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Abstract
A key step in processing natural trees from point cloud data is to reconstruct the trees’ skeleton, which plays an important
role in forest investigation and monitoring. Although the techniques for general objects skeletonizing based on point clouds
have made a large stride, there are few efficient and simple studies on the natural trees, which have complex topologies. In
this paper, we propose a novel method to reconstruct tree skeletons based on the point cloud data, named as the force field
driven tree skeleton extracting method, which consists of the following steps. Specifically, to make the point cloud tree a
little bit cleaner, the hierarchical subdivision to the original point cloud space is firstly proposed. Then the split-level of the
trees’ applied space is considered in each layers, and a simplified representation of the feature points for the tree model
is then established under the neighbor relationships. After that, the feature points in the peripheral are connected by the
geodesic distance. To get the initial skeleton, the surface geodesic lines are compressed into the tree model by applying a
visible repulsive force field. Finally, the final skeleton is acquired by polishing the initial skeleton according to a threshold
setting. The experimental results on two kinds of representative naturally growing trees, which are the Cherry and Michelia,
indicate that this method can provide a satisfactory performance.

Keywords Laser point cloud · Trees skeleton · Split-level · Visible repulsive force field

Introduction

With the recent development of computer graphic tech-
niques, 3-dimensional (3D) applications based on the point
cloud data have become increasingly popular within the
computer-generated virtual and actual worlds (Bucksch
et al. 2010; Kim et al. 2013; Lindberg 2016). Although
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many large and simple structured objects can be conve-
niently scanned using the powerful and increasingly avail-
able scanners (Urbach 2014; Maltamo et al. 2016), there are
few efficient and simple studies on the complex topology of
natural trees. Trees are a common but vital part of the natural
environment, and the research on trees is beneficial to other
fields and applications, such as forestry, environmentology
and ecosystems (Aiteanu and Klein 2014; Wang et al. 2016;
Kandare et al. 2017; Lamb et al. 2018). Unlike other vege-
tation models, tree models, which often consists of irregular
leaves, a trunk and many densely intricate branches, are very
difficult to handle in actual practice (Huang et al. 2013;
Mikita et al. 2016). In addition to the complexity of tree
models, different types of trees are of different character-
istics. Therefore, computing the skeleton models based on
the point cloud trees is a great challenge for forestry and
agriculture research topic (Zhang et al. 2016a, b; Su et al.
2011). In mathematics, a tree skeleton is a subset of the
one-dimensional skeleton’s medial axis without endpoints.
To comply with the concept, the research subject of this
work is the point cloud data of the natural trees. Compared
with the grid model, the skeleton reconstruction of a point
cloud tree is more difficult due to the limited information,
the diversity and uncertainty of a trees’ structure, and the
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fact that the point cloud tree has a more complex topol-
ogy inside (Livny et al. 2010; Wang et al. 2014). Although
many skeleton extraction methods have been studied over
recent decades (Shlyakhter et al. 2001; Lidayov et al. 2016;
Djuricic et al. 2016; Xie et al. 2016), there are few papers
on this specific problem. Amenta et al. and others proposed
a geometric method based on the Voronoi map (Amenta
et al. 2001; Amenta et al. 1998). This method can pro-
cess the point cloud data directly. However, the proposed
method is sensitive to noisy data and may easily deform the
real skeleton. Verrost.et.al and other researchers also pro-
posed a level-set-based method (Dong et al. 2015); however,
this method is impractical, sensitive to noise, susceptible to
the missing details. Furthermore, when there is a vacancy
in the model, this method can achieve unsatisfactory per-
formance. In addition, there are other tree skeletonized
methods, but the existing methods are either too too compli-
cated to practice or to produce unsatisfactory reconstructed
results.

In this paper, we propose a simple but efficient skeleton
reconstruction method for point cloud trees, named as
force field driven tree skeleton extracting method. A
brief description of the proposed method is provided as
follows. To make the point cloud tree slightly cleaner, the
hierarchical subdivision to the original point cloud trees
spaces is firstly proposed. Then the split-level of the trees’
applied space is considered in each layers, and a simplified
representation of the feature points for the tree model
is then established under the neighbor relationships. The
point cloud-based tree’s feature points is then confirmed
using the Gauss clustering (Zhou et al. 2014, 2015). After
that, the feature points in the peripheral are connected
by the geodesic distance. To get the initial skeleton, the
surface geodesic lines are compressed into the tree model
by applying a visible repulsive force field. Ultimately, the
final skeleton is acquired by polishing the initial skeleton
according to a threshold setting.

There are two main contributions of this work:

• We propose a novel and efficient combinational
approach, which can be used to accurately extract the
tree skeleton from the point cloud data ;

• We first use the force field model to process the point
cloud data, and all the data can be put together without a
mesh map. Experimental results confirm the superiority
of the proposed approach.

Compared with the existing state-of-the-art methods, the
proposed method can better process the point cloud tree
model, which is of complex topology. A point cloud tree
skeleton reconstructed by the proposed technique can better
satisfy the centrality and continuity definitions due to the
lack of a rigid mathematical definition of a linear skeleton.

Material andmethods

Laser scanning

Laser scanning was undertaken in March 2014 using a
Leica Scanstation C10 scanner (Leica Geosystem AG,
Heerbrugg, Switzerland) with a dual-axis compensator and
high-resolution camera. The Field-of-View (Horizontal ×
Vertical) is setting as 360 × 370. The Scan-Rate is setting
as up to 50,000 points/second, and the Type is setting as
pulsed.

Simplified representation

Together with the advancement of the precision for the laser
scanner in recent years, the scale of the point cloud data has
also been increasing. The order for magnitude is typically on
the order for hundreds to thousands, which makes it difficult
to process the original data. Because trees have complex
topologies, the new technique can simplify point cloud trees
while retaining the details and reducing the computational
burden. As shown in Fig. 1, in this paper, we make a survey
to two kinds of trees, named as Michelia and Cherry.

Hierarchical subdivision

Hierarchical subdivision plays an important role in point
cloud data simplification, since it can subdivide all
hierarchies of the point clouds to a hierarchical structure
(Eckart et al. 2016). To achieve this goal, we use the
hierarchical bounding box to process all the hierarchies
of a subdivision. Due to the uncertainty of the space
position, shape and thickness of the living branches, it is
very difficult to accurately separate the living stands. Even
in the same space plane, different thickness of the stems
also requires different layered parameters. In addition,
in the same branch, from the bottom to the different
position of the layered parameters also need to remain
inconsistent. Therefore, considering the real situation of the
point cloud trees, we choose theOBBT ree as a hierarchical
bounding box in this work (Gottschalk et al. 1996).
Although the OBBT ree has a greater space complexity,
it is more applicable than the other bounding boxs on the
reconstruction of point cloud trees. Furthermore, it can
better manage the topology relationship between genus
and irregularities. Based on the OBBT ree, to make the
point cloud tree slightly cleaner, an points-half algorithm
and section-termination method are selected, which can be
described as the following steps:

1. Points-half algorithm;
2. The points-half algorithm halves the half-plane for the

vertical face of the plane intersected between the long
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Fig. 1 Primitive point cloud models. a Michelia, and b the branches
and trunk of Michelia. c Cherry tree, and d branches and trunk of
Cherry. We used a ground laser radar to obtain the primitive point

cloud models. These models were then separated into branches and
leaves using the Gaussian mixture method, and the research in this
work is based on the branches

axis of the directed bounding box and the centroid
passes through the leaf node. The computational time
of this algorithm is only relevant to the quantity of
the point clouds. Therefore, one main advantage of the
point-half algorithm is that the short computation time.
We improve this algorithm by clustering the Euclidean
distance among point clouds using the following four
steps:

• Set an arbitrary point and set KD − T ree of P ;
• Cluster P based on the KD − T ree;
• Divide P into Pl and Pr based on the Euclidean

distance;

• Divide P into Pl and Pr based on the above
mentioned point-half algorithm.

3. Section-termination. There are two ways to determine
the section-termination: the first one is based on the
quantity of points, and the other one is based on the
node’s maximum error (Lidayov et al. 2016).

Using the node’s sequence for magnitude, it is easy to
miss the small branches because of differing degrees of the
thickness and length. Thus, to solve this problem, we use
the node’s maximum error to carry out a section-termination
scheme. To control the number of the nodes and lower

Fig. 2 Results of the
hierarchical subdivision
algorithm. a we use the
hierarchical bounding box of
OBBTree to construct the point
cloud tree model and b the point
cloud model after hierarchical
subdivision algorithm

a b
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the space complexity, this work sets an error to judge the
weight, which can be expressed as follows:

R = det M − α(trace M)2 (1)

det M = αOBBA1 + (1 − α)V1 (2)

trace M = αOBBV1 + (1 − α)A1 (3)

where V1 and A1 represent the OBB’s tangent plane
projected area and volume, respectively. And α is the weight
coefficient, which is established as 1.2 in this study. The
quantity of tree model fragments confirms the precision of
the final model. A larger number of fragments n makes
the tree’s skeleton more precise. However, the use of
the complex algorithm requires a greater time investment.
Based on the premise of unchangeable topology and an
unreformable skeleton, the quantity n should be as small as
possible. This study selects n = 200 with respect to the
actual hierarchical structure of the point cloud tree models.
As shown in Fig. 2, we show the results of the hierarchical
subdivision algorithm, in which Fig. 2a is the point cloud
tree model that we use the hierarchical bounding box of
OBBTree to construct and Fig. 2b demonstrates the point
cloud model after hierarchical subdivision algorithm.

Feature extraction

On the definitions, feature points of a point cloud model are
the points that can directly affect the topology of the real
tree, such as the saddle points and peripheral points. From
the perspective of pure mathematics, these points are mainly
the extreme value points of the objective function. After
segmenting the tree model, this study proposes an modified
algorithm for the features based on the Gauss clustering,
which is described in references (Chu et al. 2016; Liao et al.
2016). To further simplify the model, the first step is going
to eliminate the featureless points of the neighborhood using
the Gauss clustering map. Then, a multi-angle analysis of
the remaining points is performed to find possible feature
points.

Given a set of point clouds of a tree, P = p1, p2, ..., pn ∈
R3×n, assume that Np is a neighbor k of p, Ip is the index
assemble of Np, and T is k(k − 1) assembles of vertex p:

T = {�ij�(p, pi, pj ) | i �= j and i, j ∈ Ip} (4)

The normal-vector of triangle �ij with vertex p:

nij = ¯ppi × ¯ppj (5)

The Gauss map of Np maps T onto sphere S2 with a center
p:

GP : T �→ S2, �ij �→ Xij := P + nij / ‖ nij ‖ (6)

Because the assembly of data points constituted by Gauss
clustering is a spherical surface, the data are mutually
symmetric. This study uses the distance metric of the normal
vector’s included angle

d(xij , xjk) = min{dg(xij , xjl), dg(xij , xlk)} (7)

dg(xij , xlk) = arccos(< nij , nlk >) (8)

where i, j , k, l ∈ Ip, and dg are the Euclidean distance
between point xij and xkl point in the Gaussian sphere. We
use a hierarchical cluster, as each point is a cluster object.
Then, closer points are combined. The distance between
inhomogeneities is the average distance between different
classes.

Dc(S1, S2) = 1
|S1|·|S1|

∑

x∈S1

∑

y∈S2

d(x, y) (9)

Here, we set a threshold to estimate and calculate the
distance of the distance in homogeneity. Clustering is
stopped when the numerical value exceeds the threshold.
The threshold is set as σ ∈ [0, 1

2 ]. The result will remove
a few points, and the remaining points are analyzed as
follows:

1. The point is featureless if it clusters in the same
category;

2. The point is a feature point if it has a surplus of 2,3 or 4.

If the number is greater than 4, then this point is featureless
because the number of surface features of the camber is
typically less than 4. In the experiment, all feature points can
be detected within the threshold. This approach may lead to
the false detection of feature points if σ is overly large and
makes clusters of classifications. It is also easy about falsely
detecting when σ is not sufficiently large, and the number
of the species increases excessively. As shown in Figs. 3 and
4, we give a brief description to the results of the described
feature extraction method, and make a resultant comparison
between the described feature extraction method and the
the conventional Gauss clustering method. As we can see
from Fig. 4, not only can our modified method can not
only simplify the point cloud model better but it can also
maintain the original topology.

Confirming the initial skeleton

We use geodesic curves to connect the feature points to
obtain the initial tree’s skeleton. The geodesic’s definition
of differential geometry is that for each arbitrary curve �

on the curved surface, the geodesic curvature of the point
of the � equals 0. We refer to � as the geodesic of curved
surface H . This is similar to the definition of the space
plane; the geodesic is the shortest line of two points of
a curved surface. This study uses PCG arithmetic based
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Fig. 3 Feature points of the
point cloud tree. a Michelia and
b Cherry

a b

on reference to calculate the geodesic of point cloud-based
trees. Assume a point cloud camber S(u, v) formed by the
feature points of each hierarchy. Find any point p(u0, v0)

on the camber. Set p(u0, v0) as the origin of a right-
handed coordinated system, with the other coordinate axes
representing the normal vector N of S(u, v) at p(u0, v0).
The main directions are T1 and T2, and the origin is
P(U0, V0). ki is the curvature of Ti . Thus, the quadratic
approximation of (o, o, d) to the origin’s squared-distance
d2 is

F+
d (x1, x2, x3) = d

d+|ρ1|x
2
1 + d

d+|ρ2|x
2
2 + x2

3 (10)

where

ρ1 = 1
k1

, ρ2 = 1
k2

(11)

where rho1 is the reciprocal for curvature k1 and rho2 is the
reciprocal for curvature k2. Thus, the objective function is

Fs = ∫ | c(t) |2 dt (12)

From the above, the calculation of the geodesic consists of
the following five steps:

1. Take any two points of the obtained feature points.
Determine the activity curve c(t) of the B-spline by the
shortest path algorithm of the bidirectional dijkstra

based on the map (Balzer and Vincze 2016; Su et al.
2016);

2. Mark all points on c(t) as s(k). Find all of s(k)’s petals
on the point cloud;

3. The structure of the objective function is

F =
N∑

k=1
Fk

d (Lk(d1+c1, (d2+c2), ..., (dN +cN))) +λFs;
(13)

4. Apply least squares to solve the new activity curve of
F ;

5. Repeat steps 2 through 4 until the expected threshold is
satisfied.

a b c d

Fig. 4 Different simplified methods on Cherry. a and b are based on our modified method, in which the threshold in(a) is 0.15 and the threshold
in b is 0.3, c and d are based on the conventional Gauss clustering
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Successively connect the points near the geodesic distance
to obtain the surface skeleton s = si of the model, where
i = 1, 2, ..., k. Figure 5 gives the master drawing of the
initial skeleton forMichelia and Cherry.

Reconstruction

The previous results in the last chapter do not satisfy the
requirement of centrality, because the initial tree skeleton
in surfaces is distributed among the surfaces of the tree
branches and trunk. In this chapter, we use a visible reaction
force field algorithm to place the initial skeleton connecting
line of the surface with the inside. In the reference, Wu
et al. propose the extraction technique of a grid model-
based skeleton and achieved promising results. However,
this method can only be used for a simple topology.

Definition of force field

Assume that a point a on the tree surface of the skeleton
model is visible to the other point b, then can be marked as
�ab. Thherefore, the visible set of surface skeleton s is V (x),
which can be defined as

V (x) = {vi | �vix, vi ∈ s} (14)

where x is all points on the surface skeleton of the tree
model. Then, we define x as the visible counter-force:

FR(x) = ∑

vi∈v(x)

F (‖ vi − x ‖) · (vi − x) (15)

where F(r) = r−2 is the potential function.

Visibleset of points

The visible set of the tree’s point clouds is comprised of
points x on the surface of the skeleton model, where x

is the center of the sphere. To simplify the problem, we
only consider the intersecting line of x and m in the tree
model. Thus, this question is equivalent to the question on
the uniform distribution of m points of a unit sphere. We use
the particle system method to solve this question. The point
of the center of the unit sphere is connected to m points
of the surface to obtain m uniformly distributed lines. The
experiment results demonstrate that the efficacity is optimal
when m =| T (P ) | /10, where T (P ) is the number of leaf
nodes of OBBT ree formed by P .

Interpolation of the skeleton

First, we translate pi (arbitrary point on the surface of the
skeleton) into a certain distance to the negative direction of
the normal. Then, the iteration is performed as follows:

pi+1 = pi + Fz(FR(pi) × e) (16)

where e is the pushing distance and Fz is the normalization
function. The iteration will be stopped when the following
condition is satisfied:

FR(pi+1) ≥ FR(pi) (17)

From the above steps, we can obtain an initial inside
skeleton of the point cloud tree. Figure 5 demonstrates the
initial inside skeleton, and from Fig. 6 we can see that the
obtained skeleton can mainly satisfy the requirements of

Fig. 5 Linking the geodesic
curves for the surface for initial
skeleton. We link all points
located on the surface to obtain
the initial surface skeleton. a
Michelia and b Cherry

a b
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Fig. 6 Initial contraction of the
tree skeleton. Due to different
thicknesses of different parts to
the stems, the node cannot
achieve the desired shrinkage
results

a b

centrality and maintain the original topology of the naturally
grown trees.

Skeleton smoothing

Through the above steps, the final obtained skeleton often
needs to be further addressed. Therefore, in this subsection,
we smooth the obtained initial skeleton. We connect any
two lines of the skeleton vivi+1 and vi+1vi+2. If the angle
between the two lines is greater than the threshold, then we
use vi+1 = (vi + vi+2)/2 to replace vi+1 to achieve the
desired smoothing result. Figure 7 give a process schematic
of this subsection.

Results and discussion

Experimental results

All experiments in this work are carried out on an AMD
E-350 Processor 1.06GHZ CPU, 4GB personal computer.
The algorithm has been verified using two naturally
grown trees, which are the flowering Cherry and Michelia.
The experimental results demonstrate the efficiency and

effectiveness of skeleton reconstruction using the proposed
method in this work. The results, shown in Fig. 8, indicate
that the branches of the skeleton generally satisfy the
axis definition requirements. The fact that Michelia has a
relatively large distance between branches, it may cause
the threshold value to be insufficiently set, and may
subsequently result in the skeleton to breaking for the case
of fine branches, necessitating further processing. These
questions must be resolved in the subsequent processing.
After the skeleton is smoothed, we obtain a clear tree
skeleton with satisfactory centricity and robustness. The
algorithm is simple and feasible, and it has a strong
generalization and practicality.

Table 1 illustrates that time complexity and space
complexity to a greater degree within our algorithm than
in skeleton extraction algorithms, regardless of whether the
simple point clouds data model or large point cloud data
model is used. Table 2 illustrates that the bulk of the time
expenditure of this algorithm was spent on the compression
of the skeleton model surface, with the pretreatment and
post-treatment comprising approximately 35% of the total
time. Table 3 illustrates that although the accuracy of the
layered algorithm based on the OBB Tree is weaker than the
Sphere of Tree method, in the actual experiment, the OBB

Fig. 7 Skeleton smoothing. a is
it’s skeleton and b is smoothing
result

a b
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Fig. 8 Final tree skeleton of
Michelia and Cherry. Upon
smoothing the initial skeleton,
we obtain a tree skeleton that
satisfies centricity and
robustness. aMichelia, b Cherry
tree

a b

Table 1 Data of the point cloud model level segmentation subtree

Layer count Number of points Simplified point number Triangular number Pretreating time/s Disposing time/s Post-processing time/s

Cherry tree − − − − − −
50 41310 33048 66096 9 17 12

100 41310 29815 59630 14 31 16

150 41310 25017 50034 21 50 21

200 41310 20693 41386 30 76 33

250 41310 15943 31886 41 102 46

300 41310 10892 21784 54 130 54

Michelia − − − − − −
50 6885 6325 12650 3 10 5

100 6885 5863 11726 5 19 8

150 6885 4327 8654 9 31 10

200 6885 3709 7418 14 43 14

250 6885 3014 6028 20 65 19

300 6885 2285 4570 27 92 26

Tree space complexity is relatively low. Thus, in this article,
our adoption was based on the OBB Tree method.

Discussion

The skeleton extraction of point cloud trees is one of the
basic research contents in forestry visualization process. In
this work, we propose a novel combinational approach to
reconstruct tree skeletons based on the point cloud data,
in which the force field model is firstly used to extract
tree skeleton. In addition to the simple combination, some
used methods such as hierarchical subdivision method and
feature extraction method have been improved in this paper.

The results of experiment on real trees show that the method
presented in this paper can achieve satisfactory results and
is of strong practicability and extensibility.

It is a basic research topic to obtain parameter
information of forest trees from terrestrial laser scanner
point cloud data (Ducey and Astrup 2013; Kankare et al.
2016). The point cloud tree skeleton obtained in this work
can be used as input for future research, for example, to
simulate the interaction between trees and environment in
the natural environment. It also has many advantages to
study the trees by the terrestrial laser scanner point cloud
data (Burt et al. 2013). Specifically: firstly, collecting point
cloud data by terrestrial laser scanner greatly improves
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Table 2 Efficiency analysis
Method Layer count Time/s RAM/KB

Michelia − − −
Parameter system L-based (Wang et al. 2008) 6885 153 350

Dijkstra-based (Wu et al. 2010) 6885 165 260

Discrete curvature-based (An et al. 2013) 6885 197 300

Technique in this study 6885 134 130

Cherry tree − − −
Parameter system L-based (Wang et al. 2008) 41310 265 244

Dijkstra-based (Wu et al. 2010) 41310 281 209

Discrete curvature-based (An et al. 2013) 41310 305 237

Technique in this study 41310 214 198

ground laser radar has the above shortcomings, it is still
a superior tool when it comes to practical application,
especially compared to the airborne or spaceborne laser
scanners.

The advantage of the method proposed in this paper is
that the force field and point cloud geodesic are fused,
and that the method of point cloud layered processing is
combined (Fig. 2). In addition, after layered processing
of point cloud data, we use feature extraction method to
remove redundant information between different layers,
which can improve the efficiency and precision of point
cloud processing (Fig. 3). After that, we use the visible force
field to compress the surface geodesic of the point cloud
data, and finally obtain the final point cloud tree skeleton
after the skeleton smooth operation. The skeleton of most
branches can be obtained by the method of this paper, but
some twigs can not be treated well because the number of
dots on the slender stems is small, and the method presented
in this paper will be removed as a noise point. In order to
solve certain practical application limitations, subsequent
use can be considered to be a separate processing of
thin stems, and other branches of the skeleton to be
spliced to complete the skeleton extraction process of all
trees.

Table 3 Efficiency analysis of
different sectioning methods Method Point number Lost Accuracy

Cherry tree − − −
OBB Tree (Gottschalk et al. 1996) 41310 391 88.32%

Sphere Tree (Bradshaw and Osullivan 2004) 41310 355 91.11%

Michelia − − −
OBB Tree (Gottschalk et al. 1996) 6885 136 87.94%

Sphere Tree (Bradshaw and Osullivan 2004) 6885 107 91.05%

the efficiency of this method. In this paper, our research
object is a single tree, so in the data acquisition process,
we only need 2-3 people in about 3-hours to complete the
data collection. Secondly, we can get more detailed feature
information from point cloud data, such as tree height,
breast diameter, and even volume value, etc. Therefore, the
details of every branch are obvious, which helps us to make
the skeleton of the tree. Thirdly, the point cloud data is
three-dimensional data, compared to two-dimensional data,
three-dimensional data is more conducive to the response of
the study of the overall characteristics of the object.

However, nothing is perfect. There are also many
disadvantages of using terrestrial laser scanner to acquire
point cloud data (Deliormanli et al. 2014; Wallace et al.
2016). First, in the process of data collection, terrestrial laser
scanner has higher environmental requirements, inclement
weather and other environmental factors will limit the use
of terrestrial laser scanner. Therefore, the use of terrestrial
laser scanner has been limited to a certain extent. Second,
compared with obtaining two-dimensional photos, three-
dimensional point cloud data acquisition instrument is more
expensive, and the processing flow of three-dimensional
point cloud data is more complicated and time-consuming
than that of a two-dimensional plane photo. Although the
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Conclusions

Forest visualization technology has always been an impor-
tant research topic in the field of experts and scholars at
home or abroad. In this work, ground 3D laser scanning
technology is applied to tree model-building and parameter
extraction with some success. However, there are still some
technical problems that must be resolved. In future works,
the following aspects must be addressed:

• Laser scanning has some limitations in that it could
easily be affected by the weather and terrain. In
addition, when the density is large or underground
vegetation is dense, trees can interfere with each other,
and vegetation cover will affect the quality of the
scanning point cloud. This is the main reason for
large errors in measurable factors, such as tree height
and crown breadth measurements. To achieve high-
quality scanned effects, the sample should both have the
general morphological characteristics of trees and also
be convenient to scan.

• This research applies to deciduous trees. Evergreen
trees cannot be reasonably addressed because it is
difficult to distinguish the branches from the leaves,
hindering the establishment of the branches of the
point cloud model. However, we can consider building
the complete contour model of the canopy to obtain
crown-type parameters.

• In the pretreatment stage, we must use cyclone sepa-
rating to separate the branches and leaves. Although
this step is advantageous to the subsequent parameter
extraction, it increases the duration of the early model-
ing work. Thus, we must prove that the algorithm can
automatically recognize different branches, which will
simplify the process. Additionally, since the combina-
tion of this algorithm with multiscale solution thought
may improve reconstruction, this is a future direction of
study.
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