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Abstract The spatial variability evaluation of the water table
level of an aquifer provides useful information in water re-
sources management plans. Three different approaches are
applied to estimate the spatial variability of the water table
in the study basin. All of them are based on the Kriging meth-
odology. The first is the classical Ordinary Kriging approach,
while the second involves information from a secondary var-
iable (surface elevation) and the application of Residual
Kriging. The third calculates the probability to lie below a
certain groundwater level limit that could cause significant
problems in groundwater resources availability. The latter is
achieved bymeans of Indicator Kriging. A recently developed
non-linear normalization method is used to transform both
data and residuals closer to normal distribution for improved
prediction results. In addition, the recently developed Spartan
variogram model is applied to determine the spatial depen-
dence of the measurements. The latter proves to be the optimal
model, compared to a series of models tested, which provides
in combination with the Kriging methodologies the most ac-
curate cross validation estimations. The variogram form is
explained with respect to the radius of influence of the
pumping wells representing the spatial impact of the pumping
activity. Groundwater level and probability maps are devel-
oped providing the ability to assess the spatial variability of
the groundwater level in the basin and the risk that certain
locations have in terms of a safe groundwater level limit that

has been set for the sustainability of the groundwater resources
of the basin.
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Introduction

The knowledge of the spatial variability of the water table
level in aquifers with limited monitoring provides information
to understand the aquifer behaviour at different locations of
the basin. This information becomes more important in basins
that are under the threat of over-pumping where the water
table has dropped significantly. The spatial distribution feed-
back gives the potential to identify vulnerable locations. The
accurate mapping of groundwater levels in an aquifer is im-
portant for effective management and monitoring decisions.
However, the number and spatial distribution of hydraulic
head measurements are not always sufficient to accurately
represent the groundwater level in a given aquifer. Estimates
at unsampled locations can be obtained by applying
geostatistical methods to the available data in order to map
the spatial distribution of an aquifer level. In sparsely moni-
tored basins, accurate mapping of the spatial variability of
groundwater level requires the interpolation of scattered data.

Ordinary Kriging (OK) bases its estimates at unsampled
locations only on the sampled primary variable. OK interpo-
lation is widely used to determine the spatial variability of
groundwater levels in hydrological basins e.g., (Ahmadi and
Sedghamiz 2007; Buchanan and Triantafilis 2009; Chung and
Rogers 2012; Nikroo et al. 2009; Sun et al. 2009; Theodossiou
and Latinopoulos 2006; Varouchakis and Hristopulos 2013a).
Alternatively, Residual Kriging (RK) and Kriging with
External Drift (KED), embody secondary information in a
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drift term. KED and RK are practically equivalent but differ in
the methodological steps used (Hengl 2007; Hengl et al.
2003). RK has been applied to the interpolation of water table
elevation using deterministic trend models that include e.g.
space polynomials (Neuman and Jacobson 1984), topographic
metrics such as surface elevation and topographic index, and
distance from riverbed (Desbarats et al. 2002; Varouchakis
and Hristopulos 2013b), numerical solutions for the hydraulic
head field (Rivest et al. 2008; Varouchakis and Hristopulos
2013b) and rainfall data (Moukana and Koike 2008).

Indicator Kriging (IK) has beenwidely usedmainly for risk
assessment of pollutant concentrations in ground and surface
waters leading to significant decision support regarding the
prevention and/or remediation of certain sites (Anane et al.
2014; Arslan 2012; Chica-Olmo et al. 2014; Liu et al. 2004;
Neshat et al. 2015). However, it can be also applied for the risk
assessment of groundwater level spatial distribution in arid
areas or in those with high aquifer pumping. Demir et al.
(2009) used variable groundwater level thresholds to create
indicators under rain and irrigation periods presenting the
aquifer response. However, the groundwater level scale was
different compared to the scale of this work. In addition, the
number of thresholds is important if one aims to assess differ-
ent scenarios and also to calculate the cumulative effect. This
work on the other hand, used a single groundwater level
threshold that was calculated from the physical characteristics
of the basin, which is under water scarcity threat. The role of
this limit is significant as it sets the threshold of balance be-
tween pumping and groundwater level necessary for the aqui-
fer sustainability. Other similar works applied Indicator
Kriging to address soil saturation probability regarding depth
to water table (Lyon et al. 2006a), or to produce probability
maps a shallow water table to exceed certain level thresholds
per rainfall event (Lyon et al. 2006b). However, most of the
works used groundwater level as one of many parameters to
perform assessment regarding pollution risk. This work differs
from all those, as to the authors knowledge there is not any
similar work to address aquifer depletion risk.

The current project presents the application of Ordinary
Kriging, Residual Kriging (e.g. surface elevation), and
Indicator Kriging to predict the groundwater level spatial var-
iability as well as the associated risk considering an aquifer
level threshold respectively in a sparsely gauged basin. In this
work the hole-effect property of the Spartan variogram model
is presented for the first time in measurement data. The spe-
cific shape is obtained when its shape parameter receives neg-
ative values. This is an important evidence for the functional-
ity of the Spartan variogram model. Furthermore, the set of a
sustainable groundwater level limit based on the physical
characteristics of a basin is discussed, risk assessment using
IK regarding a groundwater level threshold is interpreted as
not many similar works exist and a new dataset is used that has
not been published before.

Area of Study

The present research focuses on Mires basin of the Messara
Valley (Fig. 1) at the island of Crete (Greece). The study basin
consists of an unconfined aquifer, is sparsely sampled and has
limited groundwater resources which are vital for the area’s
ecosystem and agriculture. The mean annual rainfall in Mires
basin has been lately estimated around 625 mm.
Approximately 65 % of the rainfall is lost to evapotranspira-
tion and 10 % is lost as runoff to the sea, leaving only 25 % to
recharge the groundwater store. A detailed hydrogeological
and hydrological description of the basin is available in
Varouchakis (2016). Knowledge of the spatial variations of
the groundwater level is important for developing sound man-
agement and monitoring strategies. Over-exploitation during
the past 30 years has led to a dramatic decrease, in excess of
35 m, of the groundwater level.

Efficient groundwater management in the basin is crucial in
light of predictions based on regional climate change models
that show a substantial risk of desertification for Crete. In this
work accurate spatial models of the basin’s groundwater level
are generated that help to identify the susceptible locations and
to provide input for potential groundwater resources manage-
ment plans. The data used in this research consist of hydraulic
head measurements (wet period of 2007–2008 hydrological
year) from the 43 monitoring locations that operate in the
basin which are unevenly distributed and mostly concentrated
along a temporary river. The range of hydraulic heads varies
from an extremely low value of 11.45 to 72.93 masl. An initial
statistical analysis shows that the head data have skewness and

kurtosis coefficients equal to ŝz=0.76 and k̂z ¼ 2:80 respec-
tively, implying a mild deviation from Gaussian statistics

(ŝz= 0 and k̂z ¼ 3 respectively). The data analysis is per-
formed by codes developed and run in the Matlab® program-
ming environment (Matlab v.7.10). Standardized spatial coor-
dinates in the interval [0, 1] are used to avoid numerical
instabilities.

Methodology

Skewed or erratic data can often be made more suitable for
geostatistical modeling by appropriate transformation. A nor-
mal distribution for the variable under study is desirable in
linear geostatistics (Clark and Harper 2000). Even though
normality may not be strictly required, serious violation of
normality, such as too high skewness and outliers, can impair
the variogram structure and the Kriging results (Gringarten
and Deutsch 2001; Ouyang et al. 2006). Ordinary Kriging is
well-known to be optimal when the data have a multivariate
normal distribution. Transformation of data therefore may be
required before Kriging to normalize the data distribution,
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suppress outliers and improve data stationarity (Armstrong
1998; Deutsch and Journel 1992). The estimation then is per-
formed in the Gaussian domain before back-transforming the
estimates to the original domain. An advantage of the
Gaussian distribution is that spatial variability is easier to be
modelled because it reduces effects of extreme values provid-
ing more stable variograms (Armstrong 1998; Goovaerts
1997; Pardo-Iguzquiza and Dowd 2005). Kriging represents
variability only up to the second order moment (covariance),
so the random field of the transformed variable should be
Gaussian to derive unbiased estimates at unsampled locations
(Deutsch and Journel 1992; Goovaerts et al. 2005).

A non-linear normalizing data transformation is applied in
conjunction with Kriging for the accurate prediction of
groundwater level spatial variability. The Modified Box-Cox
(MBC) transformation method has recently been proposed
and applied successfully to normalize hydraulic heads and
residuals (Varouchakis et al. 2012). This recently proposed
method focuses on normalizing the skewness and kurtosis
coefficients of the data, but it neglects higher-order moments
(Varouchakis and Hristopulos 2013b). It is defined by the
following function,

y :¼ gMBC z;κð Þ ¼ z−zmin þ k22
� �k1−1

k1
; κT ¼ k1; k2ð Þ;

ð1Þ
where k1 is the power exponent and k2 is an offset parameter.
Use of the latter allows negative z values and so the transfor-
mation can be applied to fluctuations as well. Parameters (k1,
k2) are estimated from the numerical solution of the equations

ŝz ¼ 0; k̂z ¼ 3 in the form below, where ŝz and k̂z are the
sample skewness and kurtosis coefficients respectively,

m̂z−~mz

σz

 !2

þ k̂z−3
� �2

≃0: ð2Þ

In the above equation m̂z is the sample mean, ~mz is the
sample’s median and σz the standard deviation. The
minimization is performed using the Nelder-Mead sim-
plex optimization method (Nelder and Mead 1965; Press
et al. 1992).

Besides the classical OK interpolation, the prediction of the
hydraulic head spatial variability is also performed using RK
by incorporating local geographic features, such as the ground
surface elevation in the trend function. Previous studies have
shown that incorporating such auxiliary information in the
trend function improves the accuracy of the spatial interpola-
tion (Varouchakis 2012). Herein, there are two reasons for
employing ground surface elevation as an auxiliary variable.
The first is the important correlation between surface elevation
and groundwater level; at high elevation the groundwater level
is also high following a decreasing trend towards lower ele-
vations. The second reason is the application of a tool by
Haitjema and Mitchell-Bruker (2005). This tool examines if
the aquifer is recharge or topography controlled. The equation
that describes the tool involves the average annual recharge
rate R [m/d], the average distance between surface waters, L
[m], a factorm between 8 and 16 for aquifers that are strip like
or circular in shape respectively, the (horizontal) aquifer hy-
draulic conductivity, k [m/d], the aquifer thickness, H [m] and

Fig. 1 Map of Greece presenting
the Messara valley location (red
rectangle) in Crete and a
topographic map of Mires basin
showing the locations of
groundwater head measurements
along with the corresponding
surface elevation and the
temporary river path. The black
triangles denote the 43
monitoring locations at the basin
for the year 2007–08 (modified
after Varouchakis and Hristopulos
(2013b))

Earth Sci Inform (2016) 9:437–448 439



the maximum distance between the average surface water
levels and the terrain elevation, d [m].

RL2

mkHd
> 1; topography controlled
< 1; recharge controlled

�
ð3Þ

Although Mires aquifer does not comply exactly with the
conditions applied to produce this inequality, an estimate can be
obtained. The surface waters in the basin are limited and there
is only a main river crossing the plain. Therefore, a distance
between surface waters cannot be exactly defined. However,
the eastern and western parts of the main river are connected
with two tributaries that their in between distance can define the
variable L (approximately 15,000 m). On the other hand, the
aquifer is partly circular in shape at the up-stream and stripe like
at the down-stream. Thus m on average would be set equal to
12. The other variables are based on average aquifer values:
k = 50 m/d. R = 0.0004 m/d, H = 21.5 m and d = 10 m
(Varouchakis 2015). Solving Eq. (3) the calculated ratio is
equal to 0.7 and thus less than 1. This result means that the
aquifer is recharge controlled. However, the result is quite close
to 1 and one can assume that topography has also a vital role.
Thus, considering also the important relation between the ele-
vation and the groundwater level trend (65 %) and based on the
absence of information on the spatial distribution of recharge in
the basin, one can use the ground surface elevation as an aux-
iliary variable. Its significance and usefulness will be assessed
based on the derived results.

In the following, it is assumed that the water table level is
represented by a spatial random field (SRF), Z(s∈S), where S
is the set of sampling points with cardinal number N. The
values of the SRF in a given state will be denoted by lower-
case letters. The target is to derive estimates, Ẑ(s∈P) of the
water table elevation at the prediction set points, P that lie on a
rectangular grid that covers the basin. Therefore, si, i=1,…,N
denote the sampling points, z(si) are the head values (in masl)
at these points, and s0 denotes an estimation point, which is
assumed to lie inside the convex hull of the sampling network.
For mapping purposes, it is assumed that s0 moves sequential-
ly through all the nodes of the mapping grid.

Spatial interpolation of the groundwater levels was initially
applied by means of OK and RK in combination with MBC
normalizing transformation, while IK based on developed in-
dicators from the data was then implemented. In the first ap-
proach, a normalizing transformation g(·) is applied to the
data. Then, OK is used to predict the transformed field
Y(s) =g(Z(s)), and the predictions are back-transformed to ob-
tain head estimates. In the second approach, a trend model
mZ(s) is introduced that captures local features. Since the fluc-
tuation SRF, Z′(s) =Z(s)−mZ(s), is non-Gaussian, a transfor-
mation g(·) is applied to obtain a normalized SRF,
Y(s) =g(Z′(s)). The experimental variogram is then estimated
and is fitted to theoretical models. Next, the Gaussian field

Ŷ(s ∈P) is estimated at the prediction points using OK.
Finally, head estimates are retrieved from Ŷ(s∈P) by applying
the back-transformation and adding the trend. Leave-one-out
cross-validation analysis was used to determine the optimal
spatial model applied to water table level data and to assess the
accuracy of the interpolated head field.

Spatial dependence

The variogram is commonly used in geostatistical analysis to
measure the spatial dependence between neighboring obser-
vations. The omnidirectional empirical (experimental)
variogram of the hydraulic head and of the residuals was de-
termined using the method of moments. The empirical
variogram was fitted with isotropic classical models
(Gaussian, Exponential, Linear, Spherical, and Power-law),
the Matérn model (Goovaerts 1997), and the new family of
Spartan variograms (3D, 2D models) (Hristopulos 2003;
Hristopulos and Elogne 2007).

Spartan Spatial Random Fields (SSRFs) are a geostatistical
model (Hristopulos 2002, 2003) inspired from statistical field
theory with applications in environmental risk assessment and
environmental monitoring (Elogne et al. 2008; Elogne and
Hristopulos 2008; Hristopulos and Elogne 2009). SSRFs are
generalized Gibbs random fields with an energy functional
that is based on local interactions between the field values.
The term Spartan indicates parametrically compact model
families that involve a small number of parameters. SSRFs
provide a new class of generalized covariance functions. The
SSRFs covariance functions can be used for spatial interpola-
tion with the classical Kriging estimators. Spartan covariance
and variogram functions have been applied to various envi-
ronmental data sets (Elogne et al. 2008; Varouchakis and
Hristopulos 2013b). Herein, the Spartan covariance derived
for d=3 dimensions is applied.

The model parameters are obtained by fitting the SSRFs
function (4) to the experimental variogram (Hristopulos and
Elogne 2007). The exponential covariance is formed for η1 =
2, while for |η1| < 2 the product of the exponential and hole-
effect model is obtained. According to Christakos (1991) a
covariance function that is permissible in three spatial dimen-
sions is also permissible in two dimensions. The components
of the equation are presented and explained in Table 1.

Cz hð Þ ¼

η0e
−hβ2

2π
ffiffiffiffiffiffiffiffiffiffiffiffiffi
η21−4
�� ��q sin hβ1ð Þ

hβ1

	 

; for η1j j < 2; σ2z ¼

η0

2π
ffiffiffiffiffiffiffiffiffiffiffiffiffi
η21−4
�� ��q

η0e
−h

8π
; for η1 ¼ 2; σ2z ¼

η0
8π

η0 e−hω1−e−hω2
� �

4π ω2−ω1ð Þh
ffiffiffiffiffiffiffiffiffiffiffiffiffi
η21−4
�� ��q ; for η1 > 2; σ2z ¼

η0

4π
ffiffiffiffiffiffiffiffiffiffiffiffiffi
η21−4
�� ��q

8>>>>>>>>><
>>>>>>>>>:

:

ð4Þ
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Spatial models

In spatial linear interpolation methods such as OK and RK, it
generally holds that,

ẑ s0ð Þ ¼
X

i:si∈S0f gλiz sið Þ; ð5Þ

where S0 is the set of sampling points in the search neighbor-
hood of s0. The neighborhood is empirically chosen so as to
optimize the cross validation measures. The weights λi are
obtained byminimizing the mean square estimation error con-
ditionally on the zero-bias constraint (Cressie 1993) and they
depend on the variogram model γz(r), where r are the spatial
lags of the experimental variogram (Deutsch and Journel
1992). The OK estimation variance is given by the following
equation, with the Lagrange coefficient μ compensating for
the uncertainty of the mean value:

σ2E s0ð Þ ¼
X

i:si∈S0f gλiγz si; s0ð Þ þ μ: ð6Þ

Overall OK variance is termed as the weighted average of
variograms from the new point s0 to all calibration points sj,
plus the Lagrange multiplier.

RK combines a trend function with interpolation of the
residuals. Herein, a deterministic trend is applied based on
the basin topography. In RK the estimate is expressed as:

ẑ s0ð Þ ¼ mz s0ð Þ þ ẑ
0
s0ð Þ; ð7Þ

wheremz(s0) is the trend function, and ẑ′(s0) is the interpolated
residual by means of OK (Rivoirard 2002). Typically, the
trend function is modeled as:

mz s0ð Þ ¼
Xp
k¼0

βkqk s0ð Þ; qk s0ð Þ≡1; ð8Þ

where qk(s0) are the values of auxiliary variables at s0, βk are
the estimated regression coefficients and p is the number of
auxiliary variables (Draper and Smith 1981; Hengl 2007;

Hengl et al. 2007). The regression coefficients are estimated
from the sample using ordinary least squares (OLS) (Kitanidis
1993). The variance of the estimates follows from the equation
(Hengl 2007; Hengl et al. 2003):

σ2 s0ð Þ ¼ σ2
d s0ð Þ þ σ2

f s0ð Þ; ð9Þ

σ2
d s0ð Þ ¼ qT0 qTγ−1

z0 q
� �−1

q0; ð10Þ

σ2
f s0ð Þ ¼

X
i:si∈S0f gλiγz0 si; s0ð Þ þ μ; ð11Þ

where σd
2 (s0) is the drift prediction variance, q0 is the vector of

(p+1)×1 predictors at the unvisited location, q is the matrix
of (N0 +1)× (p+1) predictors at the sampling points in the
search neighborhood (N0 is the number of points within the
search neighborhood of s0), γz ' is the variogram matrix of the
(N0 + 1) × (N0 + 1) residuals at the measured locations
(neighborhood) and σf

2(s0) is the kriging (OK) variance of
residuals.

Herein a trend model for Mires basin groundwater level
data is presented. Following other studies, based on the fact
that usually the water table level of an unconfined aquifer
follows the elevation trend, secondary information in the trend
is considered from a Digital Elevation Model (DEM) of the
area (Desbarats et al. 2002; Deutsch and Journel 1992;
Goovaerts 1997; Hoeksema et al. 1989; Nikroo et al. 2009;
Rivest et al. 2008). This choice was supported by the interpre-
tation provided earlier in the Methodology section, and pri-
marily by the important correlation coefficient between the
groundwater level and the ground surface elevation in the
basin (R = 0.65, is characterized as important correlation
(Tichy 1993)). A scatter plot of ground surface elevation vs
groundwater level is presented in Fig. 2.

The following expression for the trend of the hydraulic
head (in masl) is applied (T-DEM):

mz sð Þ ¼ f DEM sð Þ þ c; ð12Þ
where f, c are linear coefficients andDEM(s) is the local DEM
value.

Table 1 Interpretation of the
Spartan covariance function
components

Spartan function components Interpretation

η0 Scale factor

η1 Rigidity coefficient

β1 = |2 − η1|1/2/2 Dimensionless wavenumber

β2 = |2 + η1|
1/2/2 and ω1,2 = (|η1∓Δ|/2)1/2, Δ= |η1

2− 4|1/2, Dimensionless damping coefficients

ξ Characteristic length

h= r/ξ Normalized lag vector

h= |h| Its Euclidean norm

σz
2 Variance
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Another interpolation method applied is IK. This is a non-
parametric geostatistical method for estimating the probability
of a variable to exceed or lie below a specific threshold value
at a given location (Goovaerts 1997). In this work, IK is ap-
plied for mapping the risk associated with a specified ground-
water level limit that could lead to significant problem of
groundwater availability. A critical aquifer level limit for the
basin’s groundwater resources availability can be set in terms
of a statistical and a physical based approach. The first in-
volves the 25th, lower, percentile of the available data values
which is equal to 25 m above sea level (m.a.s.l). This value
was validated by a physically based approach that involves
physical characteristics of the basin. The aquifer capacity has
been recently estimated equal to 55 Mm3, the aquifer area
equal to 26.1 km2 and the porosity equal to 0.085. Dividing
the first two figures and then their result with the porosity the
aquifer level is calculated. This is equal to 24.7 m.a.s.l, similar
to the lower percentile of the available data. Thus, 25 m.a.s.l
can be set as the aquifer level threshold for sustainable
groundwater resources management at the basin.

IK is applied to determine the conditional probability at
unsampled points based on the spatial dependence structure
of indicator-transformed data points with a binary distribution
(e.g. 0 and 1). IK proceeds as the classical Ordinary Kriging
(the main change is the choice of a cutoff value) with the
difference that results is now maps with values between 0
and 1 expressing probability a condition to apply (Chica-
Olmo et al. 2014; Deutsch and Journel 1992). Indicator
variogram analysis is also performed using the models and
the procedure previously stated for OK and RK (Isaaks and
Srivastava 1989).

This method does not make assumptions regarding the var-
iables distribution and has the ability to take into account, to a
large extent, the uncertainty of the data. The IK is based on the
conversion of all data from continuous to a binary form

according to a specific threshold value. Thus, is robust to
outliers handling. This value can be either a percentile of our
data or a default value of marginal importance for the system
under study. Subsequently, data with values below the thresh-
old take a value of 1, while the remaining taking a value of 0.

I z sð Þð Þ ¼ 1; z sð Þ≤z0
0; otherwise

�
; ð13Þ

where, I(z(s)) is a binary variable, z(s) is the measured value
and z′ is the cut-off (threshold) value.

Indicator Kriging is a geostatistical method best suited for
issues that involve a threshold value (Goovaerts 1999; Isaaks
and Srivastava 1989; Webster and Oliver 2001). However,
most practical problems that require indicator techniques re-
quire well-chosen threshold which have a special significance
to the problem being addressed. Probability maps delineate
suitable and unsuitable sites regarding the examined issue,
while help to take decisions to prevent and/or remediate a site
compared to locations with reduced or no risk.

The method proceeds as follows: a) convert the given
values to indicators: divide the range evenly or based on dif-
ferent quintiles (q0.25; q0.50; q0.75), b) estimate the indicator
variogram, c) apply Kriging using the usual equations and
obtain predictions. On the other hand, the methodology has
a set of disadvantages such as it will not necessarily provide

Fig. 2 Scatter plot of groundwater level (m) vs surface elevation (m)

Fig. 3 Experimental directional variograms of groundwater level
fluctuations with 30° angle tolerance along the four main geographical
directions, E–W, N–S, NE and NW

Table 2 Normalization results using Modified Box-Cox (MBC) trans-

formation: skewness coefficient ŝz; kurtosis coefficient k̂z

ŝz
k̂z

Initial head data 0.76 2.80

MBC −0.15 2.99
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probabilities to add up to 1 and sometimes the prediction may
end up beyond the zero to one interval, e.g. Kriging occasion-
ally provides negative weights-screening effect (Goovaerts
1997; Papadopoulou et al. 2009).

Results and Discussion

The performance of the Kriging-based geostatistical models is
evaluated by using the leave one out cross validation tech-
nique that is usually applied in small datasets (Witten et al.
2011). A series of well-known statistical measures is
employed to compare the true and estimated values of the
cross-validation procedure, such as the correlation coefficient
R, the Mean Absolute Error (MAE), the Root Mean Square
Error (RMSE) and the Mean Absolute Relative Error
(MARE).

Anisotropy was investigated by comparing directional
variograms in four main directions (Goovaerts 1997) using
an angle tolerance of 30°. Smaller tolerance values (15°) do
not permit a sufficient number of data pairs (i.e., at least 30) at
each lag. According to Journel and Huijbregts (1978), in order
to acquire a good variogram, there should be approximately
30 pairs of distances and values for every lag. In addition the
number of lags was reduced in order to achieve the required
pair number for directional variograms. As shown in Fig. 3,
there is no clear difference among the directional variograms

for the original data. In addition a test of geometric anisotropy
was performed based on the method of Covariance Hessian
Identity (Chorti and Hristopulos 2008; Hristopulos 2002).
This method is non-parametric, in the sense that it provides
an estimate of the aspect ratio (i.e. the ratio of the two principal
correlation lengths) and the orientation of the principal axes,
without requiring variogram estimation and modeling. The
aspect ratio is thus estimated at 0.75, while the short principal
axis is rotated by 8° with respect to the E-W direction. The
value of 0.75 does not differ significantly from unity. Indeed,
the isotropic hypothesis cannot be rejected with 95 % confi-
dence for ratios in the range [0.70 – 1.07] using the test given
(Spiliopoulos et al. 2011). In light of the above analysis, the
variogram function of the groundwater level is considered to
be isotropic (Ahmadi and Sedghamiz 2007).

The general approach that is used for interpolation applies a
normalizing transformation followed by OK on the trans-
formed variables, and it finally back-transforms the predic-
tions. The application ofMBCmethodology to the initial head
dataset improves their normality (Table 2). The normality im-
provement is also supported by histograms of the data before
and after the transformation (Fig. 4).

In terms of the spatial model that considers the head data
the parameters of the theoretical variogram models tested are
obtained by least squares fitting to the experimental omnidi-
rectional variogram of the transformed hydraulic head. The
3D Spartan model gives the best fit in terms of cross validation

Fig. 4 Histograms of the groundwater level data before (a) and after (b) the transformation with MBC

Table 3 Cross validation measures for spatial MBC-OK model with optimal variograms: MBC & OK: Ordinary Kriging with modified Box-Cox
transformation of data and back-transformation

Variogram model MAE (masl) BIAS (masl) MARE RMSE (masl) R

SP 5.32 0.03 0.17 7.20 0.90

SPH 5.41 0.08 0.17 7.43 0.90

M 5.65 0.04 0.18 7.70 0.89

SP Spartan variogram, SPH Spherical variogram, M Matérn variogram

Earth Sci Inform (2016) 9:437–448 443



results (Table 3) while the Spherical and theMatérn variogram
come close. The 2D Spartan function did not provide a good
fit for this dataset.

In the case of spatial model with trend component, RK is
applied. RK combines a trend function with interpolation of
the residuals. The residuals of the trend model also display
deviations from normality that are reduced by means of the
MBC transformation (Table 4). Similarly, histograms (Fig. 5)
present the normality improvement.

The omnidirectional experimental variogram is calculated
by applying the method of moments to the transformed resid-
uals of the T-DEM model. The Spartan variogram model
(Fig. 6) again provides the best fit in terms of cross validation
results (Table 5). The Spherical variogram provides similar
results to the Spartan model while third best is the Matérn
model.

Another method to test data normality improvement, is the
non-parametric Kolmogorov-Smirnov test. The test is applied
to examine if a sample comes from a reference probability
Distribution (Massey 1951). The test was implemented in
Matlab® environment using the function «kstest» for both
the transformed datasets. The null hypothesis for the
Kolmogorov-Smirnov test is that data follows the standard
normal distribution. Therefore, the null hypothesis was not
rejected for the transformed datasets at significant levels 5 %
and of 10 %.

The MBC-RK approach improves significantly the mean
absolute prediction error (4.27 masl) by over 1 m compared to

the MBC-OK (5.32 masl) approach. In addition the other es-
timation measures are at least similar (BIAS) but mostly im-
proved (RMSE, R, MARE). Considering overall the cross
validation measures the estimates based on the Spartan model
prevails compared to the other two optimal models.

The least squares sum for each fitted variogram model is
considered, which is an index of optimal fitting, for selecting
the optimal variogram model with Indicator Kriging interpo-
lation. Spartan model achieves the best fit (Fig. 7) over the
range of lags considered providing a value of 0.023 compared
to 0.029 for the spherical and 0.031 for the Matérn models.

The T-DEM trend model with RK and the IK methodology
are applied to estimate the groundwater level and the proba-
bilities of groundwater level to lie below a threshold value on
a 100×100 grid defined in normalized coordinate space (ac-
tual cell size: 114×47 m). In addition the uncertainties of the
estimations are also determined on a same grid size. Estimates
are obtained only at points that lie inside the convex hull of the

Table 4 Skewness ŝz and kurtosis k̂z coefficients of trend models
residuals following modified Box-Cox (MBC) normalization

ŝz
k̂z

Residuals 0.35 2.5

MBC −0.10 3.0

Fig. 5 Histograms of the trend model residuals before (a) and after (b) the transformation with MBC

Fig. 6 Plot of omnidirectional variogram of residuals (stars) after
applying MBC normalization and the best-fitted variogram models. The
residuals are derived by applying to the trend the ground surface elevation
(T-DEM). The number of pairs used at each lag distance (17 lags) are also
shown on the plot
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measurement locations (7317 grid points). The contour maps
in physical space are shown in Figs. 8, 9, 10, and 11. The
residuals of the T-DEM model are interpolated using the
Spartan variogram model (Fig. 6) with the following optimal
parameter values: σ2 = 17.77, ξ = 0.27 (in normalized units),
η1 = −1.99 while the indicators applying the Spartan
variogram model (Fig. 7) with optimal parameter values: σ2

= 0.25, ξ = 0.26 (in normalized units), η1= −1.90. The opti-
mum search radius used with the Spartan model (determined
by the leave-one-out cross validation test) is equal to 0.38
(normalized units) for both models. Near the origin and at
intermediate distances, which are crucial for the interpolation,
the Spartan model fitting is very good and overall follows
closely the trend of the experimental variogram. The negative
values of η1 causes a negative hole effect in the Spartan cor-
relation (Žukovič and Hristopulos 2008) that can be observed
in both variogram figures (Figs. 6 and 7).

The groundwater level map of the basin (Fig. 8) presents
the spatial variability of the groundwater level that change
from East towards West direction following the ground sur-
face elevation trend (Fig. 1). The higher levels are met at the
East of the basin while the lowest towards the West. The error
map (Fig. 9) identifies the locations of the Mires Basin with
the largest Kriging standard deviation. Hence, the borders of
the basin can benefit from further sampling according to RK
standard deviation results.

Indicator Kriging predictions (Fig. 10) shows that in the
center and towards the West borders of the basin the risk of
the aquifer level to decline below the set 25m.a.s.l threshold is
significant. Probabilities are increased closer to the river path
than higher away. The dependence is reasonable considering
that the agricultural activity in the area is concentrated along
the temporary river.

Estimation variance calculated through IK is usually
highest where wells distribution density is poor and variability
among neighbouring observations is large, while lowest
where wells distribution is good and variability is low (Hohn
1999). The variance range though depends on the quality of
the fitted theoretical variogram model. The accurate knowl-
edge of the correlation between point measurements at differ-
ent locations produces estimates of the prediction variance
that are minimal. This is succeeded when the fit of the model
variogram to the experimental is the optimum, as occurs here-
in (Fig. 7). Thus, the properties of the variogram model occur
through the whole area of interest leading to accurate esti-
mates with low variance even for regions of poor monitoring
density.

Significantly low IK variance values (maximum variance is
equal to 0.0525) are obtained herein due to the optimum spa-
tial dependence inference that is provided by Spartan
variogram model (Fig. 7). According to Chiles and Delfiner
(1999) the computed kriging variance is directly affected by
the variogram fit. In this work IK variance (Fig. 11) is very
low even at ungauged locations of 0 or close to 1 probability

Table 5 Cross validation
measures for spatial MBC-RK-T-
DEM model with optimal
variograms: T-DEM trend using
DEM surface elevation

Variogram model MAE (masl) BIAS (masl) MARE RMSE (masl) R

SP 4.27 0.07 0.15 5.90 0.91

SPH 4.46 0.05 0.15 6.23 0.90

M 4.75 0.08 0.16 6.50 0.88

MBC & RK: Residual Kriging with modified Box-Cox transformation of residuals and back-transformation

SP Spartan variogram, SPH Spherical variogram,M Matérn variogram

Fig. 7 Indicator omnidirectional variogram and the best-fitted variogram
models. The number of pairs used at each lag distance (18 lags) are also
shown on the plot

Fig. 8 Map of estimated groundwater level in the Mires basin using
MBC-RK-T-DEM spatial model, adapted on the real basin coordinates
and location in the valley (circles denote the monitoring locations and
solid black line the temporary river path)
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the groundwater level to lie below the set threshold value.
Therefore, no further variance analysis is required such as
conditional simulations to calculate the cumulative distribu-
tion function of the predictions (Deutsch and Journel 1992;
Goovaerts 1997; Kanevski et al. 2009; Olea 1999).

The final risk (probability) map (Fig. 10), considering the
calculated variance of the estimates (Fig. 11), shows that
around 25 % of the aquifer’s surface present significant prob-
ability the aquifer level to lie below the 25 m.a.s.l. This area
corresponds to almost 40% of the productive agricultural land
of the basin.

A very interesting characteristic that is identified in this
work is the shape of the modeled Spartan variogram.
According to a previous work (Varouchakis and Hristopulos
2013b) this shape can be explained with respect to the
pumping activity of the basin. The average distance between
the increment and the decrement in the variograms is equal to
150 m that lies between the range 105 to 160 m, which corre-
spond to the radii of influence range of the pumping wells in
Mires basin (Varouchakis and Hristopulos 2013b). Therefore,
the trend of the experimental and of the model variogram
expresses the aquifer behavior under pumping activity. As it

has been stated in a previous work more than 200 wells oper-
ate in the basin affecting the measurements at the monitoring
locations (Varouchakis and Hristopulos 2013b).

Conclusions

The optimal spatial interpolation approach for the spatial var-
iability of the groundwater level in Mires basin is based on
Residual Kriging with the Spartan variogrammodel applied to
the normalized (MBC) fluctuations. The present findings are
supported by the results of cross validation analysis. In addi-
tion, risk maps based on IK identify the vulnerable areas of the
basin that require intense monitoring and remedial actions to
avoid further decline of the aquifer. These are located at the
west part of the basin mainly along the river path. The recently
developed MBC transformation method shows an excellent
behaviour transforming both data and residuals closer to nor-
mal distribution. In addition the Spartan variogram model has
an excellent fit to the experimental variogram of the data,
residuals and indicators following closely their trend. Thus,
it constitutes a reliable alternative to assess the spatial depen-
dence of groundwater level data in interpolation studies.
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