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Abstract
The increasing amount of remote sensing data has opened the door to new challenging research topics. Nowadays, significant
efforts are devoted to pixel and object based classification in case of massive data. This paper addresses the problem of semantic
segmentation of big remote sensing images. To do this, we proposed a top-down approach based on twomain steps. The first step
aims to compute features at the object-level. These features constitute the input of a multi-layer feed-forward network to generate
a structure for classifying remote sensing objects. The goal of the second step is to use this structure to label every pixel in new
images. Several experiments are conducted based on real datasets and results show good classification accuracy of the proposed
approach. In addition, the comparison with existing classification techniques proves the effectiveness of the proposed approach
especially for big remote sensing data.
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Introduction

Analysis and interpretation of Remote Sensing (RS) images
helped people to understand many phenomena related to the
earth. Information extracted from RS images can be used in
many fields such as weather forecasting, resources manage-
ment, regional planning, traffic monitoring, and environmen-
tal risk assessment. Many analysis and interpretation tasks rely
on understanding the content of an RS image or scene. In
literature, several techniques were proposed to help under-
stand the content of RS images. Among these techniques,
we list object detection, object recognition, image segmenta-
tion, and semantic image segmentation. Often, these tech-
niques may lead to some confusion. Object detection in RS
images aims to determine if an image contains one or more
objects belonging to the class of interest and to locate their
positions (Lei et al. 2012; Cheng and Han 2016). Object

recognition aims to detect all objects in RS images and locate
their positions (Durand et al. 2007; Haiyang and Fuping 2009;
Diao et al. 2015). In image segmentation, the RS imagewill be
divided into regions; however, these regions will not be la-
beled (Ming et al. 2015; Zhang et al. 2017). Semantic image
segmentation will label each pixel in the RS image according
to a class of objects such as urban, forest, water, etc.
(Athanasiadis et al. 2007; Shotton and Kohli 2014; Zheng
et al. 2017). In this paper, we are interested in the semantic
RS image segmentation.

The semantic segmentation of RS images has been a core
topic for the last years. Several methods for semantic image
segmentation act at the pixel-level by classifying each pixel
independently. Other methods try to group pixels into clusters
and assign a label to these clusters. For instance, Ma et al.
(2014) proposed an objected-oriented based approach that
combines a pixel-based classification and a segmentation
technique. The goal of this approach is to classify polarimetric
Synthetic Aperture Radar (SAR) images. Authors in this work
developed a soft voting strategy to fuse multiple classifiers.
The approach is validated through a set of experiments that are
conducted on two quadpolarimetric SAR images. In (Rau
et al. 2014), authors proposed an object-oriented analysis
scheme for landslide recognition using existing software.
The input data comprised only multispectral optical ortho-
images and the digital elevation mode. Rau et al. developed
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a semiautomatic method that detects the landslide seeds and
then performs a region growth and false-positive elimination
for these seeds. Zhang et al. (2016a) proposed to overcome the
semantic gap between low-level visual features and high-level
semantics of images. In this study, authors developed an
object-based mid-level representation method for semantic
classification. The proposed algorithm is based on the bag-
of-visual-words that generates mid-level features to bridge
the two levels. In (Zhang et al. 2016c), authors developed a
higher order potential function based on nonlocal shared con-
straints within the framework of a conditional random field
model. The proposed approach combines classification
knowledge from labeled data with unsupervised segmentation
cues derived from the test data. The conditional random field
model integrates low-level and high-level contextual cues
from labeled and unlabeled test datasets. In (Andrés et al.
2017), authors presented an approach based on ontology to
classify RS images. Andrés et al. developed spectral rules for a
pixel-based classification of Landsat images. The proposed
prototype is coupled with an open source image processing
software at the pre-processing step and it uses a reasoner
algorithm to perform image classification. The major
limitation highlighted for the proposed system is related to
the processing time. Zheng et al. (2017) detailed a semantic
segmentation of high spatial resolution RS images. The pro-
posed approach is based on an object MRF (Markov random
field) model with auxiliary label fields for semantic segmen-
tation of the RS image. The idea of the proposed approach is
to define a label field and two auxiliary label fields on the
same region adjacency graph with different class numbers.
Then, a net structure is built to describe the interactions
between label fields and messages passed between each
label field and the two other auxiliary label fields. Marmanis
et al. (2018) presented a deep convolutional neural network
for semantic segmentation with boundary detection. Authors
proposed to combine semantic segmentation with semantical-
ly informed edge detection by adding boundary detection to
the encoder-decoder architecture. In (Boulila et al. 2018), au-
thors developed a decision support tool for RS big data ana-
lytics. The main idea, in this work, is to assist users in making
decisions in many RS-related fields. The proposed tool pro-
vides descriptive, predictive and prescriptive analytics.
Boulila et al. proposed to overcome the complexity of RS data
by implementing an iterative and incremental process of data
integration. Additionally, they designed a multidimensional
model based on a star schema for the image data warehouse,
and they proposed techniques such as distribution, indexing
and partitioning to enhance the retrieval of RS big data.
Experiments were conducted based on three different applica-
tions (clustering, decision tree, and association rules).

However, recent years have witnessed an increasing
amount of RS images with different spectral and spatial reso-
lutions (Liu et al. 2016). This increasing amount of images has

open the door to new challenging problems facing the RS
community such as how to extract valuable information from
the various kinds of RS data? How to deal with the increasing
data types and volume? (Zhang et al. 2016b). The problem of
semantic segmentation of big RS images is becoming a chal-
lenging research topic. In the current manuscript, we propose
a top-down approach for semantic segmentation. The main
goal of the top-level is to compute features for objects extract-
ed from RS images. While the goal of the down-level is to
determine the class of each pixel using information computed
in the previous level.

The remainder of this paper is organized as follows. In
Section 2, we detail the proposed approach for semantic seg-
mentation of RS big images. The presented method is
experimented and evaluated through different real datasets in
Section 3. Finally, Section 4 concludes the paper and discusses
some issues for further research.

Proposed approach

The goal of the proposed approach is to partition RS image
into meaningful objects and assign a class to each of them.
This goal is ensured through a top-down approach composed
by an object processing (top-level) and pixel processing
(down-level). The proposed approach is described in the fol-
lowing parts in detail.

Proposed approach for semantic segmentation of big
RS images

Figure 1 describes the proposed approach. The process of the
proposed semantic segmentation is divided into two levels: 1)
top-level and 2) down-level. The first level aims to ensure
training of the multi-layer feed-forward neural network
(MLFFNN). We start by computing features of object extract-
ed from RS images. These features constitute the input of the
MLFFNN module to generate a structure for classifying RS
objects. In the second step, down-level, the generated struc-
ture is used to perform semantic segmentation at the pixel-
level. For an input RS image, an 8-matrix centered in every
pixel is considered when computing features related to that
pixel. The same features computed at the object-level are com-
puted at the pixel-level (we compute these features based on
the 3 × 3 window surrounding the pixel). The computed fea-
tures will be entered to the MLFFNN to determine the most
similar trained class and assign classes to each pixel.

The proposed process of semantic image segmentation is
depicted in the algorithm 1.

Algorithm 1 has as input: 1) imgs, which represent a set of
RS images, 2) nbrclass, which represents the number of clas-
ses for the input images, 3) connectivity, which means the
number of pixels connected horizontally, vertically and
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diagonally to every pixel in the considered image, 4)
minNumberPixels, which corresponds to the minimum num-
ber of pixels that every extracted object should contain, 5)
hiddenLayerSize, which corresponds to hidden layer sizes

for the MLFFNN (see section 2.e for more details), 6)
trainFn and performFcn, which represent, respectively, the
training and the performance functions for the neural network.
The output of the algorithm 1 are classified input images.

Algorithm 1 Proposed RS semantic image segmentation

Input: imgs, nbrclass, connectivity, minNumberPixels, hiddenLayerSize, trainFn, performFcn

Output: classified RS images

// Extract features from RS images

Foreach img in imgs do

Perform a segmentation of img into nbrclass using k-means

Assign labels to classes in img

Divide classes in img into objects (subclasses) according to connectivity and

minNumberPixels

Declare a variable inputNN

Foreach class in classes do

Foreach object in class do

Compute features for object

Add features of object and corresponding label to inputNN 

End foreach

End foreach

End foreach

//Create a pattern recognition network

net = patternnet(hiddenLayerSize, trainFcn, performFcn)

Divide data for training, validation and testing

Train the net network

Test the net neural network

//Use neural network to classify pixels in RS images; inputImg is an example of image to be 

classified

Foreach pixel in inputImg do

Compute features for pixel

Determine the class of pixel using net

End foreach

Top level: object processing

This level aims to generate a neural network structure that will
be used for semantic segmentation. The object processing is
divided into five steps: a) image segmentation, b) object ex-
traction, c) computation of object features, d) object labeling,
and e) generation of neural network structure.

RS image segmentation

It is trivial that results of subsequent steps deeply depends
on results provided by the image segmentation step. The

success of image interpretation is strongly related to our
reliability on segmentation. Today, the problem of accu-
rate partitioning of RS images is generally a challenging
problem. Many works have been achieved on RS image
segmentation. Among these works, we can list (Haralick
and Shapiro 1985; Ryherd and Woodcock 1996; Trias-
Sanz et al. 2008; Akcay and Aksoy 2008; Boulila et al.
2010; Cheng and Han 2016).

In this paper, the k-means method is used to segment
images (MacQueen 1967). This method can be replaced
by any other segmentation method.
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Object extraction

After image segmentation, we obtain a set of objects that col-
lectively cover the entire image. Pixels belonging to the same
object have the same label. The goal of this step is to deter-
mine meaningful objects from segmented images. Small ob-
jects are removed from segmented images. In this paper, we
chose two parameters, connectivity and minimum number of
pixels (respectively connectivity and minNumberPixels in the
algorithm 1), to perform this task. All connected objects that
have less than a given pixel value from the segmented image
are disregarded. This operation is known as an area open-
ing (Vincent 1993). For the connectivity, we consider the
context of 8-connected pixels (3 × 3 window containing
the pixel and its neighbors that are connected to it hori-
zontally, vertically and diagonally). The object extraction
task starts by determining connected components. Then,
computing the area of each component. Finally, removing
small objects (less than minNumberPixels). Another oper-
ation is performed in this step is removing isolated pixels
from the segmented image.

Computation of object features

Computing features aims to find a mapping from pixel-level to
a high-level data space. Feature extraction plays an important
role in RS image analysis and interpretation. In the present
paper, we choose five features computed on objects extracted
from RS images.

Let us consider an object obj extracted from a satellite
image img. The features used in the proposed study are:

– The radiometry of the centroid of the object

f 1 ¼ img centroid objð Þð Þ ð1Þ

Where centroid is the function that returns the centroid of
the object obj.

– The five features coming from GLCM (Gray-Level
Co-Occurrence Matrix) of an object. These features
are the contrast, the correlation, the energy, the homo-
geneity, and the entropy (Haralick et al. 1973;
Conners et al. 1984; Yang et al. 2012). The GLCM
computes the number of different combinations of
gray levels occurring in the object obj. Features ex-
tracted from the GLCM give a measure of the varia-
tion in intensity at the pixel of interest.

Let us consider p(i,j) the element thatbhas the coordinate
(i,j) in the normalized symmetrical GLCM.

Contrast: measures the contrast intensity between a pixel
and its neighbor over the object. The formula of the con-
trast is given by the following equation:

f 2∑i; j i− jð Þ2p i; jð Þ ð2Þ

Image segmentation

Computation of 

object features

1. Object processing (Top-Level)

Object extraction

2. Pixel processing (Down-Level)

Computation of 

pixel features

Ground truth

Semantic

segmentation

Object labeling

RS images

Extracted objects

MLFFNN structure

Classified imageRS image

Fig. 1 Proposed approach for
semantic segmentation of big RS
images
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Correlation: measures the correlation between a pixel and
its neighbor over the object. The formula of the contrast is
given by the following formula:

f 3∑i; jp i; jð Þ i−μ j−μð Þð Þ
σ2

ð3Þ

Where μ is the mean of the GLCM, calculated as

μ ¼ ∑i; jp i; jð Þi, and σ2 ¼ ∑i; jp i; jð Þ i−μð Þ2

Energy (also known as uniformity): calculates the sum of
squared elements in the moment. The formula of the en-
ergy is given by the following formula:

f 4∑i; j p i; jð Þð Þ2 ð4Þ

Homogeneity: measures how often the distribution of
GLCM elements are close to the GLCM diagonal. The
formula of the homogeneity is given by the following
formula:

f 5∑i; j
p i; jð Þ

1þ i− jð Þ2 ð5Þ

Entropy: quantifies the randomness of the gray-level in-
tensity distribution. The formula of the entropy is given
by the following formula:

f 6∑i; j−p i; jð Þln p i; jð Þð Þ ð6Þ

Object labeling

The objective of this step is to link features computed for
a given object to its label. For the purpose of this work,
five land cover classes of interest were identified: water,
forest, urban, bare soil, and non-dense vegetation. A set of
manually labeled regions given by experts were acquired
by careful visual interpretation over the studied area.
Polygons of the studied area are digitized to derive the
thematic information using a topographic map with the
scale of 1/50000. Topographic information is used to de-
termine thematic classes in the studied area (Boulila et al.
2011). The labeled regions were divided into training,
validation and test data.

At the end of this step, two outputs are provided.
The first contains features corresponding to each object
and the second contains label of this object. These two

outputs are provided to the neural network to build the
classification structure.

Generation of neural network structure

The goal of the neural network structure is to build a process
able to determine the class of an object extracted from the RS
image according to its features.

In this study, we choose to work with a MLFFNN
(Svozil et al. 1997; Ashwini Reddy et al. 2011; Wang
et al. 2015a, b; Ulyanov et al. 2016). Our choice is argued
due to the ability of MLFFNN to adapt without a contin-
uous assistance of the user. In addition, MLFFNN reduce
considerably the computational effort and memory capac-
ity needed to store weights. Moreover, this type of neural
network is very robust in the presence of uncertainty and
noise, which is the case of RS image field. In the current
work, imperfection modeling is not considered. Readers
interested in modeling imperfection related to RS images
can refer to our previous works. In (Ferchichi et al.
2017a), we detailed sources of imperfection related to
RS images and their main types. We proposed to reduce
imperfection by using 1) image fusion (Farah et al. 2008;
Boulila et al. 2009), 2) imperfection propagation (Boulila
et al. 2014; Ferchichi et al. 2017b), and 3) sensitivity
analysis (Boulila et al. 2017; Ferchichi et al. 2018).

Figure 2 depicts the proposed MLFFNN architecture. The
input are object features and their corresponding land cover
types. We have one hidden layer, one output layer and five
outputs (different land cover types).

w and b denote, respectively, the parameter (or weight) and
the bias associated with the connection between the different
units in the two layers.

Down-level: pixel processing

The goal of the down-level is to determine the class of every
pixel in an input image according to its features. This is en-
sured using the already built neural network structure.

Computation of pixel features

The features described at the section (2.c) are object-based
features and cannot be computed at the pixel-level.
However, our objective in this paper is to determine the class

Fig. 2 Proposed MLFFNN architecture

Earth Sci Inform (2019) 12:295–306 299



of every pixel for a given RS image. To achieve this, we
consider an 8-connected matrix centered on that pixel as
shown in the Fig. 3. Then, the considered features are com-
puted to this matrix.

The features describing the pixel are the radiometry, the
contrast, the correlation, the energy, the homogeneity, and
the entropy.

For example, if we consider the following matrix centered
at the reference pixel (2,2) as follow:

The value of the radiometry, the contrast , the
correlation,the energy, the homogeneity, and the entropy will
be, respectively, 128, 1.2597, 0.0493, 0.1136, 0.6444 and −
0.0072696.

Semantic pixel segmentation

Once the MLFFNN is trained, validated and tested, we can
use it to determine the class type of every pixel. The features
(radiometry, contrast, correlation, energy, homogeneity, and
entropy) of every pixel for an input RS image are computed.
Then, these features are provided to the MLFFNN structure.
Based on the determination of the pixel class, we obtain a
semantic image segmentation.

Experimental results

In this section, we firstly describe the dataset used to
validate the proposed approach. Then, we present the
MLFFNN architecture used in the experimental results.
The third part is devoted to the semantic segmentation
of RS images. Finally, we evaluate the performance of
the proposed approach with regard to traditional classi-
fication methods.

Dataset description

The proposed approach is tested and evaluated based on
Reunion Island site. This site is located in the South-west of
the Indian Ocean (21°06’ South and 55°32′ East; it is 700 km
from Madagascar to the West and 180 km from Mauritius to
the Northeast). The Reunion Island is 63 km long and 45 km
wide.

Experiments are conducted based on a real dataset belong-
ing to the Kalideos1 database set up by CNES.2

Due to the limitation of sensors and the influence of the
atmospheric condition, RS images need, in general, a prepro-
cessing step to enhance the quality of images before any pro-
cessing subsequent tasks. In the current study, RS images are
preprocessed according to: 1) radiometric preprocessing
which is achieved by converting the pixel values into reflec-
tance (Chander and Markham 2003; Chander et al. 2009).
Then, the inversion of the reflectance at ground level is per-
formed by comparing the estimated reflectance with simula-
tions made at the top of the atmosphere for the geometric and
atmospheric conditions corresponding to the measurement,
and 2) geometric preprocessing which aims to provide image
series which are perfectly coregistered. The goal is to build a
reference image through a validation process including field
measurements collected by the scientists. After that, a super-
position of RS images compared to the reference image is
performed in order to refine the corresponding sensor attitude
model.

In this paper, experiments have been carried out on a
dataset containing a total number of 293 images. The spatial
resolution of the data is 10 m per pixel. The size of each image
varies from (3000 × 3000 pixels) to (6000 × 6000 pixels).
Several thumbnail images are extracted from these images.
Then, segmentation is performed to these thumbnail images
using k-means algorithm.

The goal of k-means algorithm is to partition the RS images
into k segments (objects). It starts by selecting initial cluster
centers (known as centroid) randomly for a given image.
Then, it assigns each pixel in this image to the segment that
has nearest centroid from the respective pixel (in this paper,

120 125 127

90 128 127

80 129 129

p(i,j)

135° p(i-1,j-1)

90° p(i-1,j)

45° p(i-1,j+1)

0° p(i,j+1)

45° p(i+1,j)

225° p(i+1,j-1)

180° p(i,j-1)

45° p(i+1,j+1)

Reference pixel

Fig. 3 The 8-connected matrix centered on the reference pixel

1 http://kalideos.cnes.fr.
2 Centre National d’Etudes Spatiales – Distribution Airbus DS.

Table 1 Land cover classes with number of samples

Class Land cover type No. of samples

C1 Water 45160

C2 Forest 247120

C3 Urban 151640

C4 Bare soil 131920

C5 Non-dense vegetation 270560

300 Earth Sci Inform (2019) 12:295–306

http://kalideos.cnes.fr


the Euclidean distance is calculated between each center and
each pixel to assign them to the segment having the minimum

distance). Once the segmentation is achieved, the process is
taken back to recalculate the new centroid of new segments.

C1: Water

C2: Forest

C3: Urban

C4: Bare soil

C5: Non-dense vegetation

Earth Sci Inform (2019) 12:295–306 301
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After that, pixels in the image are reassigned to the new seg-
ments. This process is repeated iteratively until a stopping
criteria is met (e.g. no pixel changes its cluster, the sum of
the distances is minimized, or some maximum number of
iterations is reached).

According to the 8-pixels connectivity and to 100 pixels as
minimum number of pixels in each extracted object, we obtain
a number of labeled samples depicted in the Table 1.

Figure 4 presents an excerpt of samples for each land
cover type.

Figure 5 describes ground truth images for three
thumbnail images extracted from the study region. To
get the ground truth images, information was extracted
by experts over the studied areas. Polygons of studied
regions of Reunion Island are digitized to derive the the-
matic information using a topographic map with the scale
of 1/50000.Topographic information is used to determine
thematic classes in the studied areas. Five thematic classes
are identified which are the following: urban, water, for-
est, bare soil, and non-dense vegetation areas.

MLFFNN description

We used nprtool provided by Matlab R2008a (nprtool
2018). This tool uses a function named patternnet to clas-
sify RS images. This function is based on a feed-forward
network that is trained to classify pixels according to

target classes. The patternnet has three input parameters
which are hiddenLayerSizes, trainFcn and performFcn,
and returns a pattern recognition neural network.
HiddenLayerSizes are hidden layer sizes set to 10 in the
present paper.

TrainFcn is the training function set to trainbr. Trainbr is the
bayesian regularization backpropagation. It is a network train-
ing function that updates the weight and bias values according
to Levenberg-Marquardt optimization (Levenberg 1944). It
minimizes a combination of squared errors and weights, and
then determines the correct combination to produce a network
that generalizes well.

performFcn is the performance function set to
crossentropy. It calculates the MLFFNN performance given
targets and outputs.

The data used in this paper is divided into 70% for training
(205 images), 15% for validation (44 images) and 15% for
testing (44 images). The objective of the validation set is to
monitor the classification error and stop training before
overfitting occurs. The test set is then used independently to
evaluate the classification quality (Heisel et al. 2017).

The training process of MLFFNN is performed iteratively
100 times on NVIDIA’s GeForce GTX 1080 with 8GB of
GPU memory.

Figure 6 describes the performance plot of the MLFFNN
which shows the training, validation and testing errors. It can
be noted from this figure that the best validation performance

Fig. 6 Performance plot of the
MLFFNN

Water

Forest

Urban

Bare soil

Non-dense vegetation

Fig. 5 Ground truth for three
thumbnail images extracted from
the study region
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was achieved at epoch 108 with an error rate of 0.047969.
Moreover, the validation and test curves are very similar
which implies there was no significant overfitting occurred
(Samuel et al. 2017).

Semantic segmentation of RS images

The goal of this section is to illustrate the applicability of the
proposed approach for semantic image segmentation.

Figure 7 (left) represents an image taken from the previ-
ously described Kalideos database. This image is not among
the training dataset. The image is acquired on January 31,
2015 and coming from SPOT 5 (Satellite Pour L’observation
de la Terre) satellite. The considered image has a spatial reso-
lution of 10 m and a size of 800 × 500 pixels. Figure 7 (right)
depicts the semantic image segmentation performed by the
proposed approach.

The goal of this section is to perform a semantic seg-
mentation of RS images using the proposed approach.
Then, results of the semantic segmentation are compared
to the ground truth image representing the same region at
the same date. The comparison is carried out using two
criteria: overall accuracy (OA) and kappa coefficient (K).
OA is the sum of the correctly classified pixels divided by
the total number of image pixels. K is an accuracy mea-
sure that compares proposed results of classification to the
real ones. It takes values from zero to one (higher values
of kappa coefficient means a good classification). K is
defined as follow (Congalton and Green 2008):

K ¼ n∑k
i¼1nii−∑

k
i¼1niþnþi

n2−∑k
i¼1niþnþi

ð7Þ

Where.

k denotes the number of classes.
n is the total number of pixels in images.
nii is the sum of correctly classified pixels for the class i

(the number of pixels belonging to class i in the ground
truth that have also been classified as class i in the
classified image).

ni+ is the sum of pixels classified into class i in the proposed
image classification.

n+i is the number of pixels classified into class i in the
ground truth image.

Table 2 depicts the confusion matrix of the proposed se-
mantic segmentation for the image presented in the Fig. 7.
Rows denote classes for the ground truth image, whereas col-
umns represent classes for the proposed semantic image seg-
mentation. As indicated in Table 2, the proposed approach
performs a good semantic segmentation of the image with
an OA= 91.85% and a K = 0.8982.

Evaluation of the proposed approach

To further evaluate the performance of the top-down approach
for semantic image segmentation, we compare results of the
proposed approach with well-used traditional classification
methods. The comparison includes SVM (Support Vector

Table 2 Confusion matrix of the proposed semantic image segmentation

Ground truth image

Water Forest Urban Bare soil Non-dense vegetation User Accuracy

Semantic image segmentation Water 94.31 0.45 2.05 2.29 0.9 94.31
Forest 0.09 89.05 2.75 3.01 5.1 89.05
Urban 1.3 0.26 90.85 4.56 3.03 90.85
Bare soil 2.09 0.2 4.5 91.18 2.03 91.18
Non-dense vegetation 0.04 2.71 1.62 1.75 93.88 93.88
Producer Accuracy 96.40 96.09 89.26 88.70 89.46

Overall Classification Accuracy = 91.85, Kappa = 0.8982

Fig. 7 Satellite image acquired on
January 31, 2015 (left) and the
semantic image segmentation
performed by the proposed
approach (right)
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Machines) (Huang et al. 2002; Mitra et al. 2004) and
Maximum Likelihood Classification (MLC) (Bruzzone and
Prieto 2001; Murthy et al. 2003).

Table 3 depicts a comparison of image classification be-
tween SVM,MLC, and theMLFFNN according to the overall
classification and kappa coefficient. As we note, the proposed
approach outperforms the two others methods for the image
presented in Fig. 7.

Figure 8 illustrates the overall accuracies of image classifi-
cation according to the training set size for the three methods:
SVM, MLC and the proposed method. The size of training set
varies between 100 to 800,000 samples. The important obser-
vation from this figure is that all the three methods was pos-
itively influenced by the size of the training set. Both SVM
and the proposed approach provide the best results in all cases.
The OA moves from 79.8% (case of 100 samples) to 87.4%
(case of 800,000 samples) for the SVMmethod.Whereas, OA
moves from 71.5% (case of 100 samples) to 84.1% (case of
800,000 samples) for the MLC method and from 74.2% (case
of 100 samples) to 91.6% (case of 800,000 samples) for the
proposed method. Further, the proposed approach provides
the best results especially when the training size set become
more important (when the size of the training set is greater
than 200,000).

Figure 9 describes the error in image classification between
the SVM, MLC, and the proposed approach. We can note that

the SVM is less sensitive to the size of the training set with a
difference of 7.6% between the size of 100 and 800,000 sam-
ples. The MLC comes in second place with a difference of
12.6% and the proposed approach in the third place with a
difference of 17.4%.

The MVC classifier outperforms the MLC method in all
situations regardless the size of the training set. Although
SVM provides good results for image classification but a large
training set may not be very useful for it to work. This obser-
vation is compatible with results reported in the literature
(Huang et al. 2002; Foody and Mathur 2004). However, in
big RS data, the volume of data plays a very important role in
semantic image segmentation. Thus, the use of the proposed
method in the case of RS big data is more appropriate. Further,
our method consistently provides good results even with the
training set is very small.

Conclusion

In this paper, we proposed a new approach for semantic seg-
mentation of RS big images. The main idea is to use features

100 1000 10000 100000 200000 400000 800000

SVM 79.8 81.5 83.2 85.1 85.6 86.4 87.4

MLC 71.5 74.7 76.4 78.1 78.9 82.3 84.1

Proposed approach 74.2 77.3 80.8 84.6 85.8 88.2 91.6
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Table 3 Comparison of
the classification
accuracy between the
proposed method, SVM,
and MLC

Method OA K

SVM 88.34 0.8590

MLC 86.11 0.8277

MLFFNN 91.85 0.8982
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calculated at the object-level to determine the class of every
pixel in a new image. To do this an 8-connected matrix cen-
tered on that pixel is considered. Determining the pixel class is
achieved using a MLFFNN. Input for the neural network are
object features and different class labels. The output is the
structure that is used for semantic segmentation.

Experimental results were carried out based on a real
dataset belonging to the Kalideos database. The classification
results obtained by the proposed approach show significant
improvements in both the overall and categorical classifica-
tion accuracies. Besides, comparison with state-of-the-art
classification methods proves that the proposed approach pro-
vides good performances especially when the volume of data
become important.

However, despite of the promising results obtained by the
proposed approach, several issues can be addressed in future
such as the determination of number of hidden layer nodes
and their respective weights. Another challenging topic to be
explored is the effect of 8-connected matrix centered on the
pixel on the determination of the class label.
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