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Abstract
The spatio-temporal Κriging approach by using five different covariance models, has been applied into Regional Climate Model
(RCM) simulated precipitation and temperature dataset in a coastal area. The results of the spatio-temporal technique were evaluated
against the ERA-Interim reanalysis data during the period from 1981 to 2000. The reliability of the spatio-temporal interpolation results
were estimated by using both the judgment of the wireframe plots, between the sample and the fitted covariance models, and the
statisticmetrics. Thus, Taylor diagramswere used and theMean Square Error (MSE)was calculated. The analysis demonstrates that the
sum-metric covariance model is highly superior to the other four covariance models as it is closer to the reanalysis data, having the
highest correlation coefficient, as well as, the smallest standard deviation, resulting in the smallest RootMean Square Error. The spatio-
temporal interpolation approach improved the MPI and HadGEM2 climate model dataset. The largest enhancement is pointed out in
the interpolated RCM precipitation during winter and autumn. Concerning the temperature, the interpolated MPI temperature data is
negligibly improved, whereas the interpolated HadGEM2 temperature is particularly optimized during winter and autumn. The spatio-
temporal interpolation technique led to theminimization of the uncertainties of the Regional ClimateModels, (RCMs) simulations, and
also to the best agreement between them and the ERA-Interim reanalysis data during the period from 1981 to 2000. Nevertheless, the
MPI climate model is more reasonable compared to the HADGEM2 for the research area.
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Introduction

Observed or Model estimated climate data is well established
and widely used in many scientific fields such as Hydrology,
Hydrogeology, Climatology or Agrometeorology. They

contribute to modeling purposes for integrated and sustainable
natural resources management and adaption in a continuously
changing climate. Therefore, high resolution of spatial and
temporal climate data is required to be used as input data in
climate change impact studies assessing the future climate
conditions.

The most widespread and essential tools for understanding,
quantifying, and evaluating both the future climate change and
constructing climate scenarios are the General Circulation
Models (GCMs). Owing to the coarse spatial resolution of
the GCMs, the Regional Climate Models (RCMs) have not
only been developed in order to represent the local current
climate conditions but also estimate more accurately the future
climate (IPCC 2007, 2013). Moreover, climate data for cli-
mate change impact studies can also be estimated by spatio-
temporal interpolation methods. The desired spatio-temporal
resolution depends on the research area and the data
(Kilibarda et al. 2014; Hengl et al. 2012; Gething et al. 2007).

Recently, various spatial interpolation techniques have
considerably been applied into geosciences. These approaches
can be divided into three major categories based on both the

Communicated by: H. A. Babaie

* Venetsanou P.
pvenetsn@geo.auth.gr

1 Department of Geology, Laboratory of Engineering Geology and
Hydrogeology, Aristotle University of Thessaloniki,
54124 Thessaloniki, Greece

2 Department of Geology, Laboratory of Meteorology and
Climatology, Aristotle University of Thessaloniki,
54124 Thessaloniki, Greece

3 Department of Civil Engineering, University of Thessaly,
Volos, Greece

4 Department of Rural and Surveying Engineering, Aristotle
University of Thessaloniki, 54124 Thessaloniki, Greece

Earth Science Informatics (2019) 12:183–196
https://doi.org/10.1007/s12145-018-0361-7

http://crossmark.crossref.org/dialog/?doi=10.1007/s12145-018-0361-7&domain=pdf
mailto:pvenetsn@geo.auth.gr


interpolation methods and scales of the implementation. The
first category involves simple approaches such as Thiessen
polygons (Brassel and Douglas 1979), Nearest Neighbor
using Thiessen or Voronoi polygons (Sibson 1981), Spline
(Hutchinson 1988) , Inverse Dis tance Weight ing
(Zimmerman et al. 1999) and different types of the well-
known Kriging method, for instance, Ordinary Kriging,
Universal Kriging, Co-Kriging (Matheron 1962; Cressie
1993; Wackernagel 2003). The second one comprises more
complex interpolation techniques, for instance artificial neural
networks and fuzzy reasoning method (Friedman 1994;
Huang et al. 1998; Wong et al. 2003). Auxiliary data such as
satellite imagery and digital elevation models (DEM) are also
helpful tools for the interpolation process.

Several studies compare and evaluate different spatial
interpolation techniques, indicating the advantages and
drawbacks of the above methods and their applications. Yang
et al. (2015) compared four spatial interpolation techniques
(ANUDEM, Spline, IDW and Kriging) by using rainfall data
from regional climate models, in order to estimate daily rainfall
data for the future periods. Based on their results, the Inverse
Distance Weighting (IDW) method produced slightly accurate
predictions than the other three methods.Mair and Fares (2011)
point out that the Thiessen polygon is the least promised meth-
od, whereas the simple Kriging with varying local means pro-
duced smaller error for the interpolation in a mountainous re-
gion of an island. Hofstra et al. (2008) indicate that the global
Kriging is slightly the best method for climate station data
compared to the other methods over Europe from 1961 to
1990.

Nowadays, spatio-temporal techniques have been introduced
so as to bridge the spatial gaps in the different time series data
making rapid and notable progress. Lasinio et al. (2007) de-
scribed the spatio-temporal analysis as a prediction of time de-
velopment of a variable in a given spatial domain. Hence, the
spatio-temporal procedures are comprehended more accurately
and completely (Heuvelink et al. 2010; Heuvelink et al. 2012;
Gräler et al. 2016). In particular, Gräler et al. (2016) applied
various spatio-temporal covariance models into the daily rural
air quality measurements in Germany. Heuvelink et al. (2012)
generated daily temperature maps (1 km× 1 km resolution) by
using the time-series MODISMOD11A2 product Land Surface
Temperature images which are publicly available. The observed
data is derived from the national network of the meteorological
stations in Croatia. The sum-metric and separable covariance
models were both used for the spatio-temporal auto-correlation.
The results indicate that the application of the spatio-temporal
regression-Κriging and the incorporation of time-series of the
remote sensing images lead to more accurate temperature maps.

This paper deals with the spatio-temporal Kriging approach
in order to quantify the uncertainties and increase the resolu-
tion of the RCMs climate data. Hence, different spatio-
temporal covariance models were compared and evaluated

so as to estimate the RCM-simulated temperature and precip-
itation dataset during the period from 1981 to 2000. The ulti-
mate task of this methodology is the adjustment between the
climate models data and the observed one.

The present paper is structured as follows: In
Section BData^ is demonstrated the description of the research
area and the climate data. In Section BMethodology^ the
methodology about the spatio-temporal Kriging approach
and the spatio-temporal covariance models is described. In
Section BResults^ the results are evaluating by using statistics
metrics and discussed ending up which one of the spatio-
temporal covariance model represents the climate of the re-
search area more effectively. Finally, the conclusions are
drawn in Section BDiscussion and Conclusions^.

Data

Study area

The research takes place in a small coastal area which is situ-
ated in northern Greece, Halkidiki (Fig. 1), extending to the
coastal zone of Kassandra Gulf, being part of the Havrias river
catchment. It can be characterized as an agricultural and tour-
istic center. According to the GIS analysis, the object of the
study, covers an area of 40 km2. The minimum and the max-
imum elevation range from 0 to 235 m (mean value 140 m)
above the mean sea level, respectively. The morphology is
complex due to the transition from the land to the sea as it is
depicted in Fig. 1.

Based on Köppen (1954) classification, the climate of the
area is typical of Mediterranean (Csa), with warm summers
and mild winters, which is highly representative of the Greek
climate. The main feature of the area, is the uneven variation
of the precipitation throughout the year, with the lowest pre-
cipitation occurring in summertime, whereas the highest dur-
ing winter and autumn. The dry and warm summers in com-
bination with the increased water needs for irrigation and do-
mestic purposes affect the water resources availability render-
ing the region vulnerable to the anticipated climate change.

Climate data

Observation: Reanalysis data

In the framework of this research, climate data without spatial
or temporal gaps is required because filling them in climate
data and, in particular in precipitation underlies high uncer-
tainties and risks. Thus, in this investigation, the temperature
and precipitation dataset are derived from the ERA-Interim
reanalysis data. ERA-Interim is one of the most recent global
atmospheric reanalysis database, which is offered by the
European Centre for Medium-Range Weather Forecasts
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(ECMWF) (http://apps.ecmwf.int/datasets/data/interim-full-
daily/levtype=sfc). It involves various climate parameters
such as precipitation, temperature, wind, radiation, dew
point, evaporation, and beginning from 1979 until now (Dee
et al. 2011). The provided data concerning this research covers
the period from 1981 to 2000 at a daily time step with a spatial
resolution 12.5 km × 12.5 km (Fig. 1). The selected grid
points include the study area (40 km2).

Climate models data

The dynamical downscaling was carried out by using the
Regional Climate Model version 4 (RegCM4) in the framework
of Med-Cordex and Coupled Models Intercomparison Project
Phase 5 (CMIP5) programs (www.medcordex.eu). The
Regional Climate Model version 4 (RegCM4) is the latest ver-
sion of the RegCM regional climate model and constitutes an
evolution and improvement of its previous version RegCM3
which is demonstrated by Pal et al. (2007). Giorgi et al. (2012)
described the Regional Climate Model version 4 (RegCM4) as
Ba hydrostatic, compressible, sigma-p vertical coordinate model
run on an Arakawa B-grid in which wind and thermodynamical
variables are horizontally staggered^. The spatial resolution of
RegCM4 Regional Climate Model is 12 km× 12 km.

In this paper, the Hadley Global Environment Model 2
(HadGME2 –ES) and the MPI Earth System Model running
on mixed resolution grid (MPI-ESM-MR), general circulation
models (GCMs) with spatial resolution 50 km × 50 km were
used as forcing data to the RegCM4 climate model. The gen-
eral circulation models and the details about their characteris-
tics are figured out in Table 1.

Methodology

Spatio-temporal interpolation

In this research, the spatio-temporal Kriging was implemented in
order to provide the same spatial resolution of daily climate
model data with the ERA-Interim for the period from 1981 to
2000. For this reason, different types of spatio-temporal covari-
ance models were applied investigating the spatio-temporal in-
terpolation approach and finally ending up the best performance.

The separable, product-sum, metric, sum-metric and sim-
ple sum-metric covariance models were tested. The general
spatio-temporal covariance function is described in detail by
Cressie and Wikle (1998, 2011) and given by

Cst h; uð Þ ¼ Cov Z s; tð Þ;Z s˙ ; t˙
� �� � ð1Þ

Fig. 1 Morphological map of the research area and the location of the ERA-Interim grid points (cross)
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where Z is the random function Z = Z(s, t).and the spatio-
temporal variogram is described by

γst ¼ Cst 0; 0ð Þ−Cst h; uð Þ ð2Þ

The Eq. (1) is referred to a separating spatial distance h and
temporal distance u and any pair of points (s, t), (ṡ, ṫ) ∈ S × T
with ||s- ṡ|| = h and |t- ṫ| = u.

The mathematical formula which describes the separable
covariance model (Gräler et al. 2016; Pebesma and Gräler
2017) is given by

Csep h; uð Þ ¼ Cs hð Þ � Ct uð Þ ð3Þ

The corresponding variogram is given by

γsep h; uð Þ ¼ sill � γs hð Þ þ γt uð Þ−γs hð Þ � γt uð Þð Þ ð4Þ

where γs, γt are standardised spatial and temporal variograms
with separate nugget effects and (joint) sill of 1.

The product-sum covariance function was firstly described
by De Cesare et al. (2001) and De Iaco et al. (2001). A slightly
modified function for the product-sum covariance model was
announced by Gräler et al. (2016) and Pebesma and Gräler
(2017) and given by

Cps h; uð Þ ¼ Cs hð Þ þ Ct uð Þ þ k � CS hð Þ � Ct uð Þ ð5Þ

with k > 0.
Its variogram can be written by

γps h; uð Þ ¼ k � sillt þ 1ð Þ � γs hð Þ þ k � sills þ 1ð Þ
� γt uð Þ−kγs hð Þ � γt uð Þ ð6Þ

where γs,γt are spatial and temporal variograms and the over-
all sill (sillst) is described by

sillst ¼ k*sills*sillt þ sills þ sillt ð7Þ

The metric covariance function is described by

Cm ¼ C j

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 þ k � uð Þ2

�r
ð8Þ

Its variogram is given by

γm h; uð Þ ¼ γ j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 þ k � uð Þ2

q� �
ð9Þ

where γj is any known variogram involving some nugget-
effect.

The sum-metric covariance model is a couple of spatial,
temporal and a metric model containing an anisotropy param-
eter k (Bilonick 1988; Snepvangers et al. 2003) is:

Csm h; uð Þ ¼ Cs hð Þ þ Ct uð Þ þ C j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 þ k � uð Þ2

q� �
ð10Þ

Its variogram is represented by

γsm h; uð Þ ¼ γs hð Þ þ γt uð Þ þ γ j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 þ k � uð Þ2

q� �
ð11Þ

where γs, γt and γj are spatial, temporal and joint variograms
with a separate nugget-effect.

The simple sum-metric covariancemodel constitutes a sim-
plified version of the sum-metric model and the corresponding
variogram is written by

Cssm h; uð Þ ¼ nug � 1h>0vu>0 þ γs hð Þ þ γt uð Þ

þ γ j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 þ k � uð Þ2

q� �
ð12Þ

The application of the spatio-temporal Kriging was carried
out in the R environment for statistical computing (R
Development Core Team 2013; Pebesma 2004) by using the
gstat, sp., spacetime, raster, rgdal, rgeos and xts packages
(Pebesma 2012; Gräler et al. 2016 and Pebesma and Gräler
2017). The krigeST function was used for the spatio-temporal
Kriging implementation.

The sample variogram for each climate models data, name-
ly for MPI and HadGME2 precipitation and temperature
dataset with a spatial resolution of 50 km, was modeled and
utilized as an input for the fitting routines of the different
models. The sample variogram was estimated through the
function variogram (vgmST), with spatial lags of 0.2 degrees

Table 1 The general circulation models (GCMs) and the details about their characteristics

General Circulation Models (GCMs)

Model Acronyms HadGEM2 ES MPI-ESM-MR

Project Coupled Models Intercomparison Project Phase 5 (CMIP5) Coupled Models Intercomparison Project Phase 5 (CMIP5)

Institute Met Office Hadley Centre (MOHC) Max Planck Institute for Meteorology (MPI-M)

Type Coupled Earth System Model Coupled Earth System Model

Funder Met Office Handley Centre Bundesministerium fuer Bildung und Forschung

Main References Collins et al. 2011, Jones et al. 2011 Popke et al. 2013, Giorgetta et al. 2013

Resolution 50 km× 50 km 50 km× 50 km
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and time lags of one day. The WGS84 coordinate reference
system was used.

The Linear, Spherical, the Expontential and Matèrn model
were employed to find the best fit model to the sample
variogram, testing the whole possible combinations of these
models. For each variogram the space and the time parameters
remain stable for the two climate models, as well as for the two
parameters (precipitation and temperature). On the contrary,
the values of the sill, the kappa and the anisotropy (stAni)
parameters depend on both the covariance model and the cli-
mate parameter.

Evaluation

The observed (ERA-Interim) and the interpolated MPI and
HadGMEM2 climate models precipitation (mm) and temper-
ature (°C) dataset are analyzed and evaluated for assessing the
biases between the two databases. For the evaluation of the
RCM simulated data against the observed data, the centered
RMS difference (E’), the Root Mean Square Error (RMSE),
the correlation coefficient, and the standard deviation were
used. Taylor diagrams were plotted in order to quantify the
uncertainties, compare the five covariance models, judge the
best performance of the covariance models variograms in re-
lation to the sample variogram, and finally estimate their reli-
ability. Taylor diagrams (Taylor 2001) provide a comprehen-
sive statistical summary of how closely a dataset approaches
the observed data in relation to their correlation, their root-
mean-square difference, and their standard deviations. These
diagrams are valuable for evaluating various aspects of com-
plex models and for gauging the relative skill of many differ-
ent models. The standard deviation is given by the radial dis-
tances from the reference point to sample and the azimuthal
positions describing the correlation coefficient between the
two fields. The Root Mean Square Error (RMSE) is described
by the semicircles (Taylor 2001).

The correlation coefficient (R), the centered RMS differ-
ence (E’), the standard deviation and of the interpolated cli-
mate models data (σxmodel) and the observed data (σxobs) are
calculated by:

R ¼
1

Ν
∑
Ν

n¼1
xmodel;n−xmodel
� �

xobs;n−xobs
� �

σxmodelσxobs
ð13Þ

E
02 ¼ 1

N
∑
N

n¼1
xmodel;n−xmodel
� �� xobs;n−xobs

� �	 
2 ð14Þ

σ2
xmodel¼

1

N
∑
N

n¼1
xmodel;n−xmodel
� �2 ð15Þ

σ2
xobs¼

1

N
∑
N

n¼1
xobs;n−xobs
� �2 ð16Þ

The RMSE is defined by

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i¼1 xobs;i−xmodel;i
� �2

n

s
ð17Þ

where xobs are observed values, namely ERA-Interim precip-
itation (mm) and temperature (°C) and xmodel is the interpolat-
ed MPI and HadGME2 precipitation (mm) and temperature
(°C) data at time/place i.

However, the final choice of the suitable spatio-temporal
covariance model should be validated using both the statistics
metrics and the judgment of the best performance between
them.

Results

Historical MPI and HadGEM2 temperature and precipitation
dataset were evaluated against the ERA-Interim reanalysis
data, for the period from 1981 to 2000. The largest differences
are observed in the HadGEM2 simulations, for both tempera-
ture and precipitation data. On the contrary, the discrepancies
between the reanalysis and MPI temperature data are negligi-
ble. The biases between the climate models data and the ERA-
Interim dataset, particularly in precipitation, might be attribut-
ed to the complex morphology of the research area. The tran-
sition from the land to the sea influences on the climate
models signal reducing their ability to simulate effectively
the climate parameters, specifically the precipitation
(Xoplaki et al. 2004; Tolika et al. 2006).

Analytically, the climate models present wetter climate
conditions in comparison to the reanalysis data from 1981 to
2000, without changing the current climate conditions of the
research area. According to the Era-Interim reanalysis data,
the mean annual rainfall over the area is 510.2 mm (Fig. 2)
from 1981 to 2000, while the mean annual precipitation is
about 1270 mm for the HadGEM2 simulations and 839 mm
for the MPI simulations (not shown). No significant change
has been recorded in the precipitation data, from 1981 to 2000
(Fig. 2). According to the reanalysis data, the maximum
monthly rainfall is recorded during November and
December, while August is the month when the lowest rainfall
is presented which are also observed in the MPI and
HADGEM2 climate models.

On the other hand, the two RCM-simulated temperatures
are much closer to the reanalysis temperatures. The mean
annual temperature of the ERA Interim data is 15.6 °C
(Fig. 3), the corresponding temperature of the HadGEM2 sim-
ulations is 17 °C and 15.9 °C of the MPI simulations (not
shown). July and August are the warmest months for both
datasets (reanalysis and models), whereas January is the
coldest month (Fig. 3). Furthermore, an upward tendency is
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observed in the reanalysis temperature (Fig. 3) that it is also
detected in the RCM-simulated temperatures (not shown).

Evaluation of the Spatio -temporal interpolation
models

The separable, metric, product-sum sum-metric and simple-
sum-metric covariance models were analyzed and evaluated
for the selection of the suitable model for the MPI and
HadGEM2 temperature and precipitation dataset. Initially,
the the sample variograms between the MPI and HadGEM2
models were compared. The juxtaposition between them
showed that HadGME2 sample variograms of both precipita-
tion and temperature dataset are overestimated.

Figures 4 to 5 depict the sample variogram for each climate
parameter of the two RCM simulated models (MPI and
HadGEM2) in comparison to the spatio-temporal variograms
of the five covariance models for a wet-cold period (from
October to April). It can be derived from the wireframe plots
of the precipitation (Figs. 4(a) to 4(b)) that the least suitable
performances are exhibited by the separable and metric co-
variance models, while the sum-metric seems to perform

reasonably well for both MPI and HadGEM2 climate data.
The other two covariance models seem to respond more sat-
isfactorily in relation to the sample. Concerning the wireframe
of temperatures for both RCMs (Figs. 5(a) to 5(b)), the simple-
sum-metric model and the metric covariance model present
the most apparent differences in relation to the sample
variogram.

Since the choice of the suitable covariance model based
only on the wireframe plots is quite subjective, the statistical
evaluation of the five spatio-temporal covariance models for
each MPI and HadGEM2 precipitation and temperature
dataset were done by using Taylor diagrams (Figs. 6 and 7).

According to Taylor diagram, for the precipitation dataset
(Fig. 6), the worst performances are observed in the metric
(blue) and simple sum-metric (yellow) models for both RCM
models. Even though, the correlation coefficient of the MPI
for these two covariance models is higher than 0.6, the signif-
icant high RMSE and STDEV values indicate the unsuitable
character of these models. The lowest correlation coefficient
of the separable model (black) as well as the relatively high
value of the STDEVof the product-sum model (red), demon-
strate that these models cannot be considered proper for the

Fig. 3 The mean annual and monthly ERA-Interim temperature for the research area over the period 1981 to 2000

Fig. 2 The mean annual and monthly ERA-Interim precipitation for the research area over the period 1981 to 2000
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Fig. 4 a The wireframe plots of the sample variogram and the five fitted
covariance models variograms for HadGEM2 precipitation data in wet -
cold period, where X= time in days and Y= distance in degrees. b The

wireframe plots of the sample variogram and the five fitted covariance
models variograms for MPI precipitation data in wet - cold period, where
X= time in days and Y= distance in degrees
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reproduction of the precipitation. Overall, the sum-metric
model is close to the observed precipitation data, having the
highest correlation coefficient (0.7 in HadGEM2 and 0.8 in
MPI) in both RCM climate models (Fig. 6). It is also pointed
out that, the sum-metric model displays the smallest standard
deviation in both climate models, resulting in the smallest
RMS error in comparison to the other four covariance models.

As regards to the temperature, the results are more
satisfactory compared to the precipitation (Fig. 7).
Specifically, the covariance models display very lower
RMSE and STDEV than the precipitation. It is also
worth mentioning that no one of the covariance model
outperforms the boundaries of the diagram. In particular,
the separable model (black) presents a negative correla-
tion coefficient. The largest RMSE and STDEV values
are exhibited and in this circumstance, by the metric
(blue) and the simple sum-metric (yellow) models. On

the contrary, the product-sum and sum-metric covariance
models display more reasonable results than the other
models. However, the correlation coefficient of the
sum-metric model is slightly superior to the product-
sum model.

For the comprehensive statistical evaluation, the Mean
Square Error (MSE) was calculated. Table 2 displays the re-
sults regarding the MSE for each general circulation climate
model (GCMs) and the corresponding spatio-temporal
variogram models. The MSE should display the lowest error
in order for a covariance model to be considered appropriate.
As it can be derived from the Table 2, the lowest error is
presented by the sum-metric model, while the largest error is
exhibited by the metric model in both MPI and HADGEM2
climate models data.

The evaluation and combination of the spatio-temporal
variograms results and the statistics metrics of the five covari-
ance models indicate that the least satisfactory results are pre-
sented by the metric covariancemodel, while the best model is
the sum-metric. In conclusion, the sum-metric is highly supe-
rior to the other four spatio-temporal covariance models, for
both MPI and HadGEM2 climate data. After the identification
of the suitable covariance model, the daily MPI and
HadGEM2 results were interpolated for the period from

Fig. 6 Taylor diagram displaying a statistical comparison between MPI
(triangle) and HADGEM2 (circle) climate precipitation data and
separable (black), product-sum (red), metric (blue), sum-metric (green)

and simple sum-metric (yellow) covariance models. Black lines indicate
correlation coefficient, green lines indicate the centered RMS difference
and blue line indicates standard deviation

�Fig. 5 a The wireframe plots of the sample variogram and the five fitted
covariance models variograms for HadGEM2 temperature data in wet-
cold period, where X=time in days and Y=distance in degrees. b The
wireframe plots of the sample variogram and the five fitted covariance
models variograms for MPI temperature data in wet-cold period, where
X= time in days and Y= distance in degrees
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1981 to 2000 by using the sum-metric covariance model. The
spatial resolution of the interpolated climate data was defined
at 12.5 km × 12.5 km which corresponds to the spatial reso-
lution of the ERA-Interim reanalysis data.

Spatio-temporal interpolated climate data

Applying the spatio-temporal Kriging by using the sum-
metric model, the MPI and HadGEM2 climate data results
are improved for the period from 1981 to 2000. Figures 8 to
9 illustrate the interpolated MPI (I_MPI) and HadGEM2
(I_HadGEM2) precipitation data compared to the ERA-
interim reanalysis data. Shadow area indicates the mean value
± standard deviation of the ERA-interim data. Evaluating the

interpolated climate data against the initial MPI and
HadGEM2 precipitation and temperature dataset, discrepan-
cies are pointed out.

In case of the precipitation data, mostly during the wet
period, when the climate models present larger differences in
relation to the reanalysis data, the most essential improve-
ments are recorded for both MPI and HadGEM2 climate
models. Analytically, based on the spatio-temporal Kriging
procedure, the I_MPI and I_HadGEM2 precipitation decrease
is estimated equal to 17 mm and 45 mm, in autumn, respec-
tively. As it can be derived from the diagram (Fig. 8), the
I_MPI and I_HadGEM2 precipitation dataset are close to the
mean value of the ERA-Interim reanalysis data, minimizing
the uncertainty, for the period from 1981 to 2000.

Fig. 7 Taylor diagram displaying a statistical comparison between MPI
(triangle) and HADGEM2 (circle) climate temperature data and separable
(black), product-sum (red), metric (blue), sum-metric (green) and simple

sum-metric (yellow) covariance models. Black lines indicate correlation
coefficient, green lines indicate the centered RMS difference and blue
lines indicate standard deviation

Table 2 Mean Square Error (MSE) for each general circulation climate model (GCMs) and the corresponding spatio-temporal variogram covariance
models

Variables Climate models Period Covariance models

Separable ProductSum Metric SumMetric Simple SumMetric

Precipitation (mm) MPI Wet-Cold 135 38.6 217.8 25.7 215.4

Dry-Warm 2.9 0.8 310.9 0.3 2.7

HadGEM2 Wet-Cold 330 85.4 10,759.7 30.3 8312.8

Dry-Warm 3231.2 2430.9 18,060.4 304.8 17,049.9

Temperature (°C) MPI Wet-Cold 225.9 11.7 423.9 8.9 84.5

Dry-Warm 13.7 21.1 225.6 2.5 17.9

HadGEM2 Wet-Cold 13.8 56.1 209.8 6.6 30.6

Dry-Warm 27.9 144.1 338.5 14.7 41.5
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Nevertheless, during the dry period when the precipitation is
minimized, both of the dataset are close to each other.

In regard to the temperature, the dataset is closer to the
reanalaysis data (Fig. 9). Although, the sum-metric model
enhances the temperature during the months in which it is
overestimated by the climate models. According to the
spatio-temporal Kriging, the I_MPI temparature is neglibly
improved, mainly inwinter and autumn. In contrast, concering
the I_HadGEM2 temperature is reduced by 2.7 °C in winter
and 1.1 °C in autumn. Besides, there is no obvious improve-
ment in summer.

The boxplots (Figs. 10 and 11) clearly demonstate that the
I_MPI precipitation and temperature dataset approach the
ERA-Interim reanalysis data better than the I_HadGEM2 cli-
mate data, for the period from 1981 to 2000. In particular, the
MPI climate model slightly overestimates the precipitation
during winter, autumn and spring (Fig. 10) However, a slight
underestimation of the precipitation is observed by the MPI
climate model during summer.

On the contrary, according to the I_HadGEM2 precipita-
tion outputs, a significant overestimation is recorded,

especially during autumn and winter (Fig. 10). However, dur-
ing summer, the HadGEM2 model presents similarities to the
MPI simulations.

Regarding the I_MPI temperature, the similarities to the
ERA-Interim temperature data are apparent, as illustrated in
the boxplots (Fig. 11). However, the I_MPI temperature is
slihgtly overestimated in winter. The I_HadGEM2 tempera-
ture also presents an overestimation in winter and summer.

Discussion and conclusions

In the present research, the spatio-temporal Kriging technique
by using five different covariance models, has been imple-
mented to MPI and HadGEM2 climate models precipitation
and temperature dataset. The spatio-temporal Kriging results
were evaluated in comparison to the ERA-Interim reanalysis
data for the period 1981 to 2000, investigating which one of
the spatio-temporal covariance model represents the local cli-
mate conditions of the research area more effectively. The
accuracy and the reliability of the spatio-temporal

Fig. 9 The interpolated MPI (I_MPI) and HadGEM2 (I_HadGEM2) temperature data compared to the ERA-interim reanalysis data. Shadow area
indicates the mean value ± standard deviation of the ERA-interim data

Fig. 8 The interpolated MPI (I_MPI) and HadGEM2 (I_HadGEM2) precipitation data compared to the ERA-interim reanalysis data. Shadow area
indicates the mean value ± standard deviation of the ERA-interim data
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interpolation results were assessed by using the judgment of
the wireframe plots between the sample and the fitted

covariance models, Taylor diagram, and the Mean Square
Error (MSE).

Fig. 10 The boxplots illustrating the seasonal comparison between the interpolated HADGEM2, MPI and ERA-Interim precipitation (mm) dataset for
the period from 1981 to 2000

Fig. 11 The boxplots illustrating the seasonal comparison between the interpolated HADGEM2, MPI and ERA-Interim reanalysis temperature (oC)
dataset from the period from 1981 to 2000
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Judging the performance between the sample and the fitted
covariance models is revealed that the sum-metric model is
the most suitable among the covariance models. In the con-
trast, the worst performance is exhibited by the metric covari-
ance model in both MPI and HadGEM2 simulations.

Moreover, Taylor diagrams confirm that the sum-metric
covariance model approaches the MPI and HadGEM2 climate
data more reasonably than the other four covariance models.
Specifically, the sum-mertic model presents the highest corre-
lation coefficient, the smallest standard deviation which lead
to the smallest RMS error in both climate models outputs, in
all seasons. Consequently, the performance of the sum-metric
is superior to the other spatio-temporal covariance models, as
it producesmore effective results for bothMPI and HadGEM2
precipitation and temperature outputs. According to the au-
thors’ results, Heuvelink et al. (2012) suggested the sum-
metric covariance model as the spatio-temporal model with
the least uncertainties. Furthermore, Kilibarda et al. (2014)
applied the sum-metric in order to predict the mean, maxi-
mum, and minimum daily temperature, globally.

The MPI and HadGEM2 climate models accurately
represent the present climate. Demicran et al. (2017) showed
that HadGEM2-ES and MPI-ESM-MR’s climate models un-
derestimate the temperature, whereas the precipitation is
overestimated by MPI-ESM-MR’s model in winter, while
HadGEM2-ES overestimates it in autumn and spring com-
pared to the observed data in Eastern Mediterranean and par-
ticularly, in Turkey from 1971 to 2000. The observed uncer-
tainties of the climate outputs are depending on the GCM
driver, the area of interest and the season.

The statistical evaluation indicates that the I_MPI climate
model outputs are closer to the reanalysis precipitation and
temperature climate data. Consequently, the MPI climate
model represents more reasonably and accurately the climate
of the research area. On the contrary, the I_HadGEM2 model
notably overestimates the climate parameters even after the
Kriging interpolation.

Analytically, the spatio-temporal interpolation method
led to the optimization of the MPI and HadGEM2
temperatute and precipitation outputs, conversing the sea-
sonal pattern of the reasearch area. Regarding the precip-
itation data, the major improvement occurs during winter
and autumn for both climate models. The uncertainties of
the I_MPI precipitation data are minimized by 14% and
20% during winter and autumn, respectively, approaching
the ERA-Interim precipitation data better. Regarding the
I_HadGEM2 precipitation, during the corresponding pe-
riods, the enhancement comes up to 18% and 26%, re-
spectively, without reaching satisfactorily the ERA-Interim
reanalysis data. The Ι_MPI temperature data is negligibly
improved, but the Ι_HadGEM2 temperature is significantly
optimized in particular during winter and autumn. Finally,
the applying spatio-temporal Kriging technique provides

climate data adjusting the ERA-Interim reanalysis data
for the period from 1981 to 2000, quantifying the preci-
sion of the interpolation.

The analysis of the spatio-temporal Kriging procedure in-
dicates that the selection of the appropriate spatio-temporal
model, mostly depends on the data, the research area, and
the desired spatio-temporal resolution (Aalto et al. 2013).
Additionally, the reliability and the accuracy of spatio-
temporal interpolation should be based on both statistical mea-
sures and the judgment of the best performance of the fitted
covariance models.

Nevertheless, this research has some limitations. The main
drawback is the absence of continuous and long time series
data from meteorological stations in the research area.
Additionally, the study area is a small coastal one, therefore,
the transition from the land to the sea and vice versa, effects on
the climate models signal reducing their reliability.

The above methodology, can be applied into any coastal
areas with similar characteristics in order reasonable climate
model dataset to be produced. Finally, the interpolated climate
model outputs can be used as inputs in climate change impact
studies. This process should be carried out with prudent so as to
the current climate pattern of the research area be maintained.
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