.82 95.37 99.20 99.65

OA 81.49 93.29 74.95 85.41 81.27 91.55 99.31 99.74

κ 79.43 85.99 71.99 83.74 79.12 90.58 99.23 99.71

Fig. 10 Salinas image: the ground truth image and comparison of the classification maps of spectral, texture and shape features and proposed method
with training samples set A and set B
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representation (NLW-SR) (Zhang et al. 2014), the singlescale
adaptive sparse representation(SASR), the multiscale separate
sparse representation (MSSR), the multiscale joint sparse rep-
resentation (MJSR), the multiscale adaptive sparse represen-
tation (MASR) (Fang et al. 2014). For the LORSAL-MLL
method, the spatial information of the hyperspectral image is
exploited by the multilevel logistic prior-based segmentation
technique. The SRC-Pixel-wise is a sparse representation-
based classifier on which the spectral information is used for
classification. Similarly, the JSRM is a sparse representation-
based classifier on which the spatial context is utilized within
one fixed single scale. In NLW-SR method, a dynamic weight
based on the spectral similarity and the local neighbourhood
region is assigned for each pixel. The SASR method is a
single-scale sparse representation classifiers based on modifi-
cations of the JSRM. In SASR, the adaptive atom selection
strategy is applied on the JSRM. The MSSR and MJSR are
two multiscale sparse representation-based classifiers. The
MASR simultaneously represents pixels of multiple scales
via an adaptive sparse strategy to exploit correlations among
multiple scales and to represent the pixels of each scale to by
an appropriate representation. Since we did not have the codes
of these methods, the classification accuracies of the compet-
ing methods were obtained from the corresponding articles.
The details and the parameter settings of different methods can
be found in the original articles. It can be seen that the pro-
posed method in Indian Pines and Salinas data sets outper-
forms the competing methods. The proposed method in Pavia
University is better than the other methods although it is most-
ly similar to the EPs-F method. The OA of the proposed
method is 98.33% and the OA of the EPs-F method is
98.67%. It can be seen that the proposed method in Indian
Pines and Salinas data sets outperforms the competing
methods on which the level of enhancement is noticeable.

The proposed method in Pavia University is better than the
other methods although it is mostly similar to the EPs-F meth-
od. Eps-F is an effective spatial-spectral feature extraction
method for hyperspectral images (HSIs), which has better per-
formance in Pavia University, high resolution hyperspectral
image. The given results in these tables demonstrate the per-
formance of the proposed spectral–spatial classification meth-
od. These results show that the weighted combination of the
probability distributions contain useful information about tex-
ture and shape features of the image. In addition, the spatial
contextual information of the neighbouring pixels can signif-
icantly improve the classification accuracy. On the other hand,
according to the results presented in Tables 5, 6 and 7, the
proposed method with set B for Indian Pines and Pavia
University images and set C for Salinas image, poorly-posed
classification problem, outperforms most of the competing
methods.

Conclusion

In this article a novel weighted combination of spectral and
spatial information in probabilistic framework for classifica-
tion of hyperspectral images, especially with limited training
samples was proposed. Three probabilities of spectral, texture
and shape features were combined together for each pixel on
which three weights determine the efficacy of each one. Then
the spatial contextual information of the neighbouring pixels
in a SA region was applied to improve the classification re-
sults further. The main contributions of this article contain
three-folds: 1) weighted combination of the spectral, texture,
shape features and the contextual information in probabilistic
framework is the main contribution of this article that didn’t
appear in the previous works in which all extracted spatial

Table 5 Indian Pines: classification accuracies of the proposed method compared with some recent spectral–spatial classification methods for 50
training samples (set B)

Methods EMP EPF SVM-
CK

GCK-
MLR

SC-
MK

MNFL EPs- stacking EPs-
F

Proposed method

OA 89.43 88.31 83.68 89.36 95.06 90.86 87.66 95.85 96.54

AA 87.76 86.51 87.39 91.71 96.50 91.85 90.43 97.09 97.70

κ 90.01 88.22 81.14 87.73 94.32 89.44 85.89 95.22 95.97

Table 6 Pavia University: classification accuracies of the proposed method compared with some recent spectral–spatial classification methods for 50
training samples (set B)

Methods EMP EPF SVM-
CK

GCK-
MLR

SC-
MK

MNFL EPs- stacking EPs-
F

Proposed method

OA 94.57 93.57 91.14 96.40 96.28 94.95 96.76 98.67 98.33

AA 92.85 91.60 91.95 96.34 97.51 94.91 97.53 99.13 98.04

κ 93.21 92.82 88.34 95.24 95.11 93.43 95.68 98.23 97.99
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information are combined with the spectral data by using
probability distribution functions, 2) Unlike some spectral-
spatial classification methods which use of the fixed-window
neighbourhood, in this article, the contextual information in a
SA neighbourhood is used to enhance the classification re-
sults, 3) in the previous works, the number of the similar
and dissimilar labels in the neighbourhood is used to refine
the label of the central pixel, but the reliability of the
neighbourhood labels is not considered. The proposedmethod
was performed on three data sets with different limited train-
ing samples. Studying the results showed that the use of prob-
abilistic framework to combine the spectral and spatial infor-
mation is a simple and robust technique for enhancing the
classification accuracies in hyperspectral images. Finally,
Comparison with some recent spectral-spatial classification
methods demonstrated better performance of the proposed
method.
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