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Abstract Remotely sensed image analysis using spectral-
spatial information plays a key role in modern remote
sensing applications. This article presents a new semi-
automatic framework for spectral-spatial classification
of hyperspectral images. The proposed framework bene-
fits from a combination of pixel-based and object-based
classification scenarios in which the main parameters are
adaptively tuned. In order to reduce the complexity of
the method, an unsupervised band selection technique is
used as well. Meanwhile, the wavelet thresholding is
applied in order to smooth the selected bands. The clas-
sification results after applying the proposed method to
well-known standard hyperspectral datasets are better
than those of the most of the other state-of-the-art ap-
proaches. As an example, the overall classification accu-
racy achieved by applying the proposed semi-automatic
spectral-spatial classification framework to the Salinas
dataset is more than 99% for 10% training samples per
class. Moreover, the vital parameters are adaptively set in
our approach.

Keywords Hyperspectral images . Spectral-spatial
classification . Segmentation .Wavelet thresholding .

Band selection . Support vector machines

Introduction

Hyperspectral images possess considerable amounts of
useful spatial/textural information that cannot be addressed
effectively by the use of traditional pixel-based image anal-
ysis approaches. Challenges arise especially when the spa-
tial resolution of images is very high, and as a conse-
quence, neighboring pixels are highly correlated (Fauvel
et al. 2013). One solution to overcome this problem is to
develop data analysis methods that are able to sufficiently
exploit the spectral, spatial and textural information pres-
ent in the remotely sensed data.

There are numerous spectral-spatial classification methods
which have been presented so far in the state-of-the-art. Some
useful surveys on the related works including object-based
classification techniques as well as other recent advances in
remotely sensed data classification approaches can be found in
the works of Plaza et al. (2009), Lu andWeng (2007), Liu and
Xia (2010), Blaschke (2010), Blaschke et al. (2014), Holbling
et al. (2015), Samal and Gedam (2015), and Shi and Mao
(2016). Some of the most recent works dealing with
spectral-spatial classification of images (which are more sim-
ilar to the proposed approach) are briefly reviewed in the
following paragraphs.

Bernabe et al. (2014) proposed a spectral-spatial classifica-
tion methodology that was especially suitable for classifica-
tion of multispectral data with limited spectral resolution.
They exploited kernel feature extraction in order to expand
the dimensionality of data and then extracted spatial features
using extended multi-attribute profiles that were built on the
spectral features.

Gaetano et al. (2015) proposed a watershed segmentation
approach in order to provide an object-level representation of
images to be classified in subsequent stages. They benefited
from automatically extracted morphological and spectral
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markers to control over-segmentation problems which may
arise with watershed.

Ghamisi et al. (2014a) proposed a spectral-spatial classifi-
cation approach in which two consecutive segmentation levels
were applied in order to provide an object-map to be classified
later by Support Vector Machine (SVM) classifier. The two
segmentation levels were based on fractional-order Darwinian
particle swarm optimization and mean shift segmentation. The
authors continued their efforts (Ghamisi et al. 2014b) to de-
velop an automatic framework for classification of
hyperspectral data which simultaneously utilized both
spectral and spatial information. They applied morphological
attribute profiles for including the spatial information and
utilized decision boundary feature extraction technique as
well as discriminant analysis feature extraction method in
order to reduce the effect of Hughes phenomenon. In one of
their most recent works, Ghamisi et al. (2015) carried out a
comprehensive survey on the spectral-spatial classification
approaches in which attribute profiles were used.

Kang et al. (2014) proposed a classification approach in
which a pixel-wise classification map was represented as mul-
tiple probability maps. After applying edge-preserving filters
to each of the probability maps, the finalized class-map was
achieved by assigning each pixel to one of the classes with
regard to the maximum probability.

Readers can also refer to Khodadadzadeh et al. (2014),
Mylonas et al. (2015), Mirzapour and Ghassemian (2015),
Golipour et al. (2016), Zehtabian and Ghassemian (2015),
Samal and Gedam (2015), Zahidi et al. (2015), Machala and
Zejdova (2014), Li et al. (2014), for further discussions on
object-based remotely sensed image classification.

The main concern of the presented paper is to propose a
new framework for development of hyperspectral data classi-
fiers in which more spectral and spatial information is utilized.
In order to satisfy this concern, the proposed framework ben-
efits from a combination of the pixel-based and object-based
classification scenarios. In this framework, first an unsuper-
vised band selection technique is applied in order to produce a
limited number of representative bands. It reduces the com-
plexity of the proposed algorithm. The wavelet thresholding is
then exploited in order to smooth the selected bands and pro-
duce larger objects with higher level of homogeneity. In the
next step, a set of object-maps are produced using a novel
Pixon-based segmentation method which is applied to each
representative band, separately. The proposed Pixon extrac-
tion technique exploits an innovative distance metric. Two
different sets of class-maps are then produced, one assigning
each object to one of the classes using three different spectral/
spatial features, and another made from applying majority
voting inside each object with regard to a reference pixel-
based classification map. A single class-map is finally
achieved by using another level of majority voting among
all the individual class-maps. In the proposed framework, all

the vital parameters (i.e. the Pixon extraction parameter used
in the segmentation step as well as the soft thresholding pa-
rameters used in the wavelet smoothing) are adaptively tuned
and hence there is no need to manually set the parameters. The
gained results are compared to those of the other state-of-the-
art approaches to prove the considerable performance of the
proposed framework in terms of classification ratios.

The rest of the presented article is ordered as follows: The
proposed spectral-spatial framework section describes the
methodology of the proposed spectral-spatial classification
framework. Each subsection of the second section provides
detailed information about one of the main steps in the pro-
posed process. Experimental results and discussions are re-
ported in Experimental results section, while the conclusions
are provided in Conclusion section.

The proposed spectral-spatial framework

General architecture of the proposed idea for spectral-spatial
classification of hyperspectral data is illustrated in Fig. 1. The
following subsections explain the presented framework in
more details.

Pixel-based SVM classification

In order to provide a pixel-wise thematic map as a reference
for further analysis of the data, a pixel-based classification is
used which is based on support vector machines. In this paper,
the SVM implementations are carried out using the library
package LibSVM (Chang et al. 2001).

Band selection step

While dealing with high dimensional remotely sensed data, at
least two serious drawbacks may arise: the lack of adequate
labeled training samples, and the data redundancy (Fauvel
et al. 2013; Sun et al. 2015). The latter is the concern of this
subsection. In other words, using modern sensors with high
spectral resolutions often leads to hyperspectral datasets with a
large number of bands which are highly correlated (Fauvel
et al. 2013). Therefore, selecting a reasonable range of spectral
bands and eliminating the others may result in reduced infor-
mation redundancy without losing important details. This
leads to a considerable reduction in the computational cost
of most of the remote sensing applications (such as data clas-
sification) with only a minor degradation in their accuracies
(Martinez-Uso et al. 2007).

As shown in Fig. 1, in order to reduce the dimensionality
while keeping the main structure of data unchanged, we sug-
gest applying the WaLuMI (Ward’s Linkage strategy Using
Mutual Information) band selection method (Martinez-Uso
et al. 2007). WaLuMI is a fully unsupervised hierarchical
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clustering approach which utilizes the mutual information based
distance in order to form cluster of bands which their intra-cluster
variance is minimized (Martinez-Uso et al. 2007). On the other
hand, since different subsets of bands are mutually exclusive, the
inter-cluster variance is maximized (Ward 1963). In theWaLuMI
band selection approach, the most similar bands are hierarchical-
ly merged and constitute larger clusters until a specified number
of clusters are reached (Cariou et al. 2011).

After forming the band clusters, one representative band
for each cluster must be selected and then fed into the next
steps for further analysis. Martinez-Uso et al. (2007) sug-
gested two techniques for selection of the cluster representa-
tive bands. In their first technique, for a given cluster, the band
with highest average correlation (with regard to the other
bands in that cluster) is selected as representative of the clus-
ter. In their second technique, the band with the highest aver-
age divergence (with regard to the other bands in the cluster) is
chosen as representative band (Martinez-Uso et al. 2007). This
approach is called WaLuDI (Ward’s Linkage strategy Using
Divergence). In this paper, we exploit the first approach (i.e.
WaLuMI). Indeed, after several sets of experiments we found
out that benefiting from themutual information often results in
slightly higher classification accuracies when the SVM clas-
sifier is used. After the band selection step, the number of
selected bands is ‘d’ (i.e., ten bands in the proposed schema)
which is much lower than the number of bands in the original
hyperspectral data (i.e. ‘D’ which is often larger than 100 in a
hyperspectral data).

Wavelet thresholding

In this paper, we propose applying a wavelet-based prepro-
cessing step in order to smooth the selected bands. The
smoothing step results in larger objects with higher level of
homogeneity. In other words, by eliminating the redundant

details in each band of data, the smoothing preprocessing step
reduces the probability of over-segmentation. This consequently
leads to smaller number of extracted objects, lower computation-
al time for object-based classification, and more robustness
against unwanted environmental noise (Hassanpour et al. 2011,
Zehtabian et al. 2015).

Using the wavelet thresholding for data smoothing may
itself cause over-relaxation in which some useful details such
as edges and boundaries may be relocated, faded or even
disappeared in the smoothed image. To avoid these problems,
the value of the threshold in the wavelet thresholding tech-
nique must be tuned appropriately. Other concerns are choos-
ing a proper mother wavelet as well as determining an ade-
quate number of decomposition levels.

At the first level of the wavelet filtering, each band of
data is decomposed into four frequency channels (sub-
bands) namely low-low (LL), low-high (LH), high-low
(HL) and high-high (HH), each of which with a particular
coefficient (Hassanpour et al. 2011). Among these chan-
nels, the LL contains the low frequency components of the
image which constitute its main structure, while the others
possess the high frequency components which can be
mainly regarded as redundant details as well as noises
(Burrus et al. 1998; Gupta and Kaur 2002). At the next
levels of the wavelet transformation, the decomposition
process is recursively applied to the low frequency channel
(LL) to generate the sub-bands at the next levels. In other
words, only the low frequency coefficients are subject to
further processing. After performing the decompositions
levels, the thresholding algorithm is applied to all sub-
bands from each level, except to the LL channels that are
exempt from being processed. In this article, we use
‘sym6’ mother wavelet with four levels of decomposition.

The thresholding techniques used for processing the wave-
let coefficient can be categorized into two groups: hard
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(Number of Bands = D)
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Fig. 1 The proposed framework for spectral-spatial classification of hyperspectral data. († MVmeans majority voting inside each object with regard to
the reference class-map)
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and soft thresholding. In hard thresholding, the wavelet coef-
ficients, which are smaller than the threshold value, are
substituted with zero while the other coefficients are kept un-
changed. In the soft thresholding, the coefficients higher than
the threshold are reduced as well. This reduction is done in
accordance with the amount of the threshold. The soft
thresholding function can be stated as follows (Hassanpour
et al. 2011):

H cð Þ ¼ sign cð Þ cj j−τð Þ ; cj j > τ
0 ; otherwise

�
ð1Þ

where c is a given coefficient, τ is the threshold andH(c) is the
soft thresholding function.

For a beneficial wavelet thresholding, a proper threshold
value is needed. There are a few threshold estimation tech-
niques that have been proposed. Among them, three
methods are more widely used, namely Visushrink,
Bayesshrink and Sureshrink (Hassanpour et al. 2011). In
this paper, we benefit from the Bayesshrink method in
which a Bayesian framework is used to derive sub-band
dependent thresholds. In the Bayesshrink approach, it is
assumed that the wavelet coefficients in each sub-band
can be summarized properly using the generalized
Gaussian distribution (GGD) (Chang et al. 2000).

Object extraction

As can be seen in Fig. 1, after applying the wavelet
thresholding to each of the selected bands, the smoothed
bands are fed into the next step which is a Pixon-based seg-
mentation similar to what we have recently proposed in
(Zehtabian and Ghassemian 2015), but with a major modifi-
cation. In the traditional version of our proposed Pixon extrac-
tion algorithm, adjacent pixels were hierarchically merged to-
gether if the Euclidean distance between the pixels in the
spectral space (which was expressed by the gray-levels of
the pixels) was smaller than a predefined threshold
(Zehtabian and Ghassemian 2015). Additionally, the merging
procedure followed a predefined order in choosing appropri-
ate pixels to be joined to the current Pixon. After merging the
first pair of neighboring pixels, the Euclidean distance be-
tween their average spectral intensity and the spectral value
of the next pixel was calculated and compared to the thresh-
old. The Pixon extraction process continued until all the pixels
in the image were analyzed and the final segmentation map
was produced.

In the present paper, however, we apply a modified version
of the Pixon extraction technique in which the Euclidean dis-
tance is substituted with a new distance metric. The newly
proposed distance benefits from a higher level of textural in-
formation that exists in an image.

Noting SP, the average spectral intensity of Pth Pixon, and
Ip, the gray-level of p

th pixel, the proposed distance between
Pixon P and its adjacent pixel p can be calculated as:

dis ¼

���SP−Ip
���

GP þ Gp
ð2Þ

where |.| stands for the 2nd norm, Gp is the sum of gradients
around pixel p along eight cardinal/diagonal directions, and
GP denotes the average sum of gradients around all the pixels
which are located in Pixon P. Therefore, the denominator of
(2) can be regarded as a simple texture descriptor (especially
when the sum of gradients is computed within a wider neigh-
borhood) since it characterizes the image texture by address-
ing the pattern of spectral variations in a particular neighbor-
hood. On the other hand, the numerator of (2) is the simple
Euclidean distance between the spectral intensity of Pixon P
and that of pixel p.

Since the proposed distance simultaneously incorporates
the spectral and textural information into a single measure, it
provides a more realistic analysis of images. As an example,
consider a case in which there is a significant difference be-
tween the gray-levels of two adjacent pixels (or a Pixon and its
adjacent pixel). In this case, the traditional Euclidean distance
is large, reflecting that one of the two pixels may be located in
an edge area. However, the Euclidean distance metric cannot
make a difference if the considerable spectral contrast between
two pixels is not because of the edge and it is caused by
intensity variations due to the texture. In such cases, since
the proposed distance metric considers the spectral variations
in the neighborhood of Pixon P and pixel p as well, the de-
nominator of (2) has a large value. Therefore, the value of the
proposed distance in this case is considerably smaller in com-
parison with cases in which there is a real edgewith no notable
textural variations in its neighborhood.

Once the distance between a given pixel (or Pixon) and its
neighboring pixel is computed, it must be compared to a
predefined Pixon extraction threshold. This threshold can be
either set for each band separately or for themultiband data as a
whole. In this paper, we suggest setting this threshold for each
of the selected bands. It is due to this fact that the proposed
object extraction algorithm is applied to each band, separately.

Moreover, since a semi-automatic object-based classifica-
tion framework is desired in this work, we suggest adaptively
tuning the Pixon extraction thresholds as well. The adaptation
technique used in the present article is similar to what we
proposed in (Zehtabian and Ghassemian 2015). In our recent-
ly published work, in order to tune the Pixon extraction thresh-
old for each band of data, the gradients of each pixel were
firstly computed along the cardinal and diagonal directions.
Then the differences between gradients in each opposite side
were calculated and inserted into a new matrix. By this, four
different matrices were produced. The elements of the
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matrices were then powered by two and summed together.
The square root of the result finally formed a unique matrix
for each band of the data. Our research proved that a proper
Pixon extraction threshold for each band could be achieved by
multiplying the variance of the elements of the final matrix by
a constant factor which was fixed for all remote sensing
datasets. Further discussions about the proposed adaptation
algorithm can be found in (Zehtabian and Ghassemian
2015). The sensitivity of the classification ratios to variation
of the Pixon extraction threshold will be also evaluated in the
next section.

Figs. 2 and 3 are provided in order to visually evaluate the
proposed distance metric as well as some other competing dis-
tances. In these experiments, the results of applying nine other
well-known distance metrics are plotted, namely Euclidean,
Chi-Square, Cosine, Norm-1, Earth Mover, Kolmogorov-
Smirnov, Jensen-Shannon Divergence, Kullback-Leibler
Divergence, and Jeffrey Divergence. Technical details about
the competing distances and metrics are comprehensively ad-
dressed in (Rubner et al. 2000). The data utilized in these ex-
periments is the F210 dataset which is a multispectral aerial
image with twelve spectral bands. The ground truth map
(GTM) of F210 comprises nine different classes.

In order to plot Figs. 2 and 3, first we calculate the distances
along horizontal (i.e. east-west) and vertical (i.e. north-south)
directions, respectively. In other words, the distances between
each spectral vector I(i, j) and its neighboring spectral vectors
(i.e. I(i, j + 1) for horizontal direction and I(i + 1, j) for vertical
direction) are calculated. Then the outcome values are inserted
in the horizontal distance matrices and vertical distance

matrices, respectively. These matrices are then plotted as
equivalent 2D gray-level graphs in Figs. 2 and 3, respectively
for horizontal and vertical directions.

From Fig. 2, after calculating the distances along the hori-
zontal direction, the vertical edges and boundaries of the data
are emphasized. Moreover, by calculating the distances along
the vertical direction, the horizontal edges and boundaries are
highlighted (Fig. 3). However, as can be inferred from these
figures, due to the ability of the proposed distance metric to
make use of the textural information gained from the neigh-
borhood of each pixel, it can also extract the horizontal edges
while it is horizontally applied to the data, and vice versa. In
other words, since larger amount of textural/spatial informa-
tion is used in the proposed metric, using the horizontal (or
vertical) distance per se may be adequate to extract all the
horizontal, vertical and even diagonal boundaries. In these
figures, in order to have a better assessment, the ground truth
map and the false-color representation of the F210 dataset are
also shown.

Majority voting inside each object

After manually setting the thresholds and performing the
Pixon-based segmentation, a unique object-map is constructed
for each of the selected bands. We suppose the class-map
achieved by the pixel-wise SVM classification as a reference.
Referring to this reference, majority voting is then applied
inside the objects from all of the object-maps to constitute
new class-maps. In other words, by assigning the pixels of
each object to the most frequent class within that object, ‘d’
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Fig. 2 Two-dimensional gray-
level illustrations that are plotted
according to various distance
metrics applied to F210 multi-
spectral data. Each image corre-
sponds to distance values between
all horizontal pairs of feature
vectors in data
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class-maps are produced. A visual example of the majority
voting process utilized in this step is shown in Fig. 4. As can
be inferred from this figure, in objects in which there is no
majority for one class rather than the other classes, the major-
ity voting is not applied (however, it rarely occurs in practice).
Therefore, the pixel-wise classification result is used for the
pixels located in such objects.

Classification of objects

The second proposed approach for incorporating the spatial
information achieved from the object-maps into the spectral–
spatial classification framework is a typical object-based clas-
sification step in which each object is completely assigned to
one of the classes. In order to classify the objects rather than the

pixels, we need to extract some relevant spectral/spatial fea-
tures from the objects. In this paper, we suggest applying two
widely used spectral features (i.e. mean and standard deviation
of the pixels/vectors located in the object) as well as a newly
developed spatial feature called object correlative index (OCI).

OCI describes the correlation between a given object and
its neighboring objects using a well-defined spectral simi-
larity measure (Zhang et al. 2013). This leads to a new
model of spatial information that can be used as a descrip-
tion of the relationship between individual objects and the
image as a whole. Finally, the value of the OCI spatial
feature for a given object is the sum of the lengths of the
correlative lines which are oriented toward various direc-
tions from the object’s center of gravity to the apogee inter-
section points (Zhang et al. 2013).

Ground Truth 

Map

false-color 

representation

Proposed 

Distance

Euclidian 

Distance

Cosine Distance Chi-Square 

Distance

Earth Mover 

Distance

Norm-1 (L1) 

Distance

Kolmogorov 

Smirnov Distance

Jensen Shannon 

Divergence 

Distance

Kullback Leibler 

Divergence 

Distance

Jeffrey 

Divergence 

Distance

Fig. 3 Two-dimensional gray-
level illustrations that are plotted
according to various distance
metrics applied to F210 multi-
spectral data. Each image corre-
sponds to distance values between
all vertical pairs of feature vectors
in data
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Fig. 4 A visual example of
assigning the pixels located in
each object to the most frequent
class within that object. A given
object-map constructed for one of
the selected bands (a), the refer-
ence class-map produced by
using the pixel-based SVM clas-
sifier (b), and the revised class-
map after applying majority vot-
ing inside each object
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After extracting the features from each object, the ob-
jects are classified using the stacked features. This results
in ‘d’ new class-maps which are totally different from the
class-maps previously achieved by applying majority vot-
ing inside each object.

Majority voting among class-maps

From Fig. 1, after using two different approaches for incorpo-
rating the spatial and spectral information into the classifica-
tion process, two sets of classification results are produced
each with ‘d’ different class-maps. Finally, another level of
majority voting process is carried out on the class labels in
order to achieve a unique class-map. A schematic example of
applying the majority voting process to three given class-maps
is shown in Fig. 5.

Experimental results

In order to evaluate the proposed spectral-spatial classification
approach and compare it to the other state-of-the-art works,
two well-known hyperspectral datasets are utilized in this ar-
ticle. The first one is captured by ROSIS-03 sensor over the
University of Pavia in Italy, namely, the Pavia University
dataset. This data comprises 115 spectral bands, however, 12
channels are eliminated in our work due to the noise problem.
Each band of this data is of size 610 pixels by 340 pixels and
the spatial resolution of each band is equal to 1.3 m per pixel.
The ground truth of Pavia University dataset contains 9 dif-
ferent classes (Fauvel et al. 2013).

The second hyperspectral dataset is the Salinas dataset
which has been collected by AVIRIS sensor. It comprises
204 spectral bands. The size of each band in the Salinas

dataset is 512 × 217 pixels and its ground reference map
comprises 16 different agricultural classes. The spatial res-
olution of this data is equal to 3.7 m per pixel (Golipour
et al. 2016).

Fig. 6 shows the classificationmap produced after applying
the proposed spectral-spatial approach to the ROSIS-03 Pavia
University dataset, when the number of training samples is
equal to 50 per class. The GTM and the false color represen-
tation of this data as well as the thematic map resulted after
performing a pixel-wise classifier are also shown in this figure
in order to provide some references to highlight the efficiency
of the proposed approach.

Meanwhile, Fig. 7 illustrates the differences between clas-
sification maps after applying two different versions of the
proposed approach: one which uses only the traditional mean
vector as the extracted feature of each object, and one which
benefits from three different features (i.e. mean vector, stan-
dard deviation and OCI) per object. The data is still the same
(i.e. the Pavia University dataset) and the standard set of train-
ing samples is used similar to what suggested by Fauvel et al.
(2013). As can be inferred from Fig. 7, in a few number of
regions, the classification results of applying the traditional
mean vector feature are slightly better than those of applying
the three features. Such regions are highlighted by red dashed
circles. Moreover, from this figure, in several other regions
(which two of them are marked with green circles), the pro-
posed approach in which three features are used outperforms
the other version of our method in which only mean vector is
applied as the extracted feature of each object. This difference
can be also expressed in terms of averaged accuracy (AA) and
overall accuracy (OA) since AA and OA increase from
92.63% and 94.19% to 93.87% and 95.08%, respectively.

The quantitative comparisons are also reported in Tables 1
and 2 for Pavia University dataset (with 50 training samples

Fig. 5 A visual example of
applying the majority voting
process to three given class-maps.
Each colored square stands for
one pixel, while each color
represents a different class
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per class) and Salinas dataset (with 10% training samples per
class), respectively. Since the process of selecting the training
samples is random, the results of applying the proposed meth-
od are averaged after 30 runs before reporting in these tables.
As can be inferred from the tables, the proposed spectral-
spatial classification framework excels most of the other com-
peting methods, especially for the Pavia University case.

In the next experiments, we analyze the sensitivity of the
proposed approach to variation of its main operational param-
eter: the Pixon extraction threshold. Since, a band-by-band
analysis is exploited in this article, the needed parameters have

been adaptively tuned and used for each band of the
hyperspectral data, individually. To be more clear, for a
hyperspectral data with Bd^ bands, Bd^ Pixon extraction
thresholds as well as B2d^ wavelet parameters (i.e. the thresh-
olds ‘τ(b)’ and the number of levels in soft thresholding ‘N(b)’,
while b is the band index) should be automatically set and then
used in the proposed algorithm. However, it is almost impos-
sible to report the effects of the variations in the parameters of
each band on the final classification ratios. Alternatively, in
order to assess the sensitivity of the proposed object-based
classification method to the Pixon extraction threshold

GTM False-Color 

Representation

Pixel-wise 

Classification Map

Proposed Spectral-

Spatial Classification 

Map

Fig. 6 The classification maps
produced after applying the
proposed spectral-spatial classifi-
er as well as a traditional pixel-
wise SVM classifier to Pavia
University data with 50 training
samples per class

GTM Pixel-wise 

Classification Map

Proposed Method 

Using One Traditional 

Feature

Proposed Method 

Using Three Different 

Features

Fig. 7 The classification maps produced after applying the proposed
spectral-spatial classifier with two different sets of extracted features as
well as a traditional pixel-wise SVM classifier to Pavia University data
with the standard training samples. In regions highlighted by red dashed
circles, the classification result of applying the traditional mean vector

feature are slightly better than that of applying the three features (i.e.
mean, S.D. and OCI). The regions marked with green circles are two
examples among many of other regions in which using the three features
leads to better classification results compared to the other version of our
method in which only mean vector is used as the feature of each object
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parameter, we assign a unique value to this parameter for all
the spectral bands, at each step of the experiments. The gained
results are then reported as a function of the varying Pixon
extraction parameter.

In Fig. 8, the classification ratios are plotted along with
various values for the Pixon extraction threshold that has been
simultaneously varied in the segmentation steps of all bands.
The pixel-based classification results (which are independent
from the values of this threshold) are also illustrated in this
figure. In this experiment, the values of the wavelet parame-
ters are kept fixed to the optimum values (i.e. τ(average) =
120.40 and N(average) = 4) that have been previously set for
each band, using the Bayesshrink method. The Pavia
University dataset is used in these experiments while the num-
ber of training samples is set to 10% of the available samples.

Meanwhile, Fig. 9 shows the relation between the value of
the Pixon extraction threshold parameter and the time needed
for object extraction as well as object-based classification.

From Fig. 9, the number of the extracted objects is directly
proportional to the Pixon extraction parameter. As this param-
eter increases, the object-to-pixel ratio and consequently the
time spent for object-based classification monotonically de-
crease. In other words, the level of data compactness increases
while the Pixon extraction threshold gets larger. It is due to
this fact that larger values of this threshold result in smaller
number of objects with larger sizes. On the other hand, it may
increase the possibility of under-segmentation.

By decreasing the value of the Pixon extraction threshold,
the object-to-pixel ratio as well as the object-based classifica-
tion time gets increased (Fig. 9). It is not surprising that for
extensively small values of this parameter, the number of ob-
jects reaches its maximum possible value which is the number
of pixels. In other words, for very small Pixon extraction
thresholds, the objects are in size of pixels. Therefore, it can
be deduced that the probability of over-segmentation increases
for small thresholds.

There is no meaningful relationship between the Pixon ex-
traction threshold and the time needed for object extraction
(Fig. 9). On the other hand, the time spent to classify the
objects is much less compared with the time needed to classify
the pixels. It is due to this fact that the number of extracted
objects is considerably smaller than that of the pixels, espe-
cially for larger values of the Pixon extraction parameter.

While increasing the Pixon extraction threshold, the
classification accuracies (i.e. OA, AA, and AV) first in-
crease to reach their maximum levels and then decrease
again (Fig. 8). This is due to the under-segmentation phe-
nomenon that is caused by relatively large values of the
Pixon extraction parameter.

In terms of various metrics, the proposed object-based classi-
fier clearly exceeds the pixel-based classifier, at least for a rela-
tively wide range of Pixon extraction threshold values (Fig. 8).
However, this must be noted that these experiments have been
carried out under specific conditions in which similar parameters

Table 1 The classification results
after applying the proposed
spectral-spatial classification
method as well as the other com-
peting approaches to the Pavia
University dataset with 50 train-
ing samples per class

Performance measures

Object-based classification methods OA AA Kappa

Proposed spectral-spatial classification approach 95.33% 94.23% 0.92

Three-band EMAP (with KPCA σ = 1) [Bernabe et al. 2014] 93.22% - -

RPDE-based Pixon extraction [Zehtabian and Ghassemian 2015] 92.80% 91.02% 0.90

SVM-MLRsub-MRF (M = 2) [Khodadadzadeh et al. 2014] 92.68% 91.93% 0.90

AMICA [Ghassemian and Landgrebe 1988] 91.03% 89.63% 0.87

SVM-MRF [Khodadadzadeh et al. 2014] 83.96% 91.80% 0.80

Traditional pixel-based SVM 77.85% 85.87% 0.72

MLRsub [Khodadadzadeh et al. 2014] 65.47% 73.81% 0.57

Table 2 The classification results
after applying the proposed
spectral-spatial classification
method as well as the other com-
peting approaches to the Salinas
dataset with 10% training samples
per class

Performance measures

Object-based classification methods OA

MP-Gabor-GLCM [Mirzapour and Ghassemian 2015] 99.26%

Proposed spectral-spatial classification approach 99.04%

SVM-CK [Camps-Valls et al. 2006] 98.87%

HMRFE-SVM [Ghamisi et al. 2014] 97.25%

RPDE-based Pixon Extraction [Zehtabian and Ghassemian 2015] 96.90%

Diverse AdaBoost SVM [Ramzi et al. 2013] 94.87%

Traditional pixel-based SVM 85.37%
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are used for all bands, simultaneously. Therefore, the classifica-
tion improvement is more likely if the parameters are adaptively
tuned for each band, separately, as suggested in the present
article.

From Fig. 8, using a grid search over the supplied range for
the Pixon extraction parameter, the best classification results in
terms of overall accuracy, averaged accuracy, and overall validity
are obtained with Pixon extraction thresholds equal to 0.0155,
0.0145 and 0.0155, respectively. These values are relatively close
to the average of all adaptively tuned parameters (each for a
single band), which is equal to 0.0159. This figure also shows
that by setting the value of the Pixon extraction threshold to
0.015 for all spectral bands, an accurate classification (in terms
of OA, AA and AV) is more likely. However, as discussed pre-
viously, if the parameters are individually tuned for each band,
the classification results significantly increase.

Conclusion

In the present article, a spectral-spatial classification frame-
work has been developed in which both pixel-based and
object-based classification scenarios are utilized. In the pro-
posed method, first a pixel-based classification using support
vector machine is applied to the hyperspectral data. It results
in a pixel-wise classification map. Using an unsupervised
band selection technique that is based onWard’s linkage strat-
egy using mutual information (WaLuMI), a smaller number of
bands are then selected from the spectral bands of the original
hyperspectral data. The selected bands are then smoothed
using wavelet thresholding in which the parameters are tuned
using the Bayesshrink technique. The smoothed bands are fed
into the segmentation step which is a modified version of our
previously developed Pixon-based algorithm. To be more

Object-based and Pixel-based Classification 

Time

Object-to-Pixel Ratio and Object Extraction 

Time
Fig. 9 The effects of applying various values of the Pixon extraction threshold on the time needed for object extraction as well as object-based
classification. These experiments are implemented on the Pavia University dataset
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Fig. 8 The effects of applying various values of Pixon extraction
threshold on the proposed object-based classifier performance in terms
of overall accuracy (OA), average accuracy (AA) and average validity
(AV). The wavelet parameters are fixed at their most likely optimum

values. In all the figures, the dotted red lines denote the results associated
with the traditional pixel-based method while the blue curves correspond
to the object-based approach. The experiments are implemented on the
Pavia University dataset
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clear, the Euclidian distance in our traditional Pixon extraction
algorithm has been now substituted with an innovative
distance metric. Since it simultaneously incorporates the
spectral and textural information into a single measure,
the proposed distance often leads to efficient segmenta-
tion results. The success of the proposed Pixon-based
segmentation algorithm depends on properly tuning a
parameter named Pixon extraction threshold. We suggest
applying an adaptation technique which has been recent-
ly developed by us in order to automatically set
proper values for this threshold.

Once image segmentation is performed, two different sets
of classification maps are produced with regard to the extract-
ed object-maps. The first set is achieved by performing ma-
jority voting inside each object. In other words, for each se-
lected band, a class-map is obtained by assigning the pixels of
each object to the most frequent class within that object, using
the reference pixel-wise class-map. Moreover, the second set
of classification maps is produced by labeling each object
from the segmentation map to one of the classes using the
spectral and spatial information extracted from each object.
The final thematic map is then resulted after applying majority
voting among all the available class-maps.

There are a few segmentation/classification approaches
which have tried to automatically tune their parameters, howev-
er, one of the most important aspects of the proposed framework
is that the most important parameters (i.e. the Pixon extraction
threshold and the wavelet parameters) are automatically tuned.
Therefore, it does not need to manually set the parameters.

The experimental results of applying various classification
methods to two widely-used hyperspectral datasets prove the
efficiency of the proposed spectral-spatial classification
framework in terms of the classification ratios as well as the
object to pixel ratio and the computational time.
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