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Abstract
Landslides lead to a great threat to human life and property safety. The delineation of landslide-prone areas achieved by landslide
susceptibility assessment plays an important role in landslide management strategy. Selecting an appropriate mapping unit is vital
for landslide susceptibility assessment. This paper compares the slope unit and grid cell as mapping unit for landslide suscep-
tibility assessment. Grid cells can be easily obtained and their matrix format is convenient for calculation. A slope unit is
considered as the watershed defined by ridge lines and valley lines based on hydrological theory and slope units are more
associated with the actual geological environment. Using 70% landslide events as the training data and the remaining landslide
events for verification, landslide susceptibility maps based on slope units and grid cells were obtained respectively using a
modified information value model. ROC curve was utilized to evaluate the landslide susceptibility maps by calculating the
training accuracy and predictive accuracy. The training accuracies of the grid cell-based susceptibility assessment result and slope
unit-based susceptibility assessment result were 80.9 and 83.2%, and the prediction accuracies were 80.3 and 82.6%, respec-
tively. Therefore, landslide susceptibility mapping based on slope units performed better than grid cell-based method.
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Introduction

Landslides pose a serious threat to human properties and lives
(Kirschbaum et al. 2015; Hölbling et al. 2015). Landslide
susceptibility assessment is able to ensure landslide-prone
zones, thus it is vital for landslides prevention work
(Eeckhaut et al. 2009a).

The accuracy of landslide susceptibility assessment is af-
fected by mapping unit, prediction method, type of landslides,
resolution of data and so on (Haacke et al. 2015; Kreuzer et al.
2017). Selecting suitable mapping unit is vital for the follow-
ing analyses and modeling (Zhuang et al. 2016). The mapping
units are regarded as the sampling units in landslide

susceptibility zonation (Erener and Düzgün 2012; Rotigliano
et al. 2012). After determining mapping units, the value of
every landslide influence factor can be allotted to each unit.

The popular mapping units in landslide susceptibility as-
sessment include grid cells, unique-condition units, slope
units, etc. (Meijerink 1988; Chung and Fabbri 1995; Erener
and Düzgün 2012). Grid cells are regular square cells with the
given size (Cama et al. 2016). It can be stored in a matrix form
which is convenient for the calculation. However, the grid
cells are not related closely to geological environments
(Guzzetti et al. 1999). Unique-condition units can be obtained
by overlaying different landslide influential classification
maps, thus every unit is determined by the combination of
different properties (Chiessi et al. 2016). The size of units
depends on the number of influence factors, while the total
number of units depends on classified criteria of landslide
influence factors. But some studies indicate that the disadvan-
tage of the unique-condition units is that the classified criteria
of influence factors is subjective (Carrara and Guzzetti 1995).
Slope units are the watershed area defined by drainage lines
(valley lines) and water divide lines (ridge lines), which are
the basic topographical units of geological hazard occurrence
(Wang et al. 2017). Slope units based on drainage and divide
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lines are more related to geological environment (Guzzetti
et al. 1999). Although the identification of sub-basin bound-
aries is difficult, the hydrological tools of geographical infor-
mation systems (GIS) can solve this problem (Erener and
Düzgün 2012). This paper selects grid cells and slope units
as mapping units for landslide susceptibility assessment.

A variety of models have been used for landslide suscepti-
bility zonation (Parise and Jibson 2000; Lee 2004; Yesilnacar
and Topal 2005; Fell et al. 2008), for instance, artificial neural
network model (Zare et al. 2013; Garcíarodríguez and
Malpica 2010), support vector machine (Pradhan 2013;
Tham 2008), logistic regression model (Raja et al. 2017;
Pradhan 2010) and analytic hierarchy process (Komac 2006;
Myronidis et al. 2016). Information value model is a popular
method (Che et al. 2012; Sharma et al. 2015). However, in-
formation value model does not take into consideration the
different importance of different landslide influence factors
but just assigns equal weight to every landslide influence fac-
tor. In this study, we utilizes a modified information value
model proposed by Ba et al. (2017) for landslide susceptibility
mapping which obtains the relative weights of different clas-
ses of every landslide influence factor through calculating
information values of landslide influence factors and deter-
mines which landslide susceptibility rank each mapping unit
belongs to using gray clustering analysis (Ba et al. 2017).
Eight landslide influence factors are utilized in the model for
evaluating landslide susceptibility.

The grid cell-based landslide susceptibility assessment re-
sult and the slope unit-based landslide susceptibility assess-
ment result are finally compared by the receiver operating
characteristics curve.

Methodology

Mapping units

Mapping unit is the minimum significative spatial unit which
is obtained by subdividing the land surface into homogeneous
areas. This paper selects the grid cells and slope units as map-
ping units to assess landslide susceptibility.

Grid cells

Grid cell is a popular mapping unit for susceptibility assess-
ment since it can be obtained easily. The grid cells are gener-
ated through dividing the area into regular squares of a given
size. Its matrix form is convenient for data processing and
calculating. However, grid cells are not associated with geo-
logical environments, which is an important shortcoming of
this mapping unit (Chiessi et al. 2016). Selection of the appro-
priate grid cell size for susceptibility mapping is vital. Trigila
et al. (2015) used themost frequent landslide area to determine

the correct size of the grid cell. The most frequent landslide
area can be obtained by the use of frequency–area statistics.
Moreover, in order to determine the correct size of grid cells,
comparison of the slope gradient, obtained from DEM (digital
elevation model) with different resolution, should also be
considered.

Slope units

Slope units are generated according to hydrological theory.
Slope units are thought as the watershed defined by the ridge
lines and valley lines (Xie et al. 2004; Jia et al. 2015) (Fig. 1).
Using the ArcGIS hydrology tools, these lines can be extract-
ed to generate slope units. The slope units are closely related
to actual geological environments, which is a main shortcom-
ing for grid cells as mapping units (Chiessi et al. 2016).

The slope units are generated through following steps
(Fig. 1). Firstly, Reverse DEM can be generated by
subtracting the elevation value from the highest elevation val-
ue in each unit (Xie et al. 2004). Secondly, the DEM and
Reverse DEM are filled to remove small imperfections in
the data, which can be achieved by the Fill tool of ArcGIS.
Thirdly, the flow direction is calculated by the eight direction
method which can be obtained using the Flow Direction tool
of ArcGIS. Fourthly, the flow accumulation can be obtained
using the flow direction data. This step can be achieved by the
Flow Accumulation tool of ArcGIS. In the next step, the
stream network is obtained by selecting the flow accumulation
of every cell above a certain threshold. Generally, 1% of the
maximum flow accumulation is defined as the threshold
(Erener and Düzgün 2012). Then the watershed of DEM or
Reverse DEM is obtained and this step can be achieved by the
Watershed tool of ArcGIS (Erener and Düzgün 2012). Finally,
the watershed raster map from DEM and the watershed raster
map from Reverse DEM are converted to the vector format.
Then the watershed polygons from DEM and Reverse DEM
are dissolved. After amending the unreasonable polygons, the
slope units are generated.

Then for the continuous landslide influence factors includ-
ing slope gradient, aspect, NDVI and MAP, the mean value of
every landslide influence factor within every slope unit was
assigned to this unit. As to the categorized landslide influence
factors including distance to tectonic features, lithology, dis-
tance to stream network and distance to roads, the predomi-
nant value of every landslide influence factor within every
slope unit was assigned to the corresponding unit.

Modified information value model

The modified information value model combined information
value model with gray clustering. This method utilizes infor-
mation value to calculate the weight of every landslide influ-
ence factor and utilizes gray clustering to determine which
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landslide susceptibility rank each mapping unit belongs to.
The procedures are as follows.

Step 1 The information values were calculated to represent
the likelihood of landslide occurrence. A larger infor-
mation value indicates a higher likelihood of
landsliding. Each landslide influence factor was clas-
sified into five classes using Jenks natural breaks op-
timization, except for aspect which was classified
into nine classes (Chen et al. 2013; Xu et al. 2013).
Jenks natural breaks optimization is a commonly-
used data classification method which is achieved
by diminishing the difference within every class
and magnifying the variance among different classes.
After classifying the landslide influence factors using
ArcGIS Reclassify tools, the information value of
each landslide influence factor can be calculated
using Eq. (1) (Yan 1988; Yin and Yan 1988; Chen
et al. 2016).

I i; jð Þ ¼ ln
Aij=A
Sij=S

ð1Þ

I(i) represents the information value; i(i = 1, 2,…, n-
) indicates the ith landslide influence factor; j(j = 1, 2,…,m-
) represents the jth class of the landslide influence factor;
S indicates the total area of all mapping units; A indicates
the total area of all landslide events; Sij indicates the total area
of those mapping units having the distribution of jth class of
ith landslide influence factor; Ai indicates the total area of
those landslide events having the distribution of jth class of
ith landslide influence factor.

Step 2 The value of the ith(i = 1, 2,…, n) influence factor in
the pth(p = 1, 2,…, t) mapping unit which is repre-
sented by xpi should be standardized to remove the
effect of dimension by the use of the min-max nor-
malization method as follows. xM and xmindicates the
maximum xpi and the minimum xpi. ypi is the stan-
dardized xpi (Wei and Feng 2004; Xie et al. 2014):

ypi ¼
xpi−xm
xM−xm

ð2Þ

Step 3 According to the information value of the jth(j = 1,2,
…, m) class of the ith(i = 1,2, …, n) landslide influ-
ence factor, the landslide susceptibility of the ith land-
slide influence factor was classified into five ranks,
including very low, low, medium, high and very high
susceptibility. The class of a landslide influence fac-
tor with a larger information value should be assigned
to a higher rank of landslide susceptibility.

Step 4 Then the clustering weight ηi(i = 1, 2, …, n-
),representing the ith landslide influence factor’s ef-
fect on landsliding, can be determined as follows:

ηi ¼
λi

∑n
i¼1λi

ð3Þ

where λi indicates the sum of the positive information values

of the ith factor, and ∑
n

i¼1
λi represents the sum of the positive

information value of all factors (Ba et al. 2017).

(a) Division of slope units  (b) Procedures of obtaining slope units 

Fig. 1 The generation of slope
units
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Step 5 Then the whitening weight functions of every landslide
influence factor can be derived. It can be used to de-
scribe the degree every mapping unit belonged to a
landslide susceptibility rank. The graywhiteningweight
function of the ith influence factor for the kth rankwhich
is expressed as f ki �ð Þ i ¼ 1; 2;…; n; k ¼ 1; 2;…; sð Þ
can be determined through following equations
(Li et al. 2014; Xie et al. 2014).

➀ The lower whitenization weight function (Fig. 2a)
−;−; yki 3ð Þ; yki 4ð Þ� �

f ki yð Þ ¼
0 y∉ 0; yki 4ð Þ� �

1 y∈ 0; yki 3ð Þ� �

yki 4ð Þ−x
yki 4ð Þ−yki 3ð Þ y∈ yki 3ð Þ; yki 4ð Þ� �

8
>>><

>>>:

ð4Þ

➁ The moderate whitenization weight function (Fig. 2b)
y 1ð Þ; yki 2ð Þ;−; yki 4ð Þ� �

f ki yð Þ ¼

0 y∉ yki 1ð Þ; yki 4ð Þ� �

y−yki 1ð Þ
yki 2ð Þ−yki 1ð Þ y∈ yki 1ð Þ; yki 2ð Þ� �

xki 4ð Þ−y
yki 4ð Þ−yki 2ð Þ y∈ yki 2ð Þ; yki 4ð Þ� �

8
>>>>><

>>>>>:

ð5Þ

➂ The upper whitenization weight function (Fig. 2c)
yki 1ð Þ; yki 2ð Þ;−;−� �

f kj yð Þ ¼

0 y < yki 1ð Þ
y−yki 1ð Þ

yki 2ð Þ−yki 1ð Þ y∈ yki 1ð Þ; yki 2ð Þ� �

yki 4ð Þ−y
yki 4ð Þ−yki 3ð Þ y≥y

k
j 2ð Þ

8
>>>>><

>>>>>:

ð6Þ

Step 6 The clustering coefficient of every mapping unit in
every susceptibility rank can be determined by Eq.
(7):

σk
p ¼ ∑

n

i¼1
f ki ypi
� �

⋅ηi; i ¼ 1; 2;…; n; k ¼ 1; 2;…; sð Þ ð7Þ

where σk
p indicates the clustering coefficient of the pth unit in

the kth rank.

Step 7 Finally, for every mapping unit, the maximum of
σk
p k ¼ 1; 2; ::; sð Þ can be identified, then the k value

of the maximum of σkp can be expressed as

k∗.According to the maximum membership princi-
ple, the ith mapping unit belongs to the susceptibility
rank k∗.

Receiver operating characteristics curve

Receiver Operating Characteristics Curve (ROC curve) is one
of the most commonly used validation method which can be
used to validate the landslide susceptibility assessment results
(Conforti et al. 2013; Günther et al. 2014). The horizontal axis
(1-specificity) indicated the proportion of the mapping units
without landslide occurrence which were correctly predicted.
The vertical axis (Sensitivity) indicated the proportion of map-
ping units having landslide occurrence which were correctly
predicted (Wang et al. 2015). The area under the ROC curve
(AUC) value is able to quantitatively measure these prediction
results (Chalkias et al. 2014). The ranges of AUC value is 0.5–
1. A larger AUC value means higher model accuracy (Lee and
Park 2016).

Study region and dataset

General situations of study region

Chongqing, as the study region in this paper, is situated in
southwestern China. It is seated between 105°11′E-110°11′E
and 28°10′N-32°13′N. Chongqing is located in the transition
zone between Middle-Lower Yangtze plains and Qinghai-
Tibet Plateau which approximately occupies 82402km2. This
region has an East-West-width of 470 km and a North-South-
length of 450 km. The highest altitude was 2797 m. The cli-
mate belongs to subtropical monsoonal climate that has abun-
dant and concentrated rainfall between late spring and early
fall. This area has abundant precipitation whose mean annual
precipitation reaches 1000–1400 mm. It has a distinct topo-
graphical relief and a series of tectonic folds and faults. The
terrain tilts from the north and south to the Yangtze valley.
Daba Mountain and Wuling Mountain are situated in south-
east. Chongqing is a mountainous region with mountains and
hills taking up 76% of the total area. Chongqing developed a
complete set of emergence stratum with large thickness and
wide distribution, and only upper Tertiary system was absent.
The emergence stratum mainly were the sandstone, mudstone
and shale in Middle Jurassic and Lower Jurassic and the loose
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deposit of Quaternary. The red clastic rock-based Jurassic
stratum had a wide distribution. The Carbonatite-based lower
Paleozoic erathem was mainly distributed in the southeast of
Chongqing. The typical Karst landforms such as Stone Forest,
Karst cave, Karst gorges and other landscape are distributed in
this area. Yangtze River and Jialing River flow through this
region. Recently, enhancive engineering constructions such as
the development of Three Gorges Reservoir, also contributed
to landslide occurrences.

Landslide inventory data

In this paper, landslide events before 2014 were collected
from CIGMR (Chongqing Institute of Geology & Mineral
Resources). As shown in Fig. 3, there were 8435 landslide
events which were recorded as point features with the attribute

of landslide area. All landslide events affected a total area of
194,442,814 m2. The largest and the smallest landslide area
was 3,080,000 m2 and 3 m2, respectively. The most frequent
landslide area was equal to 12,000 m2, obtained by Frequency
tool of ArcGIS. The main types of the landslide events were
debris flows, translational slides and rotational slides. A major
triggering factor of these landslide events was rainfall. Xiao
(1995) pointed out that the threshold of precipitation for land-
slide occurrence was 150 mm/day in Chongqing. Other fac-
tors such as earthquake, human activities and groundwater
activity also contributed to the landslide occurrence.

Landslide influence factors

A variety of factors make a contribution to the landslide oc-
currence. This paper selects eight landslide influence factors

Fig. 2 Whitenization weight functions

Fig. 3 The location of Chongqing and the distribution of landslide events. Points indicate landslide events this paper used
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including slope, aspect, rainfall, the distance to tectonic fea-
tures, lithology, the distance to roads, the distance to rivers and
vegetation for landslide susceptibility assessment.

Slope gradient has a close relation with landsliding. In the-
ory landslides easily happen on steep slopes (Shit et al. 2016).
However, Eeckhaut et al. (2009b) indicate that the likelihood
of landslide occurrence is larger on the moderate slope gradi-
ent, since steep slopes are lacking in material basis for land-
slide occurrences. Aspect indirectly affects the landslides oc-
currence through affecting soil, rock, water, and vegetation
(Pourghasemi et al. 2012). Rainfall mainly contributes to the
landslides, since it increases the weight of slopes and de-
creases the shearing strength of the sliding layer. The mean
annual precipitation is utilized to represent the rainfall.
Tectonic conditions are also related to landslides. As is known
to all, landslides are apt to happen near tectonic features as it
causes the development of fractures and the broken rock (Su
et al. 2010). Thus the distance to tectonic features is selected
as an influence factor. Landslide occurrence also has a strong
connection with lithologies (Kouli et al. 2009). Different li-
thologies or rock types have different composition and struc-
ture. Compared with the weaker rocks, the stronger rocks give
more resistance to the driving force, and hence are less prone
to landslides (Kanungo et al. 2006). Road construction easily
contributes to slope instability. Thus landslides tend to happen
near the road network. The distance to roads is utilized in
calculations. Streams negatively affect slope stability through
eroding the slopes and absorbing the material at the bottom
(Bhatt et al. 2013). Therefore, the distance to stream networks
is selected as the corresponding index. Vegetation cover is also
related to the landslide occurrence which can reduce the influ-
ence of rainfall through holding the soil (Lundgren 1978).
This paper thus utilizes NDVI (normalized difference vegeta-
tion index) in calculations. Generally speaking, a smaller
NDVI value indicates a larger likelihood of landslide occur-
rence (Wang et al. 2014).

The elevation, slope and aspect were derived from the ste-
reoscopic data collected fromASTERGDEMwith a resolution
of 30 m (Fig. 4). From the elevation data, the stream network
was obtained by the use of ArcGIS hydrology tools. The tec-
tonic features and lithologies were obtained through digitizing
the Chongqing geological map with a scale of 1:500,000. The
roads in this region were extracted from the national electronic
map with a scale of 1:25,000 in vector format. CIGMR also
provided daily precipitation from 2005 to 2014 and the geo-
graphical coordinates of 1003 rainfall observation stations. The
mean annual precipitation of every rainfall observation station
was extracted by dividing the sum of the daily precipitations
from 2005 to 2014 by the number of years. Then the mean
annual precipitation of the whole region can be obtained
through IDW (Inverse Distance Weighted) interpolation. The
NDVI raster map was obtained from Landsat images with a
resolution of 30 m. The derived data are shown in Fig. 5.

Results and discussion

The landslide events were randomly split into two parts: 70%
(5905) of the landslide events as model training data and re-
sidual 30% (2530) of all landslide events as validation data.
Using both grid cells and slope units as the mapping units, the
modified information value model was constructed to gener-
ate landslide susceptibility maps. Then the assessment results
by using the two different mapping units are compared.

Grid cell-based susceptibility assessment

The most frequent landslide area is equal to 12,000 m2, ob-
tained by the frequency-area statistics. The 10 × 10 m DEM
maintain these morphological elements. Based on the above
two reasons, the 10 × 10 m grid cell is the most appropriate in
the study area. In this region, there are altogether 825,682,626
grid cells. The value of every landslide influence factor is
allotted to every grid cell. Then the information values of
landslide influence factors were obtained by Eq. (1) (Table 1).

According to the information values of slope gradient,
landslides frequently happened in the range of 10°-35°.
Landslides were more likely to occur between 10° and 20°
which had the maximum information value (0.494). With re-
spect to aspect, landslides more easily happened in northwest
direction aspect as the maximum information value (0.387)
was found in this range. Landslides were less likely to occur
in the flat area as the minimum information value (−0.226)
was found in the area. As to the distance to stream network,
the maximum of information value was 0.441 in the range of
<1000 m. Thus landslides tend to occur in the area with the
distance to stream network less than 1000 m. Information
values decreased along with the increasing of the distance to
stream network. Therefore, the closer the distance, the higher
likelihood of landsliding. As for the distance to tectonic fea-
tures, information values were positive in the range of 0–
1800m and information values of other classes were negative.
Hence the possibility of landslide occurrence was higher at the
interval of<1800 m than any other classes. On the whole, the
likelihood of landsliding increased as the distance to tectonic
features decreased. With regard to rainfall, landslides were
most likely to occur in the range of 1100–1200 mm/year as
this range had the largest information value (0.247). The in-
formation value in the interval of 1200–1250 mm/year was
0.216, next only to the class 1100–1200 mm/year. It is gener-
ally thought that landslides should be most likely to occur in
the area with the highest precipitation, but the results were
inconsistent with it. This may be because sudden rainstorms
also contributed to landsliding (Rampone and Valente 2012).
With regard to the distance to roads, the maximum (0.619) of
information values was founded in the range of 0–200 m.
Thus landslides more easily happened around roads. As to
NDVI, the maximum (0.663) and minimum (−0.781) of
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information value was found in the <0.55 class and in the
>0.85 class, respectively. The larger the NDVI, the smaller
the likelihood of landsliding. As for lithology, the results in-
dicated that the areas with clastic rocks had the highest infor-
mation value (0.955), and the information value of the areas
with shales was the smallest (−3.351). Therefore, landslides
occurred predominantly in the weaker rocks area because
these rocks are easily saturated and then soften quickly,
resulting in slope failures.

According to Table 1, a smaller information value repre-
sents a lower susceptibility rank. The landslide susceptibility
ranks for each factor based on grid cells was shown in Table 2.
It can be seen that the classes with the largest information
value including slope gradient larger than 10° and smaller than
20°, distance to tectonic features smaller than 600 m, the areas
with clastic rocks, reserviors and sandstones, distance to roads
smaller than 200 m, MAP larger than 1100 mm and smaller
than 1200 mm, distance to stream network smaller than
1000 m, northwest aspect direction and NDVI smaller than
0.5 were in the very high rank. According to the susceptibility
ranks, whitenization weight functions of influence factors
were generated.

Clustering weights reflects the effect of landslide influence
factors on landsliding. The clustering weight of the lithology
was the largest (0.250), while the clustering weight of distance
to faults was the smallest (0.046). The clustering weight
(0.181) of NDVI was the second largest, while the clustering
weight (0.079) of aspect was the second smallest. The weights
of slope, MAP, distance to stream network and distance to
roads were 0.081, 0.081, 0.113 and 0.170, respectively.

After that the clustering coefficient of every grid cell for every
landslide susceptibility rank was calculated and then the clus-
tering vector of every grid cell was constructed. Subsequently,
the susceptibility rank each grid cell belonged to was ensured.
Therefore the grid cell-based susceptibility map was created
(Fig. 6).

As shown in Fig. 6, high and very high susceptible zones
were mainly distributed along tectonic features, roads and
stream network. Moreover, low susceptible zones were main-
ly located far away from tectonic features, roads and stream
network that were located in the west and north. High suscep-
tible zones which covered 9.28%. Very high susceptible zones
accounted for 10.33%.

Slope unit-based susceptibility assessment

Using the DEM data and the largest elevation value of this
region, Reverse DEM was generated. After that the DEM and
Reverse DEMwere applied for generating slope units through
these steps including fill, extraction of flow direction, calcu-
lation of flow accumulation, generation of stream network,
generation of watershed, combination of the watersheds de-
rived from DEM and Reverse DEM. There were altogether
34,453 slope units (Fig. 7).

According to the classifications of landslide influence fac-
tors which were the same with the experiment based on grid
cells, the information values of each landslide influence factor
based on slope units was calculated (Table 3). In this table, the
total area of the landslide events present in the aspect class of
NW was 0, thus the information value of this class was

Fig. 4 The digital elevation
model (DEM) of Chongqing
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(a) (b)Lithology   Slope 

(c) Aspect (d) Distance to tectonic features

(e) Distance to stream network (f) MAP

(g) Distance to roads (h) NDVI

Fig. 5 Landslide influence factor dataset
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Table 1 Information values of landslide influence factors based on grid cells

Factors Classes S(m2) Si(m
2) A(m2) Ai(m

2) Information value

Slope (°) <5 82,568,262,600 13,543,303,000 194,442,814 5,308,714 −1.793
5–10 16,285,838,200 31,931,411 −0.183
10–20 25,447,442,600 96,388,602 0.475

20–35 21,003,368,500 5372.6065 0.083

>35 6,288,310,300 708.8022 −0.737
Lithology Basalt 82,568,262,600 5,584,377,200 194,442,814 5,505,580 −0.871

Clastic rock 3,959,473,800 24,220,203 0.955

Conglomerate 521,708,100 363,820 −1.217
Dolomite 503,109,500 200,800 −1.775
Glimmerite 4,173,704,200 4,839,790 −0.708
Glutenite 825,417,300 346,850 −1.724
Limestone 2,343,510,600 5,308,030 −0.039
Marlite 650,278,200 132,120 −2.45
Mudstone 26,610,277,600 64,519,218 0.029

Reservoirs 82,419,500 362,810 0.626

Sandstone 27,095,874,200 72,111,100 0.122

Shale 14,895,200 1230 −3.351
Siltstone 567,208,400 1,283,841 −0.040
Slate 9,636,008,800 15,247,422 −0.398

Aspect Flat 82,568,262,600 3,281,017,800 194,442,814 4,630,213 −0.512
N 9,657,589,900 21,253,039 −0.068
NE 9,451,905,700 15,726,801 −0.347
E 10,913,684,400 22,317,673 −0.141
SE 9,915,905,800 27,441,267 0.161

S 9,776,568,800 23,110,115 0.004

SW 9,696,800,000 24,585,306 0.074

W 8,850,737,600 22,566,502 0.079

NW 11,024,052,600 32,811,898 0.234

Distance to stream network (m) <1000 82,568,262,600 16,889,953,700 194,442,814 61,756,040 0.441

1000–2000 15,180,167,400 50,152,780 0.339

2000–3000 13,749,062,300 28,313,446 −0.134
2000–4000 11,961,350,700 18,211,939 −0.436
>4000 24,787,728,500 36,008,609 −0.483

Distance to tectonic features (m) <600 82,568,262,600 12,772,499,200 194,442,814 36,917,262 0.205

600–1200 12,169,137,800 30,214,238 0.053

1200–1800 11,236,042,400 28,170,867 0.063

1800–2400 9,746,557,300 21,343,112 −0.073
>2400 36,644,025,900 77,797,335 −0.104

MAP (mm) <1000 82,568,262,600 1,617,241,500 194,442,814 805,970 −1.553
1000–1100 17,184,807,300 15,668,611 −0.949
1100–1200 21,059,612,500 63,468,665 0.247

1200–1250 12,573,217,000 36,766,859 0.217

>1250 30,133,384,300 77,732,709 0.091

Distance to roads (m) <200 82,568,262,600 6,439,163,500 194,442,814 28,164,897 0.619

200–400 5,500,475,700 20,653,079 0.467

400–600 4,987,663,800 12,571,499 0.068

600–800 4,602,943,300 11,107,819 0.024

>800 61,038,016,300 121,945,520 −0.164
NDVI <0.55 82,568,262,600 1,444,810,000 194,442,814 6,651,753 0.670
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assigned the smallest information value of aspect. Thus the
information value of the northwest direction of aspect was
equal to the information value of the flat class.

We can see from Table 3 that landslides easily happened in
the slope gradient range of 10°–20° which has the maximum
information value (0.485). The information value between 10°
and 20° was second largest (0.042). Therefore, landslides ex-
tensively happened in the regions with medium slope gradient.
As to aspect, the maximum (0.337) was distributed in the
southwest aspect. In addition, the minimum (−0.381) was dis-
tributed in the flat regions and northwest aspect. Consequently,
landslides were more likely to occur in the southwest direction
aspect and were less likely to occur in the flat areas and north-
west direction aspect. With regard to the distance to stream
network, information values decreased along with the increas-
ing of distance to stream network. Thus the smaller distance to
stream network was, the higher likelihood of landsliding. With
regard to distance to tectonic features, landslides were prone to
occur in the areas at the interval of <600 m as a result of the
largest information value (0.523). The likelihood of landsliding
increased with the decrease of the buffer distance to tectonic
features. As for MAP, the maximum (0.296) information value
was found in the range of 1100–1200 mm/year, thus landslides
were most likely to occur in this range. The likelihood of land-
slide occurrence at the interval of 1200–1250 mm/year was the

second largest. With regard to the distance to roads, the maxi-
mum (0.360) of information value was found in the areas with
the buffer distance to roads less than 200m. Information values
decreased along with the increasing of distance to road. Hence
landslides more easily happened around roads. As for NDVI,
the larger NDVI value was, the smaller information value was.
Landslides were most likely to occur when the NDVI value
was less than 0.5. With respect to lithology, the information
value in the areas with clastic rocks was 1.047, next only to
the areas with sandstones (0.131). Therefore, landslides oc-
curred predominantly in the weaker rocks area because these
rocks are easily saturated and then soften quickly, resulting in
slope failures.

From Tables 1 and 3, it can be seen that the information
values based on slope units are similar to the information
values based on grid cells, except for aspect. The maximum
information value of each influence factor was found in the
same classes for grid cell-based and slope unit-based model,
including slope gradient 10°–20°, distance to tectonic features
<600 m, the areas with sandstones and clastic rocks, distance
to roads <200 m, MAP 1100–1200 mm, distance to stream
network <1000 m and NDVI <0.55. The information values
of aspect based on grid cells are different from the results
based on slope units. The maximum information value of
aspect is in the northwest direction aspect the grid cell-based

Table 1 (continued)

Factors Classes S(m2) Si(m
2) A(m2) Ai(m

2) Information value

0.55–0.65 42,544,374,600 15,649,391 0.446

0.65–0.75 26,506,810,500 71,658,598 0.138

0.75–0.85 40,935,863,400 90,242,403 −0.066
>0.85 9,426,404,100 10,240,669 −0.774

S: the area of all mapping units; A:the area of all landslide events; Si: the total area of those mapping units with the distribution of jth class of ith factor; Ai:
the total area of those landslide events with the distribution of jth class of ith factor

Table 2 The determination of susceptibility ranks for influence factors based on grid cells

Factors Susceptibility rank

Very high High Medium Low Very low

Slope(°) 10–20 20–35 5–10 >35 <5

distance to tectonic
features(meter)

<600 600–1200 1800–2400 1200–1800 >2400

distance to roads(meter) <200 200–400 400–600 600–800 >800

MAP(mm) 1100–1200 1200–1250 >1250 1000–1100 <1000

distance to stream
network(meter)

<1000 1000–2000 2000–3000 3000–4000 >4000

Aspect NW SE S,SW,W N,NE,E flat

NDVI <0.55 0.55–0.65 0.65–0.75 0.75–0.85 >0.85

Lithology Clastic rock, reservior and
sandstone

Mudstone, limestone and
siltstone

Slate, glimmerite
and basalt

Conglomerate, glutenite and
dolomite

Marlite and
shale

382 Earth Sci Inform (2018) 11:373–388



model, while the maximum value is found in the southwest
and west direction aspect for the slope unit-based model. This
difference may be principally because there are some grid
cells whose aspects were greatly different from the aspects
of neighboring cells.

Using the information values in Table 3, the susceptibility
rank of every influence landslide factor based on slope units
was generated (Table 4). The susceptibility rank increased
along with the increasing of the information value. Hence
the slope 10–20°, the southwest direction aspect, the distance

Fig. 6 Grid cell-based landslide
susceptibility zonation

Fig. 7 The generated slope units
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Table 3 Information values of landslide influence factors based on slope units

Factors Classes S(m2) Si(m
2) A(m2) Ai(m

2) Information value

Slope (°) <5 82,568,262,600 12,153,384,700 194,442,814 3,604,426 −2.080
5–10 14,908,800,100 21,479,210 −0.499
10–20 37,839,761,400 126,632,714 0.485

20–35 17,190,405,000 42,552,964 0.042

>35 475,911,400 173,500 −1.866
Aspect Flat 82,568,262,600 179,789,700 194,442,814 289,300 −0.381

N 223,052,100 500,300 −0.049
NE 3,084,658,400 9,007,083 0.215

E 20,009,079,800 50,392,714 0.067

SE 23,666,914,000 41,639,650 −0.292
S 20,170,090,000 42,453,184 −0.112
SW 12,764,532,500 42,088,544 0.337

W 2,467,585,800 8,072,039 0.328

NW 2,560,300 0 −0.381
Distance to stream network (m) <1000 82,568,262,600 1,594,037,800 194,442,814 7,014,146 0.625

1000–2000 21,642,884,500 73,857,040 0.371

2000–3000 16,657,530,900 43,950,425 0.114

2000–4000 13,735,315,200 28,205,613 −0.137
>4000 28,938,494,200 41,415,590 −0.498

Distance to tectonic features (m) <600 82,568,262,600 226,686,700 194,442,814 900,640 0.523

600–1200 15,352,463,500 42,650,386 0.165

1200–1800 12,324,089,100 29,534,859 0.018

1800–2400 15,931,909,900 37,258,280 −0.007
>2400 38,733,113,400 84,098,649 −0.081

Lithology Basalt 82,568,262,600 5,575,855,600 194,442,814 5,870,280 −0.820
Clastic rock 3,776,228,300 25,511,507 1.047

Conglomerate 630,080,900 686,676 −0.661
Dolomite 481,479,500 205,200 −1.709
Glimmerite 4,281,031,600 4,804,750 −0.735
Glutenite 784,606,000 340,850 −1.690
Limestone 2,527,426,900 6,031,680 0.013

Marlite 650,411,500 185,100 −2.120
Mudstone 26,606,038,200 63,047,525 −0.001
Reservoir 64,344,600 54,010 −1.038
Sandstone 26,790,299,900 71,885,309 0.131

Shale 257,832,500 3714 −5.097
Siltstone 548,877,900 1,319,601 0.014

Slate 9,593,749,200 14,496,612 −0.444
MAP (mm) <1000 82,568,262,600 1,597,975,300 194,442,814 847,370 −1.491

1000–1100 17,688,235,300 15,696,588 −0.976
1100–1200 20,931,161,900 66,240,225 0.296

1200–1250 12,418,798,800 33,730,842 0.143

>1250 29,932,091,300 77,927,789 0.1

Distance to roads (m) <200 82,568,262,600 18,537,500 194,442,814 63,100 0.36

200–400 3,252,622,500 10,523,813 0.31

400–600 10,695,230,300 29,724,300 0.158

600–800 17,300,395,400 39,929,543 −0.02
>800 51,301,476,900 114,202,058 −0.064

NDVI <0.55 82,568,262,600 847,446,300 194,442,814 2,769,674 0.328
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to stream network <1000 m, the areas with sandstones and
clastic rocks, the distance to tectonic <600 m, MAP 1100–
1200 mm, the distance to roads <200 m and NDVI smaller
than 0.5 were in very high susceptibility rank. Then the
whitenization weight function of every landslide influence
factor was determined.

The clustering weights based on slope units, reflecting the
effect of landslide influence factors on landsliding, were sub-
sequently determined. Lithology had the highest clustering
weight (0.189), while the clustering weight (0.079) of NDVI
was the minimum. The weight of slope was the second smallest
(0.083). The weight of distance to stream network was the
second largest (0.174). The weights of slope, aspect, the dis-
tance to tectonic features and the distance to roads were 0.083,
0.149, 0.111 and 0.130. Then clustering coefficients were ob-
tained according to Eq. (7). According to the maximum mem-
bership principle, the maximum clustering coefficient within
every clustering vector was obtained and then the susceptibility
rank for every unit was ultimately confirmed (Fig. 8).

As indicated in Fig. 8, very low and low susceptible zones
were mainly located in the west and north area. Very high and
high susceptible zones were situated along tectonic features,
rivers and roads. On the whole, the grid cell-based suscepti-
bility zonation was similar to the slope unit-based susceptibil-
ity zonation. High and very high susceptible zones occupied
19.30 and 3.18%, respectively.

Validation

This paper applies ROC curve for validating the susceptibility
assessment results based on grid cells and slope units. The
model training accuracy and prediction accuracy were mea-
sured by the success rate and prediction rate, respectively. The
success rate (Fig. 9a) can be derived though making a compar-
ison between the 70% landslide events (training data) and the
susceptibility zonation results. The AUC values of the grid cell-
based and slope unit-based results were 0.809 and 0.832, re-
spectively. Therefore, the model training accuracies of the grid
cell-based and slope unit-based results were 80.9 and 83.2%,
respectively. The prediction rate (Fig. 9b) can be derived though
making a comparison between the residual landslide events and
the susceptibility zonation results. The AUC values of the grid
cell-based and slope unit-based results were 0.803 and 0.826.
Therefore, the prediction accuracies of the grid cell-based and
slope unit-based results were 80.3 and 82.6%, respectively. As a
result, the slope unit-based model outperformed the grid cell-
based model in landslide susceptibility assessment due to
higher training accuracy and prediction accuracy. Grid cells
can be easily obtained in GIS but do not have a close relation-
ship with geological environments. In contrast, slope units are
the basic units of landslide occurrence (Wang et al. 2017). A
slope unit is defined as the watershed delimited by ridge lines
and valley lines. Therefore, slope units are more related to

Table 3 (continued)

Factors Classes S(m2) Si(m
2) A(m2) Ai(m

2) Information value

0.55–0.65 25,586,886,400 71,630,560 0.173

0.65–0.75 46,683,473,000 110,482,957 0.005

0.75–0.85 4,638,526,800 6,373,048 −0.539
>0.85 4,811,930,100 3,186,575 −1.269

Table 4 The determination of susceptibility ranks for influence factors based on slope units.

Factors Susceptibility rank

Very high High Medium Low Very low

Slope(°) 10–20 20–35 5–10 >35 <5

distance to tectonic
features(m)

<600 600–1200 1200–1800 1800–2400 >2400

distance to roads(m) <200 200–400 400–600 600–800 >800

MAP(mm) 1100–1200 1200–1250 >1250 1000–1100 <1000

distance to stream
network(m)

<1000 1000–2000 2000–3000 3000–4000 >4000

Aspect SW,W NE,E N S,SE Flat, NW

NDVI <0.55 0.55–0.65 0.65–0.75 0.75–0.85 >0.85

Lithology Clastic rock and
sandstone

Siltstone, limestone, siltstones
and mudstone

Slate, conglomerate, basalt and
glimmerite

Reservoir, glutenite and
dolomite

Marlite and
shale
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geological environments, which make the evaluation results
more conformable to reality (Wang et al. 2017).

Conclusions

This paper mainly analyzed the influence of using different
mapping units in a landslide susceptibility assessment model.
The modified information value model was adopted to assess
landslide susceptibility and slope units and grid cells were used
as mapping units, respectively. Eight landslide influence fac-
tors, including slope gradient, aspect, MAP, distance to roads,
distance to stream network, distance to tectonic features, lithol-
ogy and NDVI, were utilized to construct the model.

The landslide susceptibility assessment results indicated
that landslide-prone zones were mainly located around tecton-
ic features, rivers and roads. ROC curve was used to evaluate
the accuracy of the two models based on grid cells and slope
units. Through calculating the training accuracy and predic-
tion accuracy, slope unit-based model performed better in
landslide susceptibility assessment than grid cell-basedmodel.
Although grid cells can be easily obtained in GIS and it is
convenient for calculation, they are not related closely to geo-
logical environment. Slope unit is the basic unit of the land-
slide occurrence, and it is derived from the DEM data.
Therefore,the slope units are more related to geological envi-
ronment, which make the evaluation results accurate.

Nevertheless, the classifications of landslide influence fac-
tors were based on previous studies and might be not suitable

Fig. 8 Slope unit-based landslide
susceptibility zonation

(a) Success rate curve (b) Prediction rate curve

Fig. 9 ROC curves for grid cell-
based and slope unit-based
susceptibility assessment results
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for our study region. Therefore, further studies should propose
an objective influence factor classification method for land-
slide susceptibility assessment. And because of the lack of
other data, this paper just used eight landslide influence fac-
tors. Other factors such as earthquakes and land use change
should be considered in the future studies. For the slope unit-
based model, the same likelihood of landslide occurrence was
allotted to a whole unit (Huabin et al. 2005). Thus it is difficult
to determine within which part of the slope landslides tend to
occur. This problem should be considered in the future studies.
Moreover, the following studies should consider the seed cells
which reflect the real effect of parameter maps over the distri-
bution of landslides (Suzen and Doyuran 2004a; Suzen and
Doyuran 2004b).
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