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Abstract
KarsTS 2.2 is free, open-source, R-based software for microclimate time series, especially suited to the study of underground or
highly insulated environments. The time series of interest include air temperature, humidity, and CO2 and

222Rn content, amongst
others. These time series usually pose problems such as gaps, outliers, noise or relative shortness. KarsTS was born as a package
for gap filling and thus, it offers multiple univariate and multivariate gap-filling tools well suited to these variables. However, as
KarsTS was intended to be a self-sufficient program, it soon grew to encompass several tools for linear and nonlinear time series
analysis, preprocessing and plotting. Indeed, many of these variables show a nonlinear behavior that is often disregarded; for this
reason, we aim to spread and facilitate the use of somemethodologically appropriate analysis tools, even amongst researcher that
do not feel comfortable using a console. In this paper, we introduce an overview of KarsTS functionality and we show its
potential through some practical application examples on four-year time series of temperature from the Rull cave (Spain).
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Introduction

Microclimatic characterization is usually based on the contin-
uous monitoring of several parameters as air temperature, rel-
ative humidity, pressure and gaseous carbon dioxide (CO2)
and radon (222Rn) contents, amongst others (Cuezva et al.
2011). Microclimate characterization of such environments

is a topic of great interest in the fields of cave art conservation
(Bourges et al. 2014), historical heritage conservation
(Camuffo et al. 2004), water resources management (Poulain
et al. 2015), speleothems and paleoclimate reconstruction
(Fairchild et al. 2006), human safety in underground environ-
ments (Alvarez-Gallego et al. 2015), and gases concentration
and their interactions with the external atmosphere
(Fernandez-Cortes et al. 2015), including contributions to
the global carbon cycle and its role in climatic change
(Garcia-Anton et al. 2017), amongst others.

Subsurface environments such as caves, basements or mines
are, in general, isolated from the outside by layers of rock and
soil. This results in thermally stable atmospheres, commonly
saturated in water vapor and enriched in CO2 and

222Rn. The
inner microclimate depends on the outside climate but also on
other factors such as the existence and location of openings, the
characteristics and thickness of the bedrock and the soil, etc. As
a consequence, the measured time series and the relationships
between them can be extremely complex (Perrier and Richon
2010; Baldini et al. 2006; Bourges et al. 2014).

Missing values are another major problem in environmen-
tal time series. Karst series are particularly affected by the
existence of gaps. The singular environmental conditions
and the presence of animals or vandals may damage the mea-
suring devices, causing a wide variety of gaps in the registered
data. Long gaps, which can last several days or even weeks,
even when they are no numerous, are the most problematic.
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KarsTS 2.2 is a multiplatform code with a friendly graph-
ical interface for the analysis of microclimate time series. It is
designed to address the specific set of problems that re-
searchers face in the field of underground or insulated envi-
ronments, such as caves or historical stone buildings; for this
reason, amongst KarsTS broad functionality, its most note-
worthy tools are related to gap filling and nonlinear analysis.

KarsTS is based on R, which is a cross-platform open-
source computing environment, freely-available under the
GNU General Public License (Grunsky 2002). R relies on a
system of more than 10,000 contributed open-source pack-
ages, which enhance greatly its functionality. Several R-
packages are devoted to missing values and nonlinear time
series. The packages mice (Buuren and Groothuis-
Oudshoorn 2011), Amelia (Honaker et al. 2011), mi (Su
et al. 2011], missForest (Stekhoven 2013) and Hmisc
(Harrell 2017) include tools for missing values imputation;
however, many of their methods are not specific for time se-
ries and require normally distributed data. Regarding the
packages for nonlinear time series, the package GPoM is de-
voted to nonlinear systems modelling (Mangiarotti et al.
2012a, 2012b). The package nlts provides tools for nonpara-
metric autoregression and tests for linearity (Bjornstad 2017).
The package tseriesEntropy offers an entropy measure and
some tools derived from it (Giannerini 2017). The package
tseriesChaos provides a number of analytic tools such as the
correlation integral or the Lyapunov exponents (Di Narzo and
Di Narzo 2013). Unfortunately, these methods generally re-
quire long time series, which are hardly available in microcli-
mate research. Recurrence analysis, however, is a methodolo-
gy well-suited for the analysis of nonlinear, short and noisy
observational time series (Marwan et al. 2007). It experienced
great development in the last decades (e.g., Bradley and
Mantilla 2002; Marwan and Kurths 2005; Romano et al.
2005; March et al. 2005; Thiel et al. 2008; Marwan 2011)
and it has been applied successfully to other disciplines, such
as climatology (Marwan et al. 2003), materials science
(Nichols et al. 2006), economy (Strozzi et al. 2007), physiol-
ogy (Webber 2012) and seismology (Garcia et al. 2013). The
package nonlinearTseries includes tools for recurrence plot-
ting and quantitative recurrence analysis (QRA), although
they are quite computationally expensive (Garcia 2015). The
R package fNonlinear includes a function for plotting recur-
rence plots too, but not for QRA (Wuertz et al. 2017). The
package crqa is devoted to cross-recurrence quantification
analysis between two time-series of categorical or continuous
values (Coco and Dale 2014). The fact that R and RStudio are
manipulated mainly via code lines represents a barrier inmany
cases; because of this, R graphical interfaces are becoming
more popular (for instance, RKWard, the Sciviews Virtual
Box (Grosjean 2014) and the EPack Plugin, which provides
RCommander with time series functionality (Fox and
Bouchet-Valat 2017)).

Aiming to expand the use of R to the study of microclimate
data, we developed KarsTS 2.2, which is cross-platform, free
software, available on the Comprehensive RArchive Network
under the GPL (> = 2) license. It offers functions to analyze,
fill, plot and manipulate linear and nonlinear time series, even
if they are short. These tools make KarsTS a self-sufficient
program, where the researcher can perform the entire process,
including preprocessing, filling and analysis. Regarding gap
filling, KarsTS includes a handful of univariate and multivar-
iate methods. Some of them have been adapted and imple-
mented from gap-filling techniques developed in the field of
Ecology for CO2 flux time series (e.g., Falge et al. 2001a, b;
Dengel et al. 2013;Moffat et al. 2007; Zhao and Huang 2015).
Graphics are also an essential part of KarsTS. In general, R
graphics lack interactivity; however, KarsTS offers some in-
teractive plots, where the user can select elements and perform
different actions (zoom, remove points, get coordinates, etc.).
Finally, regarding recurrence analysis, our goal was to favor
calculation speed and efficient memory usage because micro-
climate time series can produce very large recurrence matri-
ces.We aim to raise awareness of the nonlinear nature of many
microclimatic time series, as well as to promote the use of
consistent methodological tools even amongst scientist that
do not feel comfortable using a console.

In this paper, firstly we present an overview of KarsTS
functionality. Then, we describe the data sets and outputs
and the interface structure. Finally, in the application exam-
ples, we illustrate on observational cave time series the poten-
tial of some methods that have not been applied previously in
this field.

Design and implementation

Development aims

KarsTS was born as an interface for filling gaps; however,
soon it grew up to encompass a variety of tools for time series
manipulation and analysis. Part of KarsTS functionality
comes from contributed R packages, whilst other functions
have been developed specifically for KarsTS. One of the main
goals guiding KarsTS development was to make it self-
sufficient; in other words, the user does not need other soft-
ware to complement KarsTS functionality. For this reason, we
included many tools for time series preprocessing and plot-
ting. Even though, it can be used in combination with the R
console, which is useful also for regular R users because
KarsTS contains functions that are not in other packages.

KarsTS filling functionality is quite complete, both in terms
of options and methods. The user can study the distribution of
gaps (directly from time series, including time series with
changing sampling frequency), study their nature (Little’s
test), evaluate filling methods on artificial gaps and, finally,
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apply a filling method selectively on a subset of gaps. The
program gathers a handful of univariate and multivariate
methods that are effective on karst microclimate time series.
Some filling methods were excluded either because they led to
unsatisfactory results or because our time series did not meet
their requirements. Similarly, we had to exclude many options
for outlier detection; therefore we had to develop an interac-
tive function for manual detection and a filter for points with
anomalous slopes.

We propose a fillingmethod based on twin recurrent points,
therefore, KarsTS needs to be equipped with recurrence tools,
however, the utility of recurrence analysis goes much further
as we superficially show in the application examples. Our time
series usually last few years, but their sampling frequency has
to be quite high; this results in long time series in terms of
number of points. Other R packages containing recurrence
functions collapsed under such long time series, therefore
KarsTS recurrence functions had to be implemented anew,
considering carefully efficiency and memory usage.

Many researchers in the field of karst microclimate feel
uncomfortable using command lines; on another hand, non-
linear tools such as recurrence analysis are not widely known
in this field despite their potential. Hence, this is a double
barrier that can be difficult to overcome. KarsTS, having a
graphical interface, is intended to lower that barrier and raise
consciousness of the nonlinearity of most microclimate time
series. In addition, KarsTS covers the methods commonly
used in karst microclimate research (statistics, correlations,
etc.), which is expected to encourage the users. In every func-
tion, the user is allowed to choose as many relevant inputs as
possible. This might require an initial learning effort but it
fosters KarsTS capability and flexibility, as well as the user’s
awareness. Along these lines, we have provided very few
optional, default inputs because they might encourage an
irresponsible use of the software. KarsTS checks exhaus-
tively the inputs entered by the user (class, range, com-
patibility, etc.) and throws explicative messages when
they are inadequate. We have been meticulous to support
the user and to avoid nonsensical results going undetected
or collapsing the program.

Functionality and methods

In general, KarsTS functions can be divided in three layers.
The core functions perform the calculations. Some of them
have been developed for KarsTS whilst others come from
other packages. Core functions are wrapped in a second layer
of functions that verify exhaustively the inputs provided by
the user and throw explicative messages when they are inad-
equate. All the previous functions can be accessed directly
from the R console, even when the interface is closed. The
third layer includes the functions corresponding to the graph-
ical interface.

In the Supplementary material, table S.1 shows a complete
list of KarsTS functionality and table S.2, the core functions
inherited from other packages. Now we will describe briefly
KarsTS functionality, highlighting the tools developed specif-
ically for this program. We will also provide some theoretical
background discretionarily.

KarsTS functionality is divided in five menus. Two menus
are devoted entirely to data set manipulation (time series and
gap sets, respectively). Actions related to file manipulation
(load, save, export, etc.) and those that require only elementary
mathematical procedures are also located in these menus (for
example, resampling, scaling, rounding, cumulative sum etc.).

The user can select a set of gaps from a time series (diverse
criteria are available) in order to apply later a filling technique
only to that set of gaps (for example, spline interpolation only
for gaps shorter than six missing values). Testing the suitabil-
ity of the filling techniques to a particular time series is rec-
ommendable; to accomplish this, KarsTS allows the creation
of artificial sets of gaps. The result can be tested visually or
analytically, since KarsTS also contains a function to calculate
the error between the imputed and the observed values.

The Analysis menu is devoted to analytical procedures that
produce non-graphical results, that is, new data sets and tables.
It includes statistics, loess seasonal decomposition and
smoothing, principal component analysis and tests for normal-
ity, stationarity and linearity, as well as tools for the analysis of
recurrence. Recurrence is the return of the system to the same
state after some time and its analysis can be useful to charac-
terize various types of regimes from low-dimensional linear
deterministic to nonlinear and stochastic-like dynamics.

Recurrence analysis is based on the Theory of Dynamical
Systems; therefore, the microclimate is conceived as a dynam-
ical system, that is, a set of interrelated variables evolving
through time. According to the Takens’ Theorem (Takens
1981), systems dynamics can be reconstructed by embedding
the observed variables available (see 3.2.2 for an example).
This is a powerful tool, since underground systems are difficult
to access and they involve variables that cannot be measured.

The fundamental tool for recurrence analysis are recurrence
matrices, which are succinctly presented here (for a complete
background, see Marwan et al. (2007). In section 3.2, we
provide an example of creation and interpretation of a recur-
rence matrix (RM).

Let xk be an embedded time series:

xk∈Rm; k ¼ 1; 2;…N ; ð1Þ
where m is the embedding dimension.

A RM can be defined as follows:

RMi; j εð Þ ¼ Θ ε−‖xi−x j‖
� �

; i; j ¼ 1;…;N ; ð2Þ

where ε is a threshold distance andΘ is the Heaviside function
(Marwan et al. 2007). Thus, RMi,j (ε) equals zero when the
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distance between two points (which characterizes the state of
the system in the phase space) is greater than the threshold ε
and it equals one otherwise. In other words, ones in RM ex-
press recurrence and zeros express lack of recurrence. QRA
can provide some useful information such as the self
repeating-rate (which is usually called determinism in litera-
ture) the predictability of the system, the presence of succes-
sive alternating states (laminarity) or the time that the system
remains trapped in a certain state (trapping time). Recurrence
analysis can be applied also to cross and joint (multivariate)
recurrence matrices.

Recurrence plots – located in the Plots menu – are the
graphical counterpart of recurrence matrices. Values equal to
one are plotted as points, whereas values equal to zero are not
plotted. The points form patterns that give fast visual informa-
tion about the dynamics of the system (Fig. 9).

The maximum size of R objects is rather limited (4Gb in
the best case), especially when working with Windows. This
poses a problem to recurrence analysis because matrices based
on microclimatic time series tend to be very large. Indeed, we
could not reuse recurrence tools from other packages, instead
we had to design more efficient functions to create and store
recurrence matrices, cross-recurrence matrices, joint recur-
rence matrices, distance matrices and their respective
plots. The matrices are stored in a specific sparse format,
which conditions the performing of the quantitative recur-
rence analysis (QRA), therefore tools for QRA from other
packages cannot be used on KarsTS recurrence matrices.
Following the same criterion of efficiency, KarsTS in-
cludes tools for estimating the recurrence rate, determin-
ism or self-repeating rate, laminarity and recurrence
probability.

The Plots menu also contains tools for plotting time series,
phase portraits and distance matrices. Optionally, the user can
customize the graphics to a great extent: colors, line width,
point size, labels, pixel size etc. Some of the plots are interac-
tive. Interactive plots provide KarsTS with essential function-
ality; besides zooming plot sections, the user can get point
coordinates and graphically remove points. The latter tool
is quite useful to eliminate outliers manually because au-
tomatic removal of outliers is seldom possible since our
time series are often nonlinear and non-stationary. The
outliers are usually due to malfunctions of the measuring
devices and they can be detected visually with ease,
though (see section 3.2.2 for an example).

The Plots menu contains other graphics, such as histo-
grams, false nearest neighbors and tools for analyzing time
series correlation (linear correlation, average mutual informa-
tion and cross recurrence probability).

Finally, the fifth menu is devoted to filling methods. The
upper row contains univariate methods. It includes different
types of interpolation coming from the zoo and stinepack
packages. Interpolation is a good choice for small gaps

(smaller than the time series period), but it fails to reproduce
periodical or quasi-periodical behavior. Aiming to expand the
usefulness of interpolation to longer gaps, we have included
an additional feature that allows to perform the interpolation
taking on account the position of the value inside the period
(we will refer to it as position-wise interpolation). For in-
stance, let be a time series with measurements every 60 min
and a periodicity of one day and a missing value correspond-
ing to 12:00 h. If this option is selected, only the values mea-
sured at 12:00 h will be taken on account to perform the
interpolation. This feature is very useful when the gaps are
longer than half a period (in this example, gaps of 12 missing
values or more).

The position-wise mean value (PwMV), specifically imple-
mented for KarsTS, is inspired by theMean Diurnal Variation,
a gap-filling method used for Eddy CO2 fluxes (Moffat et al.
2007). In the PwMV, a missing value is replaced by the mean
of the values located in analogous positions in the periods
surrounding the gap; the length of the period is defined by
the user and, thus, not limited to daily variations. Along the
same line, KarsTS includes position-wise interpolations. Gaps
can also be filled by fitting an ARIMA model to the data.
Optionally, KarsTS can suggest the ARIMA parameters using
internally the auto.arima function, which eases significantly
the process. The lower row offers multivariate filling methods,
which are useful when other time series provide information
for filling the incomplete one. These methods include
ARIMAX models, generalized additive models and a random
forest algorithm from the missForest package. Finally, the
Twins method combines the Look Up Table methodology
(used in Ecology, see Moffat et al. (2007)) with an original
recurrence analysis approach. Let {Xi,j} be a multivariate time
series of length N with M variables m1,m2,…mM, where Xi,j
the i-th value of the variable mj is missing. The LUT method-
ology consists of finding points where the non-missing vari-
ables m1,m2,…,mj-1,mj + 1,…,mM take equal or very similar
values to (Xi,1, Xi,2, …,Xi,j-1, Xj + 1, …, Xi,M). We propose to
define this similarity taken on account that these points are
points of a dynamical system. Some methods to fill missing
values using the Theory of Dynamical Systems have been
proposed (Amritkar and Kumar 1995; Zhao et al. 2009); how-
ever, these methods are recursive and their errors grow
very fast for observational time series. Our method is
not recursive, since the missing values are filled consid-
ering the values of the non-missing variables. Moreover, it
allows using embedded variables, thus taking advantage
of the principle of embedding, which allows the recon-
struction of dynamical systems when one or more vari-
ables are missing. In this filling method, we consider two
points to be equivalent when they are twins. Twin points
are points that produce identical columns in the recurrence
matrix (this implies that they are so close in phase space
that they share the same neighborhood of points).
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Data sets and outputs

The user can handle three types of data sets: univariate time
series, recurrence matrices and gap sets. Time series are data
frames having the time in date format in the first column and
the values in the second column. Gap sets and recurrence
matrices are lists. A gap set is a collection of missing values,
given by their positions in a time series; the list contains ad-
ditional information about the original time series (name,
length, start date, etc.). Recurrence matrices are sparse matri-
ces containing only the positions of the ones, as well as addi-
tional information (embedding dimension, delay etc.). During
the KarsTS session, data sets are located in the environment
KTSEnv, which is accessible from the R console. This enables
the combined use of KarsTS and R. KarsTS data sets have
very specific structures and KarsTS will only recognize data
sets that match exactly those structures; therefore, users must
be careful when modifying them by means of the R-console.
Despite this, these strict data set formats are desirable because
they allow verifying the appropriateness of the inputs
exhaustively.

KarsTS data sets can be imported from or exported to csv
or txt files. Initially, the researcher’s time series are usually in a
csv or txt file; in contrast, gap sets and recurrence matrices are
typically created with KarsTS. Saving the data to R files al-
lows storing multiple data sets in the same file and eliminates
any compatibility problem. KarsTS rejects incorrect files; for
example, time series with dates in the wrong order.
Nonetheless, time jumps and different sampling periods are
accepted; KarsTS processes the time series in order that inter-
nally their sampling period is constant.

Interface structure

KarsTS interface consists of a welcome window, the main
window and independent additional windows for plots and
warning messages. The main window is divided in four parts
(Fig. 1), which will be described briefly from the bottom to the
top. The lower space contains four buttons which serve the
following purposes: i) set the working directory; ii) create a txt
file with the contents of the output window; iii) open a short
help document (for further information, the user can check the
KarsTS User’s Guide) and iv) open a file with information
about KarsTS current version.

Over the space containing these four buttons, the input
panel (IP) lies on the left side and the output window (OW),
on the right. Non-graphical results such as tables appear on the
output window; the user can write, copy, paste and delete
since the window is editable. As we have already mentioned,
the OW contents can be saved to a txt file.

The uppermost row hosts five menu-buttons, namely, Time
Series, Gap Sets, Analysis, Plots and Filling. As we mentioned
in section 2.2, the first twomenus are devoted to preprocessing;

the third and fourth, to analysis and the last one, to missing data
imputation. When a menu-button is pressed, the buttons corre-
sponding to that menu are displayed in the rows below. Each
menu-button has a distinctive color, which is shared by its
buttons (although the buttons color is a tone lighter). Every
function needs specific inputs, therefore when the user presses
a button, the input panel changes accordingly.

Graphical outputs appear on new windows. From these
windows the user can copy the plot to the clipboard or save
it to a png or tiff file (Fig. 2a). In some cases, it is also possible
to select a section of the plot and zoom it; the zoomed section
appears on another window (Fig. 2b).

Illustrative examples

To illustrate the potential of KarsTS, in this section we provide
examples of pre-processing, gap filling and recurrence analy-
sis based on a data set gathered under real observational con-
ditions in the Rull cave (Alicante, Spain) from 11 to 22–2012
to 10-28-2016. We will consider the outside temperature,
which was recorded every 30 min with an independent data
logger (Onset, Bourne, MA, USA), and the inside tempera-
ture, measured with a HygroClip S3 sensor (for further details
about the monitoring, see Pla et al. 2017). The natural gaseous
dynamic of this cave is characterized by two different stages.
The temperature difference between the outside and the inside
controls the ventilation processes, which cause the CO2 and
222Rn concentration to reach their lowest values in the coldest
months. The cave temperature variations are negligible in
comparison to the outside temperature ones. By contrast, in
summer, ventilation is blocked and diffusion processes re-
charge the cave with soil-produced CO2; the outside temper-
ature is also an essential control for the soil CO2 production
and, of course, for the cave temperature itself (Pla et al. 2016a,
b, 2017, Garcia-Anton et al. 2017). In summary, the outside
temperature is the most important control for the cave
microclimate.

Gap filling example

In order to show the application of some filling techniques, we
select a fragment of the outside temperature (Fig.3). Then we
create artificial gaps of varied sizes (button Artificial random
gaps), as shown in Table 1. In all cases, the total number of
missing values in the time series is 576 (10% of the fragment
length).

For comparison, the time series are filled using all KarsTS
univariate filling techniques: spline and Stinemann’s interpo-
lations, position-wise spline and Stinemann’s interpolations,
ARIMA model and position-wise mean-value. The ARIMA
parameters are estimated automatically, being the result
(2,0,0)x(1,1,0). For the position-wise mean value we use, in
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general, a number of observations equal to twice the size of the
gap; however, for gaps shorter than one period we take 96
observations (48 at right and 48 at left).

Table 2 shows the mean absolute error for each method
(button Check filling). The interpolation error for the Spline
interpolation and gaps of 12 h is 2.124 °C; however, the error
grows fast as the length of the gaps is increased (for example,
35.770 °C for 6 days gaps). The Stinemann’s interpolation
error is somewhat smaller for 12 h gaps (1.948 °C) and its
behavior for long gaps is slightly more stable. The position-
wise interpolations (columns Pw-Splines and Pw-Stinemann)
and the position-wise mean value (Pw-MV) entail a signifi-
cant improvement. In these cases, the relationship between the
gap length and the error magnitude is not systematical; how-
ever, the errors are of the same order for gaps up to 6 days
(between 1.116 and 2.462 °C). The results for the ARIMA
model are also of the same order, however, this method re-
quires much more computation time. In conclusion, Table 2
shows that the position-wise Stinemann’s interpolation offers
the best results in this case. The position-wise spline interpo-
lation would be a good choice too; indeed, we have sometimes
observed a better behavior of the spline method over the
Stinemann’s one when the research requires to differentiate
the time series (probably the spline interpolation is best to
ensure smoothness).

Recurrence analysis of the temperature

In this example, we construct and interpret a RM from the
time series of the difference between the outside and the inside
temperature, which is the main control for ventilation.

Preprocessing

The sampling period is always 30 min and the first and
last dates of both time series coincide. The time series of
the outside temperature (Fig. 4a) has only nine missing
values, therefore any filling method is suitable. However,
the time series of the inside temperature (Fig. 5) has sev-
eral long gaps. In addition, it contains many outliers,
which are caused by malfunctions of the equipment. We
clean the time series manually using the Remove points
button (Fig. 5).

Next, we smooth the time series to remove noise and
very high frequencies (button Loess smooth.). We have
to choose the parameter alpha, which controls the degree
of smoothing; in this case, alpha = 0.015 for both time
series (the smoothed time series are not shown). For each
point in the time series, the loess smoothing performs a
local fitting in a neighborhood around the point; alpha
indicates the length of this neighborhood as proportion to
the total length of the time series (1435 days). Therefore,
in this case the neighborhood includes 1435 *0.015 ≈
21.5 days. This window is enough to eliminate noise
and high frequency oscillations (of few days) from both
the CO2 and the 222Rn time series. After smoothing, the
cave temperature shorter periodicity is one year.
Therefore we can now interpolate both time series with
splines.

Finally, we subtract the inner temperature from the out-
side one (button Operations) in order to get the smoothed
centered temperature (Fig. 4b, blue line). For the sake of
simplicity, we rename the time series to cT.Sm, where Sm
stands for smooth.

Fig. 1 KarsTS main window. At the top, the time series menu is displayed; at left, the input panel corresponding to the Load button and at right, the
output window
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cT.Sm is too long for a recurrence analysis: 68880 values.
The corresponding RM would have 2,372,192,760 elements
in each triangle. Even if KarsTS stores it as a sparse matrix, it
would likely exceed R capacity of allocation. Therefore, we
resample the time series (button Cut and Resampling) to get a
time series with one value every 6 h: cT.Sm.6 h (not shown in
any figure).

Estimation of the embedding parameters

Embedding is not strictly necessary to calculate recurrence
matrices because the unembedded matrix contains, in princi-
ple, all the information (March et al. 2005); however, it is
useful since it unfolds the dynamical information included in
the original signal, and it facilitates the interpretation of the

Fig. 3 Fragment of the outside
temperature time series (°C) from
June, 2013 to September, 2013

Fig. 2 a) Plot containing two time
series currently under
consideration; the section in green
has been selected using the
mouse. b) Zoom of a section of
the time series. The zoomed
sections can be turned into new
time series using the button
Create ts
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recurrence plots. Therefore, choosing the embedding dimen-
sion (d), delay (τ) and threshold (ε) is a necessary step of
recurrence analysis.

The most usual method to estimate the delay is to take the
first minimum of the delayed average mutual information,
AMI (Abarbanel et al. 1993) (button Mutual). It is also usual
to take the first change of slope if there is no minimum. Note
that embedding the time series causes a shortening equal to (m
– 1) × τ; therefore, a distant minimum can lead to an unac-
ceptable shortening in practice. Embedding also propagates
gaps, which can be another drawback when m or τ are large.

Figure 6 shows the AMI plot for cT.Sm.6 h; clearly, the
AMI has a minimum at lag = 360, that is, 90 days. However,
this delay is probably too long considering the shortness of the
time series. There is also a change of slope at 16 lags (4 days),
approximately, which is likely a more feasible option. We
have to consider, also, that the delay of 90 days will highlight
the annual structures and the other will highlight the structures
related to the intermediate time scales.

The next step is to estimate the embedding dimension, d.
This is usually done using the false nearest neighbors method
(Kennel et al. 1992) (button FNN). False neighbors are points
in the embedding space that are close when the trajectory is
compressed, but they separate when the system is convenient-
ly unfolded, which happens when the embedding dimension is
large enough. Figure 7 shows the FNN plot for the centered
temperature time series. When the embedding dimension is
around 5, the percent of false nearest neighbors becomes sta-
ble. For smaller dimension, the embedding is not ensured. For
larger values, additional dimensions do not enable to unfold
anymore information (see Letellier et al. (2008) for a discus-
sion) and they might lead to spurious effects.

At this point, we have estimated the embedding dimension
and the delay; now we have to estimate the threshold (ε).
KarsTS offers functions to estimate it analytically
(Invariants and Ed(1) and Ed(2), see Supplementary material,
table S.1), but they require longer time series. In this case, we
will use distance plots (also known as unthresholded recur-
rence plots), which represent the distance between each pair of
points bymeans of a color scale.We simply choose the thresh-
old that visually produces clearer structures, in this case, short
diagonal lines (Fig. 8). The user can apply the color scale to a
range of distances; for example, we used progressively smaller
distance ranges in order to refine the threshold: 0–15, 0–7 and
0–4 °C. From Fig. 8, we can estimate the threshold as 2 °C,
although 1 °C seems to be a better choice in summer.

Distance plots provide good visualization, however, they
cannot be used for QRA; for this reason, a RM is also needed
(Fig. 9).

Temperature dynamics

Recurrence analysis of the centered temperature behavior is
interpreted as a combination of deterministic chaos and
laminarity at multiple scales. The large scale diagonal struc-
tures indicate that there is underlying determinism; however,
rather than diagonal lines, they are succesions of square struc-
tures, which is a sign of laminarity. On the small scale, there
are also diagonal and vertical structures that can be observed
in Fig. 8 (distance plot) or Fig. 9 (recurrence plot). The plot
forms a chess-like structure. In winter, there are large square
structures filled with short diagonal lines (magenta in Fig. 8
and brown in Fig. 9, see example A). The fact that these
structures are squared (not rhomboidal) evinces that the

Table 2 Mean absolute error (°C) of the observed versus imputed
temperature values for different univariate filling techniques. Splines
and Stinemann stand for Spline and Stinemann interpolations,

respectively; Pw-Splines and Pw-Stinemann stand for position-wise
spline and Stinemann’s interpolation, Pw-MV stands for Position-wise
mean value (see Suppl Mat 1,Table S.1)

Gap length (days) Splines Stinemann Pw-Splines Pw-Stinemann Pw-MV ARIMA

0.5 2.124 1.948 2.068 1.615 1.635 1.821

1 4.385 4.516 1.316 1.120 1.116 1.342

2 6.729 4.445 2.017 1.600 1.781 1.785

6 35.770 4.842 2.171 1.321 2.462 1.301

12 13.239 7.004 3.211 2.100 2.995 2.377

Table 1 set of time series with
artificial gaps to test different
fillingmethods. Note that the time
series is sampled every 30 min,
therefore every cycle (day)
contains 48 observations

Time series name Number of gaps Missing values per gap Gap length (days)

T.outside.1_24 24 24 0.5

T.outside.1_48 12 48 1

T.outside.1_96 6 96 2

T.outside.1_288 2 288 6

T.outside.1_576 1 576 12
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outside temperature surpasses and drops below the cave tem-
perature very abruptly in comparison with the annual scale.
The short diagonal lines inside correspond to temperature os-
cillations within the winter (Figs. 8 and 9, see example B). In
summer, there are also squared structures filled with short

diagonal lines, but they are smaller (magenta in Fig. 8 and
brown in Fig. 9, example C). The diagonal lines in winter
are more separated than they are in summer. This implies that
the period of the temperature oscillations in winter is larger.
As mentioned in section 3.3.2, the optimum threshold for the

Fig. 4 a Outside temperature
(red) and inside temperature
(blue) time series (°C) b Centered
temperature (red) and smoothed
centered temperature (blue) time
series (°C)

Fig. 5 Cave temperature (°C) before (in red) and after (in black) removing outliers with the Remove points button
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recurrence matrices seems to be 2 °C in winter and 1 °C in
summer. Between the small summer and the large winter
squares, there are more small squares. They correspond to
sudden temperature changes followed by periods of stability.
In other words, the temperature rises in few steps and reaches
its maximum around July; then, it descends also in steps. After
that, it enters the winter dynamics.

The outside temperature (Fig. 4a) and the centered temper-
ature (Fig. 4b) time series have practically the same shape
because the inner temperature is almost constant; as a conse-
quence both temperatures would produce virtually identical
recurrence matrices. The diagonal lines in the RM (Fig. 9)
are discontinuous. This means that the centered temperature
behaviour, although probably deterministic, cannot be predict-
ed in the long term, which is characteristic of chaos.

We have estimated the recurrence rate, self-repeating rate
and laminarity. The minimum self-repeating rate and
laminarity were set to one day, which means that we consider
the lines under this minimum length as noise.

The laminarity is very high in all cases (99%), whichmeans
that abrupt alternations are detected quite well. The self-
repeating rate is (49%). This means that, approximately half
of the times, the recurrence involves not only punctual states,

but also the time evolution of the system during one day or
more. The temperature predictability (mean of the recurrence
diagonal lines lengths) is 8.46 days. Finally, the trapping time
(mean of the recurrence vertical lines) is 7.67 days, which
means that, on an average, the temperature remains stable
for this time span before it changes.

The change between isolation (accumulation of CO2 and
222Rn) and ventilation is probably the most relevant factor
when studying the gaseous dynamics of a cave. The Rull cave
remains isolated from the outside’s when the outside temper-
ature is higher than the inner one (because the cave colder air
remains trapped); in other words the change between isolation
and ventilation must happen approximately when the centered
temperature is close to zero or somewhat later. As we have
shown in this paper, the outside temperature shows a strong
degree of laminarity with stable states separated by abrupt
temperature changes. This implies that the switch between
isolation and ventilation is very sudden and therefore, it might
be a delicate matter. Hence, we recommend studying the syn-
chronization between gas concentration and temperature by
means of recurrence matrices, which are able to deal with
laminar and mixed behaviors. This is, however, out of the
scope of this paper, where we have presented only one

Fig. 6 Delayed average mutual
information (AMI) as a function
of delay time of the centered
temperature (nats)

Fig. 7 False nearest neighbors
plots for cT.Sm.6 h (τ = 16)
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Fig. 8 Centered temperature
distance plot (τ = 4 days; d = 5).
A, B and C exemplify some
essential structures (explained in
section 3.2.3.)

Fig. 9 Centered temperature RM
(d = 5; τ = 4 days; r = 2 °C;
Theiler’s window= 2 days). A, B
and C exemplify some essential
structures (explained in section
3.2.3.)
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variable, the outside temperature. This variable is the main
driver for the gaseous interchange with the outside atmosphere
(since the inner temperature is practically constant) and its
effect over the cave gas concentration is rather fast.
Therefore, the cave atmospheric composition is expected to
show a similar behavior in terms of recurrence, predictability
and trapping time.

Conclusions

We have developed KarsTS, an R-based, multiplatform pack-
age for microclimate time series with an emphasis on under-
ground environments. It offers several tools for analysis, pre-
processing and plotting, since we aspire to include everything
the user needs to go through the entire characterization pro-
cess. The functions and data sets can be handled via interface
or via the R console.

Underground microclimate time series are the expression
of real-world, complex, often nonlinear, processes, which is
frequently overlooked. Hence, we aim to spread the use of
appropriate methodological tools. KarsTS provides nonlinear
tools including recurrence analysis since this technique is well
adapted to observational time series, possibly nonlinear, noisy,
short or incomplete. Recurrence analysis works on dynamical
systems reconstructed by embedding; the possibility of
reconstructing the system based on the variables available is
also convenient because the monitoring of these environments
is often difficult.

KarsTS also offers a handful of univariate and multivariate
filling methods adapted from other fields of research and the
possibility of applying them to different subsets of gaps within
linear or nonlinear time series such as temperature and CO2 or
222Rn concentrations.

In this paper, we showed some application examples on
four-year temperature time series from the Rull cave. On
one hand, KarsTS univariate filling techniques were tested
for different gap sizes; the better suited technique turned
out to be the position-wise Stineman’s interpolation. On
another hand, we created and interpreted a RM based on
the temperature difference between the outside and the
inside, which is the main control for the cave microcli-
mate and air composition. We found that the regime is
strongly laminar and its predictability is approximately
8.5 days. The examples also included the pre-processing
of the time series.
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Availability and Requirements

Program title: KarsTS 2.2
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