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Abstract
The present study is aimed at producing landslide susceptibility map of a landslide-prone area (Anfu County, China) by using
evidential belief function (EBF), frequency ratio (FR) and Mahalanobis distance (MD) models. To this aim, 302 landslides were
mapped based on earlier reports and aerial photographs, as well as, carrying out several field surveys. The landslide inventory
was randomly split into a training dataset (70%; 212landslides) for training the models and the remaining (30%; 90 landslides)
was cast off for validation purpose. A total of sixteen geo-environmental conditioning factors were considered as inputs to the
models: slope degree, slope aspect, plan curvature, profile curvature, the new topo-hydrological factor termed height above the
nearest drainage (HAND), average annual rainfall, altitude, distance from rivers, distance from roads, distance from faults,
lithology, normalized difference vegetation index (NDVI), sediment transport index (STI), stream power index (SPI), soil texture,
and land use/cover. The validation of susceptibility maps was evaluated using the area under the receiver operating characteristic
curve (AUROC). As a results, the FR outperformed other models with an AUROC of 84.98%, followed by EBF (78.63%) and
MD (78.50%) models. The percentage of susceptibility classes for each model revealed that MD model managed to build a
compendious map focused at highly susceptible areas (high and very high classes) with an overall area of approximately 17%,
followed by FR (22.76%) and EBF (31%). The premier model (FR) attested that the five factors mostly influenced the landslide
occurrence in the area: NDVI, soil texture, slope degree, altitude, and HAND. Interestingly, HAND could manifest clearer pattern
with regard to landslide occurrence compared to other topo-hydrological factors such as SPI, STI, and distance to rivers. Lastly, it
can be conceived that the susceptibility of the area to landsliding is more subjected to a complex environmental set of factors
rather than anthropological ones (residential areas and distance to roads). This upshot can make a platform for further pragmatic
measures regarding hazard-planning actions.
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Introduction

Landslides is characterized as a natural hazard all over the
world, most events occurred in North America and
Southeast Asia (Eker et al. 2014; Ganapathy and Rajawat
2015), the destructiveness and damage of landslides is no less
than hurricanes or earthquakes, because it is lack of effective
comprehensive monitoring networks (Kirschbaum et al. 2015;
Topal and Hatipoglu 2015; Zeybek et al. 2015). Therefore,
establishing quantitative models of landslide evolution pro-
cesses is an effective approach for achieving early warnings
of landslides (Day et al. 2015). The modeling of landslides is
based on continuousmonitoring of landslide-related variables,
such as climate, hydrological parameters, soil conditions, land
use, etc. (Wood et al. 2015; Yao et al. 2015). What are land-
slide mechanisms and mapping areas susceptible to land-
slides? If we fix these questions, it is essential for land use
planning and may be considered as a scientific standard mea-
sure that assists government personnel or decision-making
activities (Gallo and Lavé 2014; Havenith et al. 2015).
However, it is still a challenging and difficult task to produce
a reliable spatial prediction map of landslides, because of the
complex nature of landslides (Bièvre et al. 2015; Tien Bui et
al. 2015b).

If there was no prior expert knowledge for evaluation and
weighting of variables, then there would be a need to extend a
data-driven landslide susceptibility mapping (LSM) method
named geographically-weighted principal component analysis
(Faraji Sabokbar et al. 2014). The trigger of landslide is also a
complicated problem and still in debate now (Larsen and
Montgomery 2012; Tomás et al. 2015). It is worth mentioning
that rainfall is an important trigger factor in landslide devel-
opment (Bordoni et al. 2015a; Zhou et al. 2015), with the
extreme rainfall incensement (Bordoni et al. 2015b; Ramos-
Cañón et al. 2015), the rate of occurrence of landslides and the
scale of fatalities and property losses have raised year by year
(Galve et al. 2014; Su et al. 2015). Earthquake is another
factor in some mountain areas, it always combination with
rainfall (Barlow et al. 2015; Fan et al. 2014; Lacroix et al.
2015; Xu et al. 2014). In addition to some common factors
induce landslide, human activities is also an unexpected and
potential induce factor (Meten et al. 2015), such as rapid de-
velopment and land reform in different mountainous areas
(Damm and Klose 2015; Gutiérrez et al. 2015), for example:
mining,new roads and highway constructions, urbanization,
building factory and house (Youssef 2015).

In most previous work, numerous comparisons of suscep-
tibility modelingmethods have been discussed (Tsangaratos et
al. 2016); the freedom of choice to decide which modeling
method is most suitable for a particular application is still a
challenging task (Kritikos et al. 2015; Tsangaratos and Ilia
2015), however until now there is no best method for empir-
ical susceptibility modeling (Mansouri Daneshvar 2014;

Umar et al. 2014). The search for the optimal landslide sus-
ceptibility modeling method is a complicated one and should
not only consider model accuracy (Goetz et al. 2015; Trigila et
al. 2015; Yusof et al. 2015). With the development of comput-
er science, geospatial technologies like the use of GIS
(Shahabi and Hashim 2015), Global Positioning System
(GPS) (Wang et al. 2015), and Remote Sensing (RS) are
meaningful in the disaster assessment, risk identification,
and hazard management for landslides (Ahmed 2014;
Barker et al. 2009; Ciampalini et al. 2015; Elmoulat et al.
2015; Jebur et al. 2014; Scaioni et al. 2014; Shi et al. 2015).

Though data-driven multivariate classification techniques
are very advanced and useful in landslide susceptibility
(Meinhardt et al. 2015; Sharma et al. 2014), expert knowledge
can also be applied to account for bias in the inventory infor-
mation and deficits in the used susceptibility factor data
(Günther et al. 2014), such as analytical hierarchy process
(AHP) (Zhao et al. 2017), spatial multi criteria evaluation ap-
proach (Pourghasemi et al. 2014), weighted linear combination
(Le et al. 2018),there are some newmethod applied to landslide
susceptibility assessment from different area around the world,
they all perform good result and high AUC in validation, such
as fuzzy logic (Meten et al. 2015; Hong et al. 2016b), artificial
neural network (ANN) (Conforti et al. 2014; Das et al. 2012;
Liu et al. 2013), logistic regression (LR) (Althuwaynee et al.
2014; Poiraud 2014; Yalcin et al. 2011; Iovine et al. 2014),
generalized additive model (Petschko et al. 2014), ensemble
of fuzzy-Shannon entropy (Shadman Roodposhti et al. 2016),
Bayes’ net (Chen et al. 2018a), decision tree (Pradhan 2013),
support vector machine (Liu et al. 2013; Peng et al. 2014; Hong
et al. 2017a, b), random forest (Chen et al. 2018b), etc.

In 2014, there were 10,907 geological disasters in China,
resulting in a total of 349 people death, 51 people missing and
218 people injured. The direct economic loss amounted to
5.41 billion Yuan. Among these geological disasters, 8125
were landslides, accounting for 74.5% of the total number.
Jiangxi Province is located in the region of the south China;
it belongs to the Subtropical warm and humid monsoon cli-
mate, in rainy season, there are many landslides in Jiangxi.
Many studies show that global climate change is a major fac-
tor that impact ecological environment and human life(Lian et
al. 2014). Changes in land use and precipitation extremes is
two significant aspect of globe climate change(Xing et al.
2014), thus it is in particular could lead to a higher landslide
susceptibility(Meinhardt et al. 2015).

The main difference between the present study and the
previous works is the mere use of Mahalanobis distance, as
probabilistic technique, for landslide susceptibility assessment
where its result is compared with respect to bivariate statistical
models. Also, we used a new topo-hydrological index
(HAND) along with other geo-environmental factors for
modeling which can bridge between landslide science and
hydrological studies.
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Description of study area

The Anfu area is located in the Central section of the Jiangxi
Province, in the west of the Jian County and the east of the
Lianhua County. The study area lies between latitude 27°04′N
and 27°36′N, and longitude 114°00′E and 114°47′E. It covers
an area of about 2800 km2. The altitude of the area ranges
from 50.5 to 1914 m above sea level.

The study area belongs to a subtropical monsoon cli-
mate. According to report from the Jiangxi Province
Meteorological Bureau (http://www.weather.org.cn), the
average annual rainfall for the period 1960–2013 years
is from 1542.0 mm. The average annual temperature is
17.7 °C. The rainy season is from Mar to Aug that
accounts for 71.8% of the yearly rainfall. In May and
June, the average rainfall varies between 200 mm and
250 mm per month. In the Anfu area, the high amount
of rainfall is considered as the main triggering factor for
the occurrence of landslides. However, until now, there
were very few articles about forecasting their location
and preventing their damages(Hong et al. 2015).

Methodology

Data used

Landslides inventory

The landslide inventory map for study area was prepared
based on aerial photograph, satellite images interpreta-
tion, and extensive field surveys. The landslides invento-
ry database for the Anfu area is including 302 landslide
events (Fig. 1) 212 landslide cases (70%) out of 302
detected landslides were randomly selected for modeling,
and the remaining 90 (30%) landslide cases were used
for the model validation purposes. The collected archive
data confirmed that the area suffered similar landslides in
historical and recent times. We have collected data rele-
vant to independent and dependent variables in Anfu
area. Daily meteorological records during 1960–2012 in
Anfu area from the Jiangxi Provincial Meteorological
Observatory were used in the study. The data included
daily precipitation, daily temperature,rainy days etc. The
DEM data comes from Aster Gdem Version2. Geological
disaster data were provided by Department of Land and
Resource of Jiangxi Province (http://www.jxgtt.gov.cn).
Lithology data was obtained from the geological figure
China land and resources data sharing (http://gsd.cgs.cn/
download.asp). The Landsat 7 ETM+ data set is provided by
Geospatial Data Cloud, Computer Network Information
Center, Chinese Academy of Sciences (http://www.gscloud.
cn) (Fig. 2).

Landslides conditioning factors

The selection of conditioning factors in the present study is
mostly drawn on field surveys, expertise, availability of data,
and literature reviews (see introduction) which follows: slope
degree, slope aspect, plan curvature, profile curvature,
HAND, average annual rainfall, altitude, distance from rivers,
distance from roads, distance from faults, lithology, normal-
ized difference vegetation index (NDVI), sediment transport
index (STI), stream power index (SPI), soil texture, and land
use/cover. Pradhan (2013) stated that identification of a suit-
able set of instability factors having a relationship with slope
failures require a priori knowledge of main causes of land-
slides. These factors can embody the characteristics of land-
slide occurrence over Anfu area. Altitude has been considered
as a vital factor that influences the occurrence and distribution
of landslides, degree of weathering and human activities
(Hong et al. 2016a) which was divided into five classes: <
400 m, 400–800 m, 800–1200 m, 1200–1600 m and >
1600 m (Fig. 3b). Slope angle is widely used in landslide
susceptibility and slope stability assessment (Demir et al.
2013). Slope degree was divided into four classes: < 5°, 5°–
15°, 15°–30° and > 30° (Fig. 3a). Slope aspect implies the
variation in the intensity of the received sunlight which affects
soil moisture, evaporation, erosion, and consequently different
landslide episodes (Ilia and Tsangaratos 2016). Slope aspect
was divided into nine primary and secondary classes: flat
(−1°), north (337.5–360°, 0–22.5°), north-east (22.5–67.5°),
east (67.5–112.5°), south-east (112.5–157.5°), south (157.5–
202.5°), south-west (202.5–247.5°), west (247.6–292.5°) and
north-west (292.5–337.5°) (Fig. 3c). The sediment transport
index (STI) has been often used to reflect the erosive power of
the overland flow (Pourghasemi et al. 2013a) following Eq. 1:

STI ¼ As

22:13

� �0:6 sinβ
0:0896

� �1:3

ð1Þ

where β represents the slope at each pixel and As represents
the upstream area (Pourghasemi et al. 2013b). STI can be
easily produced as a function of standard terrain analysis in
ESRI GIS. STI was divided into five classes (Fig. 3e). For
plan curvature, positive, near zero, and negative values are
representative for convex, flat, and concave curvature perpen-
dicular to the main slope. Using SAGA-GIS, the plan curva-
ture map was classified into the three classes mentioned
above. Profile curvature, parallel to the main slope, was pre-
pared with the same classification system and platform, yet
with a reverse interpretation (Fig. 3g, h).

SPI measures the erosion power of the stream and is consid-
ered as a factor contributing to the stability states of the slopes
in the study area, following Eq. 2 (Moore and Grayson 1991):

SPI ¼ As tan β ð2Þ
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Fig. 1 The study area and spatial distribution of landslides
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where As represents the specific catchment area and β (radian)
is the slope gradient. Here, SPI was divided into five classes
(Fig. 3f). The lithology map was obtained from the geological
datasets of China (Fig. 3m and Table 1). The NDVI map was
produced from RS imagery showing the surface vegetation
coverage and density in an image. The NDVI value was com-
puted using Eq. 3.

NDVI ¼ NIR−R
NIRþ R

ð3Þ

where R and IR stand for the spectral reflectance measurements
acquired in the visible (red) and near-infrared regions, respec-
tively. NDVI was classified into 10 classes (Fig. 3o). The land
use/cover system in the Anfu area was divided into seven clas-
ses (Fig. 3n) including farmlands, forests, grasses, water bodies,
residential areas, and bare lands. The map of distance to rivers
was created using drainage map and categorized into (<100),
(100–300), (300–500), (500–700), and (>700) classes (Fig. 3i).
Distance to faults was calculated using a geological map of the
study area. Also, distance to roads was prepared using a road
map of the study area and classified into (<500), (500–1000),
(1000–2000), (2000–3000), and (>3000) ranges, same as dis-
tance to faults map (Figs. 3j, k). All proximity maps were pro-
duced using an Euclidean function in ArcGIS 10.2. There is no
doubt that rainfall is a most important triggered factor in land-
slide occurrence. Based on the rainfall data of the past 52 years

(from 1960 to 2012), this area received an average annual rain-
fall of about 1435 mm. These observations signified the impor-
tance of correlating the initiations of landslide occurrences in
Anfu area with rainfall infiltrations. The rainfall ranges from
627.6 to 1398.6 mm in the study area which was classified into
5 ranges (Fig. 3l). The HAND factor was obtained from DEM
map using the new released ArcGIS extension (Rahmati et al.
2018), and classified into three hydrological zones of saturation,
slope, and plateau. It is worth noting that all the classifications
are based on expert knowledge of the study area and the inter-
connection of landslide localities and conditioning factors,
since there is no consensus on how to deal with this issue.
According to Süzen and Doyuran (2004) classification of con-
tinuous factors still remains unclear in landslide literature as
most of the authors use their expert opinion for the boundaries
of the classes. Overall, in order to classify continuous factors,
expert knowledge does matter most, because there is not a
standard framework to determine such classification strategy;
hence, it is mainly up to the experts’ knowledge.

Method

Frequency ratio (FR) model

According to Bonham-Carter (1994), the frequency ratio is the
probability of occurrence of a certain attribute. The frequency

Fig. 2 Flowchart of the developed methodology
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Fig. 3 Landslides conditioning factor (a) Slope, (b) Altitude, (c) Aspect, (d) HAND, (e) STI, (f) SPI, (g) Plan curvature, (h) Profile curvature, (i)
Distance to rivers, (j) Distance to faults, (k) Distance to roads, (l) Rainfall, (m) Lithology, (n) Landuse, (o) NDVI, (p) Soil
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ratio method is based on the assumption that future landslides
will happen at similar conditions to those in the past. The FR
model is a simple and understandable probabilistic model, and

it is the ratio of the area where landslides have occurred to the
total study area and is also the ratio of the landslide occurrence
probabilities to the non-occurrence for a given attribute. The

Fig. 3 continued.
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landslide susceptibility map (LSM) was calculated by summa-
tion of each factor’s ratio value using Eq. 4:

LSM ¼ ∑ FR ð4Þ

The calculation steps for an FR for a class of the landslide-
influencing factor are below (Eq. 5)

FR ¼ A=Bð Þ= C=Dð Þ ð5Þ
where, A is the number of pixels with landslide for each fac-
tor; B is the number of total landslides in study area; C is the
number of pixels in the class area of the factor; D is the num-
ber of total pixels in the study area; and FR is the frequency
ratio of a class for the factor.

Evidential belief function (EBF) model

Dempster-Shafer theory of evidence was first proposed by
Dempster (Dempster 1967), and was developed by Shafer

later on (Shafer 1976). There are four basic EBF func-
tions, namely; degrees of belief (Bel), disbelief (Dis), un-
certainty (Unc), and plausibility (Pls) (Dempster 1967).
Unc represents ignorance of one’s belief in the proposi-
tion based on a given evidence and its value is Pls-Bel.
Semantically, Dis is the belief that the proposition is not
true based on the given evidence, which equals to 1- Pls
or, equivalently, 1- Bel-Unc. The EBF method is applied
in many fields, for instance: wildfire susceptibility assess-
ment (Pourghasemi 2016), landslide modeling (Pradhan et
al. 2014; Tien Bui et al. 2015a; Pourghasemi and Kerle
2016; Ding et al. 2017), and groundwater potential assess-
ment (Mogaji et al. 2016). The data-driven estimation of
evidential belief functions can be calculated by the fol-
lowing equations:

BelAij ¼
WAij landslideð Þ

∑n
j¼1WAij landslideð Þ

ð6Þ

Fig. 3 continued.

612 Earth Sci Inform (2018) 11:605–622



WAij landslideð Þ ¼
N T∩Aij

� �
=N Tð Þ

N Aij
� �

−N T∩Aij
� �� �

= N Að Þ−N Tð Þ½ � ð7Þ

DisAij ¼
WAij n0n−landslideð Þ

∑n
j¼1WAij non−landslideð Þ

ð8Þ

WCij non−landslideð Þ

¼ N Aij
� �

−N T∩Aij
� �� �

=N Tð Þ
N Að Þ−N Tð Þ−N Aij

� �þ N T∩Aij
� �� �

= N Að Þ−N Tð Þ½ �
ð9Þ

UncAij ¼ 1−BelAij−DisAij ð10Þ
PlsAij ¼ BelAij þ UncAij ð11Þ

where, the numerator in Eq. (7) is the proportion of landslide
pixels that occur within a factor class Aij, the numerator in Eq.

(9) denotes the proportion of landslide pixels that does not
occur within a factor class Aij, the denominator in Eq. (7) is
the proportion of non-landslide pixels within a factor class Aij,
and the denominator in Eq. (9) is the proportion of non-
landslide pixels within other attributes outside the factor class
Aij (Youssef et al. 2015).

Mahalanobis distance

Mahalanobis distance is a probabilistic distance which was
proposed byMahalanobis and is based on the relation between
variants of which different features can be detected and ana-
lyzed (Mahalanobis 1936). It is a useful metric that can quan-
tify the similarity between an unknown location and a known
sample series. While, some properties differentiate this

Table 1 Types of geological formation of the study area

No. Symbol Unit name Lithology Geological age

A C↓1→ Zishan group, Yan Jiayuan group, Black argillaceous limestone with dolomites, dolomitic limestone and
calcareous siltstone, mudstone and carbonaceous shale and coal seam

Carboniferous

C↓2→ P↓1 Hutian group Light gray, gray dolomite with limestone; Ma Ping group light grey
limestone, dolomitic limestone local folder

Carboniferous

B D↓2→ Luo tuduan group, Yunshan group,
Zhongpeng group

Gray quartz conglomerate, pebbly sandstone, sandstone; purple red
sandstone, siltstone, silty rocks interbedded with gray, gray green
sandstone, shale, dolomite, dark grey dolomitic limestone

Devonian

D↓3→ Ma Shan group, Yanghu group Grey calcareous mudstone, siltstone interbedded with limestone;
limestone clip purple sand, siltstone, silty shale chamosite sandstone,
oolitic hematite

Devonian

C E↓1–2→ Xinyu group Upper, lower violet red siltstone, mudstone and fine sandstone, the central
dark gray mudstone, containing Glauber’s salt, anhydrite and rock salt

Paleogene

D J↓1→ Lin North Hills Water Group Gray white feldspar quartz sandstone, pebbly sandstone, fine sandstone,
siltstone interbedded with sandy shale, carbonaceous shale and coal
seam

Jurassic

J↓2→ ∠γ⊥ Gexian Hill super elements Gextanshan super unit Ge Xianyuan unit, Ken former unit, Xishan row
unit, moon shaped super unit: two long (K-feldspar granite)

Jurassic

J↓3→ ∠ηγ West Mountain super elements Huang Xiechao unit, the sea will super unit, Changshan super unit, Xihua
mountain: two super unit granite

Jurassic

E K↓2→ Tanbian group, Hekou group Brick red, purple red conglomerate, pebbly sandstone, sandstone,
mudstone and silt, the bottom conglomerate

Cretaceous

F Nh Yang Bridge Group Moraine mud conglomerates, magnetite quartzite, sandstone, even with
siliceous rock

Sout-Sinian

G P↓2→ Gufeng Group, Xixia Group Dark flint limestone with carbonaceous shale; carbonaceous shale clip
lenticular limestone, containing a grey limestone, siliceous rock

MiddleTriassic

P↓3→ Longtang Group, Qixing Group Sand, shale, limestone, siliceous rocks in a coal, carbonaceous shale,
mudstone, limestone

Permian

H Qb Shenshan Group, tangtou Group Gray green feldspar quartz sandstone, silty phyllite, clip black slate;
sedimentary tuff and shale interbed

Quaternary

Qh↑∠a1→ Ganjiang Group, Woli Group The upper Yellow clayey silt, silty clay layer, the lower gray, light yellow
gravel, sand and gravel, with mottled clay layer and mucky clay

Quaternary

I S↓2→ ∠γ⊥ Nanmiao Group, Wentan Group The gneissic granite Silurian

S↓3→ ∠γδ⊥ Miaoqian Group Granodiorite Silurian

J T↓1→↑M→ Stone export group The yellow green siltstone, calcareous mudstone, intercalated marl Triassic

K Z Lechang Gorge group Grey purple feldspar quartz sandstone intercalated with siltstone slate;
tiger Tang Group: light gray cherts sandwiched phyllite

Upper Sinian

L ∈↓1→ Eight village groups Gray, gray green sandstone, carbonaceous slate Cambrian

∈↓2→ High Beach group Gray, grayish green sandstones, with gray green silty slate, slate and a
small amount of carbonaceous slate

Cambrian
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method from a simple Euclidian distance: 1) it maintains the
correlation between data, 2) being insensitive to different mea-
surement scales, and 3) interpretable from probabilistic stand-
point. The Mahalanobis distance of an observation at a partic-

ular pixel within a factor vector x!¼ x1; x2; x3;…; xNð ÞT by
having a set of mean values of those factors at each landslide

localities μ!¼ μ1;μ2;μ3;…;μNð ÞT and the covariance
matrix S follows Eq. 12.

DM x!
� 	

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x!−→μ Þ

T
S−1 x!−μ!

� 	�s
ð12Þ

Models validation

Validation of three susceptibility maps was carried out using
the ROC curve. The ROC plots the false-positive rate (the
specificity) on the x-axis and the true-positive rate (the sensi-
tivity) on the y-axis (Tahmassebip Swets 1988). To apply the
ROC method to the study area, a concise and representative
dataset was prepared using the randomly split landslide and
non-landslide locations. The AUROC values vary from 0.5 to
1.0; the model with the higher AUC is considered to be the
best in terms of predictive power and generalization capacity
(Yesilnacar 2005).

Result

Application of frequency ratio model

The results of the FR analysis for each identified class are
summarized in Table 2. In Table 2, slope angle classes
showed that >30° class has higher frequency ratio weight
(4.36) followed by class 15–30° with FR of 1.52. In terms
of slope aspect, most landslides occurred facing south,
south-east and southwest (2.41, 2.24, and 1.82, respective-
ly). In the case of altitude, the 800–1200 class had the
highest FR of 4.23, indicating a high probability of land-
slide occurrence in within this altitude. In the case of plan
curvature, in convex and flat classes, the FR is high and
low (values of 1.07 and 0.00), respectively. The results of
FR for profile curvature showed that < (0.001) class had
the highest FR (1.18). Therefore, this class has the most
probability for landslide occurrence. The results of HAND,
showed that >281 and 162–281 classes had higher proba-
bility for landslide occurrence with the FR of 3.74, and
1.91 respectively. Landslides are most abundant in the
>20 class of STI (FR = 2.95). The results of SPI, showed
that 150–200 and 100–150 classes had higher probability
for landslide occurrence with the FR of 2.43, and 2.42
respectively. In case of lithology, the highest value of FR

is for class of B (2.16). In the case of NDVI, it can be seen
that the class of (−0.001) - (0.00) has an FR value of 6.15,
indicating that the probability of occurrence of landslides
in this NDVI class is very high. Considering the case of the
relationship between landslide occurrence and distance to
rivers, the FR is 2.25 and 1.47 for >700 and 500–700
classes which shows abundant of landslide in these classes.
In the case of distance to faults, classes of 2000–3000
and > 3000 m yield the highest landslide occurrence probabil-
ities with FR values of 0.95 and 1.25, respectively. In the case
of distance to roads, most of the landslides occurred in class of
1000–2000 with FR value of 1.24. In the case of precipitation,
1105.3–1398.5 yields an FR value of 1.26, thus it has the
highest probability for landslide occurrence. In the case of
Land use,it can be seen that the class of Forest and Grass
has an FR value of (1.42, 1.14), indicating that the probability
of occurrence of Human activity in this land use type is very
high. The final landslide susceptibility map was developed
using the Eq. 13 as follow:

LSMFR ¼ð Slope angleFRð Þ þ Slope aspectFRð Þ þ AltitudeFRð Þ
þ Plan curvatureFRð Þ þ Profile curvatureFRð Þ
þ HANDFRð Þ þ STIFRð Þ þ SPIFRð Þ þ LithologyFRð Þ
þ NDVIFRð Þ þ LanduseFRð Þ þ Distance to riversFRð Þ
þ Distance to faultsFRð Þ þ Distance to roadsFRð Þ
þ RainfallFRð Þ

Þ
ð13Þ

The landslide susceptibility mapping using FR model was
calculated using ArcGIS® 10.2 to calculate, and according to
the Jenks natural breaks method, the degree of vulnerability of
the area is divided into five categories: very low, low, moder-
ate, high and very high (Fig. 5a).

The landslide susceptibility map achieved from the FR
method, which covered of the total area, was designated to
be a moderate LSM class with an percentage of 24.76%, and
25.54%, 26.94%, 16.88%, and 5.88% of the total area are
related to very low, low, high, and very high LSM zones,
respectively (Fig. 4a and Table 3). The classification scheme
is based on natural break classifier.

Application of EBF model

To produce LSM and consider the relation between landslides
and influencing factor, the EBF model was used. Table 2
shows the (Bel), disbelief (Dis), uncertainty (Unc), and plau-
sibility (Pls) that was calculated for each class of each land-
slide conditioning factor. A comparatively high Bel value
shows a higher probability of landslide occurrence, while a
low Bel value shows a lower probability of groundwater
occurrence.
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Table 2 Frequency ratio values of landslides-conditioning factors

Factor Class No. of pixels in domain No. of Landslides % Pixels % LS FR Bel Dis Unc Pls

Slope degree 0–5 1,143,949 0 0.26 0.00 0.00 0.00 0.33 0.67 0.67

5–15 1,180,877 0 0.26 0.00 0.00 0.00 0.34 0.66 0.66

15–30 1,720,699 116 0.38 0.59 1.52 0.26 0.17 0.57 0.83

>30 424,237 82 0.09 0.41 4.36 0.74 0.16 0.10 0.84

Altitude (m) <400 3,378,375 92 0.76 0.46 0.61 0.08 0.43 0.49 0.57

400–800 853,461 71 0.19 0.36 1.88 0.23 0.12 0.64 0.88

800–1200 165,559 31 0.04 0.16 4.23 0.52 0.14 0.34 0.86

1200–1600 64,480 4 0.01 0.02 1.40 0.17 0.15 0.67 0.85

>1600 7887 0 0.00 0.00 0.00 0.00 0.15 0.85 0.85

Slope aspect Flat 21,846 0 0.00 0.00 0.00 0.00 0.11 0.89 0.89

North 527,170 3 0.12 0.02 0.13 0.02 0.13 0.86 0.87

Northeast 511,470 3 0.11 0.02 0.13 0.02 0.13 0.86 0.87

East 606,227 19 0.14 0.10 0.71 0.08 0.12 0.80 0.88

Southeast 654,992 65 0.15 0.33 2.24 0.27 0.09 0.64 0.91

South 607,990 65 0.14 0.33 2.41 0.29 0.09 0.62 0.91

Southwest 520,587 42 0.12 0.21 1.82 0.22 0.10 0.68 0.90

West 497,364 16 0.11 0.08 0.73 0.09 0.12 0.80 0.88

Northwest 522,116 5 0.12 0.03 0.22 0.03 0.12 0.85 0.88

HAND <162 3,018,854 54 0.68 0.27 0.40 0.07 0.63 0.30 0.37

162–281 1,112,856 94 0.25 0.47 1.91 0.32 0.17 0.51 0.83

>281 301,649 50 0.07 0.25 3.74 0.62 0.19 0.19 0.81

STI (m) <10 2,667,823 18 0.60 0.09 0.15 0.03 0.64 0.32 0.36

10–20 905,907 63 0.20 0.32 1.57 0.34 0.22 0.44 0.78

>20 896,032 117 0.20 0.59 2.95 0.63 0.13 0.24 0.87

SPI <50 3,308,117 84 0.74 0.42 0.57 0.06 0.43 0.51 0.57

50–100 535,566 52 0.12 0.26 2.19 0.23 0.13 0.64 0.87

100–150 177,326 19 0.04 0.10 2.42 0.25 0.15 0.60 0.85

150–200 83,749 9 0.02 0.05 2.43 0.25 0.15 0.60 0.85

>200 365,004 34 0.08 0.17 2.10 0.22 0.14 0.64 0.86

Plan curvature 100\m) Concave 1,917,901 84 0.43 0.42 0.99 0.48 0.34 0.17 0.66

Flat 138,214 0 0.03 0.00 0.00 0.00 0.33 0.67 0.67

Convex 2,413,647 114 0.54 0.58 1.07 0.52 0.32 0.15 0.68

Profile curvature (100\m) < (−0.001) 2,025,052 106 0.45 0.54 1.18 0.59 0.28 0.13 0.72

(−0.001)-(0.001) 170,517 0 0.04 0.00 0.00 0.00 0.32 0.68 0.68

> (0.001) 2,274,193 82 0.51 0.41 0.81 0.41 0.40 0.19 0.60

Distance to rivers (m) <100 800,465 7 0.18 0.04 0.20 0.04 0.23 0.73 0.77

100–300 1,294,437 43 0.29 0.22 0.75 0.13 0.22 0.64 0.78

300–500 1,056,361 42 0.24 0.21 0.90 0.16 0.21 0.63 0.79

500–700 735,575 48 0.16 0.24 1.47 0.27 0.18 0.56 0.82

>700 582,924 58 0.13 0.29 2.25 0.40 0.16 0.44 0.84

Distance to faults (m) <500 548,982 19 0.12 0.10 0.78 0.17 0.21 0.62 0.79

500–1000 495,275 18 0.11 0.09 0.82 0.18 0.21 0.61 0.79

1000–2000 829,214 25 0.19 0.13 0.68 0.15 0.22 0.63 0.78

2000–3000 573,200 24 0.13 0.12 0.95 0.21 0.20 0.59 0.80

>3000 2,023,091 112 0.45 0.57 1.25 0.28 0.17 0.55 0.83

Distance to roads (m) <500 1,654,882 65 0.37 0.33 0.89 0.21 0.22 0.57 0.78

500–1000 1,230,780 49 0.28 0.25 0.90 0.22 0.21 0.58 0.79

1000–2000 1,255,585 69 0.28 0.35 1.24 0.30 0.18 0.52 0.82

2000–3000 293,836 15 0.07 0.08 1.15 0.28 0.19 0.53 0.81
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As shown in Table 2, in the case of slope degree, it can
be seen that the 15–30 and > 30 had higher Bel of 0.26 and
0.74. For altitude, 800–1200 had highest value of Bel
(0.52). In the case of slope aspect, the south had the highest
value of Bel (0.29). For HAND, >281 had the highest val-
ue of Bel (0.62). In the case of STI, >20 had the highest
value of Bel (0.63). In the case of SPI, 100–150 and 150–
200 had the highest value of Bel (0.25). For plan curvature,
convex had the highest value of Bel (0.52). In the case of

profile curvature, < (−0.001) had the highest value of Bel
(0.59). For the distance to rivers, >700 had the highest
value of Bel (0.40). In the case of distance to faults,
>3000 had the highest value of Bel (0.28). In the case of
distance to roads, 1000–2000 had the highest value of Bel
(0.30). In the case of precipitation, 1105.3–1398.5 had the
highest value of Bel (0.30). In the case of NDVI, (−0.001)
-(0.00) had the highest value of Bel (0.63). For soil, Alh had
the highest value of Bel (0.52). In the case of lithology, B had

Table 2 (continued)

Factor Class No. of pixels in domain No. of Landslides % Pixels % LS FR Bel Dis Unc Pls

>3000 34,679 0 0.01 0.00 0.00 0.00 0.20 0.80 0.80

Precipitation (mm) 627.6–869.4 389,875 21 0.09 0.11 1.22 0.29 0.24 0.47 0.76

869.4–987.4 1,279,054 40 0.29 0.20 0.71 0.17 0.28 0.55 0.72

987.4–1105.3 2,388,318 114 0.53 0.58 1.08 0.25 0.24 0.50 0.76

1105.3–1398.5 412,515 23 0.09 0.12 1.26 0.30 0.24 0.46 0.76

NDVI < (−0.001) 1,210,760 0 0.27 0.00 0.00 0.00 0.23 0.77 0.77

(−0.001)-(0.00) 77,046 21 0.02 0.11 6.15 0.63 0.15 0.22 0.85

(0.00)-(.05) 319,560 19 0.07 0.10 1.34 0.14 0.16 0.70 0.84

(0.05)–(0.10) 454,913 19 0.10 0.10 0.94 0.10 0.17 0.73 0.83

(0.10)–(0.40) 2,406,803 139 0.54 0.70 1.30 0.13 0.12 0.75 0.88

>(0.40) 680 0 0.00 0.00 0.00 0.00 0.17 0.83 0.83

Soil ATc 670,127 1 0.15 0.01 0.03 0.00 0.20 0.80 0.80

WR 28,433 0 0.01 0.00 0.00 0.00 0.17 0.83 0.83

ACu 500,615 29 0.11 0.15 1.31 0.13 0.16 0.70 0.84

ALh 143,701 32 0.03 0.16 5.03 0.52 0.14 0.34 0.86

ACh 2,933,533 135 0.66 0.68 1.04 0.11 0.18 0.72 0.82

LVh 81,493 1 0.02 0.01 0.28 0.03 0.17 0.80 0.83

RGc 101,490 0 0.02 0.00 0.00 0.00 0.17 0.83 0.83

CMu 10,370 0 0.00 0.00 0.00 0.00 0.17 0.83 0.83

Lithology A 527,407 5 0.12 0.03 0.21 0.03 0.09 0.88 0.91

B 544,546 52 0.12 0.26 2.16 0.29 0.07 0.64 0.93

C 94,965 0 0.02 0.00 0.00 0.00 0.09 0.91 0.91

D 172,100 6 0.04 0.03 0.79 0.11 0.08 0.81 0.92

E 99,425 0 0.02 0.00 0.00 0.00 0.09 0.91 0.91

F 48,604 0 0.01 0.00 0.00 0.00 0.08 0.92 0.92

G 757,203 0 0.17 0.00 0.00 0.00 0.10 0.90 0.90

H 180,501 0 0.04 0.00 0.00 0.00 0.09 0.91 0.91

I 772,841 54 0.17 0.27 1.58 0.21 0.07 0.71 0.93

J 66,886 0 0.01 0.00 0.00 0.00 0.08 0.92 0.92

K 118,040 6 0.03 0.03 1.15 0.15 0.08 0.76 0.92

L 1,087,244 75 0.24 0.38 1.56 0.21 0.07 0.72 0.93

Land use Farmland 285,703 9 0.06 0.05 0.71 0.21 0.17 0.62 0.83

Bare 202,161 1 0.05 0.01 0.11 0.03 0.18 0.79 0.82

Forest 1,877,166 118 0.42 0.60 1.42 0.42 0.12 0.46 0.88

Grass 1,382,761 70 0.31 0.35 1.14 0.34 0.16 0.50 0.84

Residential area 418,746 0 0.09 0.00 0.00 0.00 0.19 0.81 0.81

water 8219 0 0.00 0.00 0.00 0.00 0.17 0.83 0.83
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the highest value of Bel (0.29). In the case of landuse, forest
had the highest value of Bel (0.42). The final landslide sus-
ceptibility map was developed using the Eq. 14 as follows:

LSMEBF ¼ð Slope angleBelð Þ þ Slope aspectBelð Þ þ AltitudeBelð Þ
þ Plan curvatureBelð Þ þ Profile curvatureBelð Þ
þ HANDBelð Þ þ STIBelð Þ þ SPIBelð Þ þ LithologyBelð Þ
þ NDVIBelð Þ þ LanduseBelð Þ þ Distance to riversBelð Þ
þ Distance to faultsBelð Þ þ Distance to roadsBelð Þ
þ RainfallBelð Þ

Þ
ð14Þ

The landslide susceptibility map EBF model was prepared
in ArcGIS 10.2 and classified into to five classes (very low to
very high) with respective percentages of 13.57%, 29.63%,
25.8%, 20.76%, and 10.24%, based on natural break classifi-
cation scheme (Fig. 4b, Table 3).

Application of Mahalanobis distance model

In order to implement Mahalanobis distance model, extension
of Land Facet Corridor Tools was used in ArcGIS 10.2 envi-
ronment. The landslide susceptibility map EBF model was
prepared in ArcGIS 10.2 and classified into to five classes
(very low to very high) with respective percentages of
59.7%, 13.39%, 9.81%, 8.66%, and 8.44%, based on natural
break classification scheme (Fig. 4c, Table 3).

Validation of landslide susceptibility maps

Results of prediction curves are exhibited in Fig. 5. The results
show that for the landslide susceptibility map using the EBF
model, the AUC is 0.7863, which corresponds to a relatively
high prediction accuracy. The landslide susceptibility map
usingMD gives an AUC of approximately 0.7850, which also

Fig. 4 Landslide susceptibility map by (a) FR model, (b) EBF model (c) Mahalanobis distance
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corresponds to a high prediction accuracy. The FR model
clearly has higher AUC value of 0.8498 than that of the other
models, which corresponds to a high prediction accuracy.
Therefore, according to the results, FR givers a fairly better
response with high generalization capacity, followed by EBF,
and MD. Thus, the FR model was introduced as the premier
model.

Discussion

This study undertook a comparative assessment of the appli-
cation of the EBF and FR statistical methods and MD in land-
slide susceptibility. The AUROC analysis shows that the

results of the landslide susceptibility obtained from the three
models are reliable, although MD gave an underperformed
prediction skill compared to EBF and FR. Therefore, a simple
statistical equation termed FR proved to be brief but meaning-
ful once again in landslide studies, which makes the use of
other complicated models more questionable. However, the
products of each model also matters. For instance, EBF sup-
ports a series of mass functions including belief, disbelief,
uncertainty and plausibility that clarifies more aspects of the
landslide occurrence and modeling aspects in the study area.
Thus, the results can adequately represent quantitative rela-
tionships between landslide occurrences and conditioning fac-
tors bymodeling the degree of uncertainty (Park 2011). On the
other hand, the simple assumptions on which the FR is based,
makes its results more sensitive to different model configura-
tions such as inputs, either landslide inventory partitioning
methods or different sets of conditioning factors. In this re-
gard, EBF and MD hold more robust mathematical functions.
This can be of interest for future works.

Regarding the EBF, the belief map was considered to be the
landslide susceptibility map as it indicated the landslide-prone
areas better than other functions. The disbelief map, showed
the opposite distribution from that of the belief map. The plau-
sibility map was similar to the belief map, but the contrast
between lower degrees and the higher degrees was not much
clear. The uncertainty map indicated a lack of information or
the presence of insufficient evidential data layers for landslide
susceptibility assessment. The FRmodel can reflect the spatial
relationship between landslide occurrence and conditioning
factors and also closely matches the objective of susceptibility
assessment. As aforementioned, In FR model, the input, cal-
culation, and output processes are very simple and easy to
understand which makes it a good choice for a practical land-
slide susceptibility assessment when facing short amount of
time. There are many studies comparing and validating FR
and EBF models in landslide susceptibility mapping. Hong
et al. (2016b), evaluated and compared FR and EBF
methods with random forest and logistic regression models.
The results were quite interesting as indicates a higher
accuracy for FR than that of the EBF. Also, another study by
Mohammady et al. (2012) also shows a higher accuracy for
FR compared to EBF. Zhang et al. (2016), Ding et al. (2017),
and Chen et al. (2017a) also attest such outperformance.

The results regarding the percentage of susceptibility clas-
ses can speak through a fact termed as practicality, which was
recently proposed, by Kornejady et al. (2017a, b), Chen et al.
(2017b), Pourghasemi et al. (2017), Termeh et al. (2018). This
feature relies on being focused in addressing highly suscepti-
ble area to landsliding. For instance, a model that introduces
half of an area, or evenmore, as highly susceptible to landslide
occurrence cannot be taken seriously or, in other words, is not
practical when there is a urgent need to go straight to manage-
ment stage and spatial allocation of mitigation measures. The

Table 3 Landslide distribution in predicted landslide susceptibility
zones

Models Landslide susceptibility zone % Area of predicted zones

FR Very low 25.54

Low 26.94

Moderate 24.76

High 16.88

Very high 5.88

EBF Very low 13.57

Low 29.63

Moderate 25.8

High 20.76

Very high 10.24

MD Very low 59.7

Low 13.39

Moderate 9.81

High 8.66

Very high 8.44

Fig. 5 ROC curves success rate for the FR, EBF and Mahalanobis
distance models
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same applies to FR model in this study, which can roots from
those simple mathematical assumptions and naïve data inte-
gration strategy. MD represents a high practicality, while EBF
stands somewhere in the middle. This implies that choosing
between an outperformed model and a practical one can be a
matter of expertise, time and the budget one owns. It also
indicates the need for more data and evaluation tests to choose
the model that is reliable in more aspects, not only focused on
one. Integrated evaluation tests can be helpful in this area.

Although the three used models in this study achieved
good results in landslide susceptibility mapping, we encoun-
tered some limitations which opens an area for further assess-
ments in future works: (1) the effect of landslide types on the
results of the models should be addressed since each type can
be subjected to a particular set of conditioning factors and
might own different occurrence process, (2) different sets of
conditioning factors should be engaged in modeling process,
and 3) different sample partitioning techniques should be ex-
amined in order to assess the sensitivity of the models to
altered inputs.

Conclusion

This study aimed at landslide susceptibility assessment by
using statistical and probabilistic models in Anfu County,
China. The take home inferences are as follows:

I. FRmodel shows high predictive power and generalization
capacity for modeling landslide susceptibility in our study
area; however, the drawbacks of owning simple statistical
assumptions and mathematical functions emerges with
producing an unauthentic map to some extent. Where,
almost half of the study area is introduced as highly sus-
ceptible to landsliding, which makes the allocation of mit-
igation measures much harder and defeats the purpose of
having a practical outcome. MD shows more practical
results in this regard, but choosing the best model will be
up to the decision makers and their purpose to whether
have a predictive model or a practical one. EBF shows
moderate results in both area.We suggest an effort to make
an ensemble model that performs well in both features
mentioned above.

II. According to FR, as the model with the highest AUROC,
five factors are introduced as responsible for landslide
occurrence in the area: NDVI, soil texture, slope degree,
altitude, and HAND. This reveals that natural cause rather
than anthropological agents mostly induce the landslides.
Since changing the natural factors is not a logical option
and sometimes impossible, undertaking Badaptation and
avoidance strategies^ could be a good choice to put on the
agenda.

III. HAND, as factor that bears on both hydrological and
topological properties, shows promising results in land-
slide susceptibility assessment where it can be a good
replacement for other ad hoc indices.

Lastly, we suggest using different novel data mining
methods with different model structures, parameter configu-
rations, better data resolutions, and different set of predictors
in future to compare the results with this study. The results of
this study is a good primary evaluation of landslide suscepti-
bility in the study area which could be of prime interest to
those who are dealing with land use planning and risk
management.
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