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Abstract A critical step for kriging in geostatistics is estima-
tion of the variogram. Traditional variogram modeling com-
prise of the experimental variogram calculation, appropriate
variogram model selection and model parameter determina-
tion. Selecting of the variogram model and fitting of model
parameters is the most controversial aspect of geostatistics.
Shapes of valid variogram models are finite, and sometimes,
the optimal shape of the model can not be fitted, leading to
reduced estimation accuracy. In this paper, a new method is
presented to automatically construct a model shape and fit
model parameters to experimental variograms using Support
Vector Regression (SVR) and Multi-Gene Genetic
Programming (MGGP). The proposed method does not re-
quire the selection of a variogram model and can directly
provide the model shape and parameters of the optimal
variogram. The validity of the proposed method is demon-
strated in a number of cases.

Keywords Variogrammodeling .Multi-gene genetic
programming . Support vector regression . Geostatistics

Introduction

Central to the application of most geostatistical studies is the
precise modeling of the variogram, firstly termed by Matheron
(1963), because it not only characterizes the spatial behavior of
the interesting variables but also influences significantly on the
kriging interpolation (Chilès and Delfiner 2012; Hilário and
Manuela 2011; Desassis and Renard 2013). Despite many stud-
ies on the modeling of the variogram, it is still remained to the
difficult problem in the application of geostatistics (Minasny and
McBratney 2005; Li and Lu 2010; Oliver and Webster 2014).

Two usual variogram modeling approaches are the maxi-
mum likelihood (Kitanidis 1997) and least square methods
(Jian et al. 1996).

The likelihood-basedmethods choose and fit the variogram
models by maximizing of the joint likelihood function for the
observed values, which gain ground among geostaticians, es-
pecially to incorporate trend and external drift (Kitanidis
1983; Mardia and Marshall 1984; Zimmerman 1989; Kerry
and Oliver 2007, 2010; Lark 2012; Lark and Webster 2006;
Lark et al. 2006).

Compared with a least squares method, this method is more
statistically efficient, whereas the latter has certain computa-
tional simplicity and availability to be widely used within
geostatistical software packages (Zhang and Zimmerman
2007; Oliver and Webster 2014).

In the traditional least squares method, the estimation
of the variogram includes two steps. At first, the experi-
mental variogram is calculated directly from the observed
values at specific lags. The experimental variogram is a
finite set of discrete variances, whereas the underlying
function should be continues among all lag distances.
Therefore, the next step of the variogram estimation is to
fit a smooth curve which ignores the point-to-point erratic
fluctuation for the experimental values. The curve should
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be expressed as a mathematical formula to describe the
variances of the random processes with the changed lag
and guarantee nonnegative variances in the spatial predic-
tions. The modeling of the variogram is the process to
replace the discrete experimental values with the closest
negative definite function model. For this purpose, the
valid variogram model, namely basic structure is selected,
and then its model parameters are fitted.

The choice of model shape is particularly important,
whereas the known valid variogram model shapes to
satisfy above-mentioned conditions are limited to a
few simple functions. The previous studies on the pre-
cision of variogram estimators (e.g. McBratney and
Webster 1986; Pardo-Igúzquiza and Dowd 2001;
Marchant and Lark 2007a) assumed that the variogram
only conformed to some of commonly-used variogram
model types, such as a spherical, exponential or
Gaussian models. Those models, called basic structure
depend on the limited set of parameters, such as the sill,
the nugget effect, the range parameter, and the anisotro-
py ratios. Other basic structures need some shape pa-
rameters, for instance, the exponent in the power model.
Furthermore, some practitioners still find valid models
by eye, in which the final model is often selected by
the specialist knowledge of the characteristics of the
actual variable under consideration (Goovaerts 1997;
Ricardo 2006; Oliver and Webster 2014). For several
reasons including fluctuations in the experimental
variogram, it was considered as a particularly hard prob-
lem for them to select the best model type by simple
inspection. Hence, they adopt the manual method to
carry out the selecting of valid variogram model with
the naked eyes, or fitted all possible models to select
the model with the best fit goodness. Although
Pannatier (1996) proposed the improved method to
combine the variogram modeling by eye with statistical
evaluation, but this method consumed a lot of laborious
and times with lacking of objectivity (Oliver and
Webster 2014).

Once the set of basic structures, i.e. the shape of variogram
model is defined, the optimal model parameters would be
obtained by using standard minimization procedures. Several
least squares methods have been proposed for a variogram
modeling such as the ordinary least squares (OLS) (Journel
and Huijbregts 1978; Clark 1979), weighted least squares
(WLS) (Cressie 1985), and generalized least squares (GLS)
(Genton 1998). The principle of least squares methods is to fit
the model in order to minimize a cost function measuring the
distance between the estimated model and the observed
experimental variogram. Among of them, OLS method is
the simplest and GLS method is recommended for modeling
of variogram. Lahiri et al. (2002) proved that the GLS estima-
tor was asymptotically efficient, but the GLS criterion was not

feasible since the exact expression for the covariancematrix of
the variogram estimator was very difficult to obtain, even for
Gaussian processes. This is the reason why the inversion of
those covariance matrix and minimization by the GLS criteri-
on often is computationally prohibitive (Lahiri et al. 2002;
Hilário and Manuela 2011). Hilário and Manuela (2011)
pointed that these difficulties of the GLS could be overcome
by WLS. Recent studies showed that WLS method presented
the most satisfactory results in fitting variogram model
(Ricardo 2006; Emery 2010; Desassis and Renard 2013;
Oliver and Webster 2014). In the several proposals for the
weights, the approach proposed by Cressie (1985) are most
commonly used.

As with any methods to fit the variogram model, all
of them assumed the basic structure of model in ad-
vance and then found the optimal coefficients of pre-
defined model structure. The known basic structure of
variogram model are limited, it is very hard to pick the
optimal variogram model even for the achieved good
variogram fitting. Therefore, the estimation results
lacked with the objectivity and the optimal type of the
variogram model would not be found anytime to de-
crease the prediction accuracy. For this reason, the arti-
ficial intelligence (AI) methods could be recommended,
which have the ability to pick up optimal model only
based on input data.

Huang et al. (2012) and Chen et al. (2015) first introduced
the SVR-based variogram fitting method. The SVR models
based on the principle of structural risk minimization (SRM)
were interested for their higher generalization ability and easy
formulation only based on given data, which became popular
among various researchers in the machine learning communi-
ty (Kecman 2001; Garg et al. 2013b). Least square—support
vector machines (LS-SVM) variant of SVR was adopted for
predicting the performance of turning process (Çaydaş and
Hasçalık 2008; Shi and Gindy 2007). However, it did not
provide the explicit formulation between the input and output
process parameters, and gave the output values in the crisp
form (Garg and Tai 2014). In addition, the studies of Huang
et al. (2012) and Chen et al. (2015) were limited to the local
case studies, which did not prove the universality of their
method in various variogram modeling. Therefore, we pay
attention to genetic programming (GP), which possesses the
ability to evolve the models structure and the coefficients au-
tomatically (Cevik and Guzelbey 2007; Cevik and Sonebi
2008; Gandomi et al. 2011). Most popularly used variant of
GP is MGGP (Gandomi and Alavi 2011; Garg and Tai 2012,
2013; Garg et al. 2013a).

In this paper, we proposed the new variogram modeling
method based on MGGP and demonstrated the practicalities
of using the MGGP and SVR in the modeling of variogram
through comparison analysis. The modeling problem formu-
lation of the variogram is shown in Fig. 1.
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Methodology

Standard variogram modeling

Consider a spatial stochastic process {Z(x): x∈D}, where the
domain D is a subset of Rd, d≥1. Assume that Z(x) satisfies
the hypothesis of intrinsic stationarity:

∀x; xþ h∈D; E Z xð Þ−Z xþ hð Þ½ � ¼ 0; ð1Þ

∀x; xþ h∈D; E Z xð Þ−Z xþ hð Þf g2
h i

¼ Var Z xð Þ−Z xþ hð Þ½ � ¼ 2γ hð Þ:

ð2Þ

The function γ(h) is called the variogram, a function of lag
distance h only, and it is defined as the variance of the incre-
ments Z(x)-Z(x+h).

The standard variogram modeling consists of two stages.
The first stage is to calculate the experimental variogram.

The classical estimator of the experimental variogram was
proposed by Matheron (1962), and for a fixed h ∈ Rd, it is
defined as

γ̂ hð Þ ¼ 1

2N hð Þ
XN hð Þ

i¼1

Z xi þ hð Þ−Z xið Þ½ �2 ð3Þ

Where Z(xi+h) and Z(xi) are the actual values of Z at sam-
pled locations xi+h and xi, and N(h) is the number of pairs
separated by the vector lag distance h defined as following:

N hð Þ ¼ xi; x j
� �

: xi−x j ¼ h; i; j ¼ 1;…; n
� �

: ð4Þ

It is well known that this Matheron estimator has good
properties, such as unbiasedness and consistency (Hilário
and Manuela 2011).

Several factors affect the reliability of the experimental
variogram. The most important factor is the sample size,
which determines the reliability and accuracy of the experi-
mental variogram. Generally, the more sample data would be
helpful for the higher accuracy than ever. If the sampling in-
terval is larger than the correlation range of the process under
consideration, the experimental variogram would be flat:

‘pure nugget’ in the jargon. It is useless for prediction and tells
us only that all variations occur within a shorter distance. The
second factors are the lag interval and bin width. For data on a
regular grid or at equal intervals on transects, the natural in-
crement in the experimental variogram is one interval. Where
the data are irregularly scattered, the data points must be
grouped by the distance/direction. In irregular sampling
schemes, for the purpose of grouping pairs, Z(xi+h) is
regarded as a centroid of a distance class. Figure 2 illustrates
the geometry of grouping, in which any measurement inside
the shaded area (i.e. xj) is considered for the calculation of
γ̂ hð Þ, although it is not an exact distance h from xi. The judg-
ment is needed for choosing the lag interval and bin width. If
the lag interval is short and bin width is narrow, there would be
many estimates of γ(h), each based on few sample points and
subject to large error, and the variogram would appear ‘noisy’.
Else if the lag interval is large and bin width is wide, there
would be too few estimates of γ(h) to reveal the form of the
variogram. In practice, the lag interval h is typically taken
close to the value of the average sampling distance and the
bin width is sensibly determined by adjusting the lag tolerance
dh, the lateral tolerance db and the angular tolerance δ.

The second stage in standard method is to select the autho-
rized continuous variogram model and to fit it to the experi-
mental variogram. The variogram characterizes spatial vari-
ability of the variable under consideration. Not any continuous
function will serve, since the variogram models must satisfy
the conditional negative definiteness property as follows:

Xm
i¼1

Xm
j¼1

aia jγ xi−x j
� �

≤0 ð5Þ

for any {xi ∈ D⊂Rd | 1≤ i≤m, m∈N} and for any {ai ∈ R |
1≤ i≤m}, such that ∑i=1

m ai=0. This mathematical property
ensures that the variogram is the licit measure of the lag dis-
tance and all resulting variances are non-negative for all pos-
sible configurations of conditioning data (Journel and
Huijbregts 1978).

Although there is an infinite number of the negative
definite function, the basic shape of the variogram rising
from zero to reach the limiting value restricts to a few
negative definite functions to be interested. Webster and
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Fig. 1 Formulation of modeling
of variogram
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Oliver (2007) described those most commonly employed
authorized functions.

For example, the spherical model

γ hð Þ ¼ c0 þ c
3h

2a
−

h3

2a3

� �
0≤h≤a

c0 þ c h > a

8<
: ; ð6Þ

the exponential model

γ hð Þ ¼ c0 þ c 1−e−
h
a

� 	
ð7Þ

and Gaussian model

γ hð Þ ¼ c0 þ c 1−e−
h2

a2

� 	
ð8Þ

Here, c0 is the nugget effect, (c0+c) the sill and a the range.
They are the unknown parameters to be fitted. Nugget effect is
used to show the jump at h→0+, also means the white noise
caused by observations or data. Nugget effect, c0, is
partitioned into two sub-components: the error variance and
the micro variance. Among them, the micro variance repre-
sents the uncorrelated variation at the scale of sampling while
the error variance is the variation that remains unresolved
including any measurement error. The sill shows the asymp-
totic value lim

h→∞
γ hð Þ and range is the minimum distance where

γ(h) reaches sill. It means if the distance of two points is out of
the range, the covariance of the two random variables be-
comes zero. In Eq. (6)~(8), we can also know that c0≥ 0,
(c0+c) >0 and a>0.

Wackernagel (2003) pointed the implausible results from
the use of Gaussian model, and more recently Chilès and
Delfiner (2012) and Oliver and Webster (2014) reported the
ill-considered use of the Gaussian model, which was at the
limit of the acceptability for the random process and led to
bizarre predictions. Therefore, we only refer to the spherical
and exponential models in this study.

If the basic variogram model is selected, the optimal model
parameters would be determined by several least squares pro-
cedures. The most feasible approach is the weighted least
squares. One of the advantages of this option is that it auto-
matically gives more weight to early lags with the maximum
number of the pairs and down the weight to lags with the small
number of the pairs to produce the unbiased estimated mini-
mum variance.

Suppose the vector of variogram parameters is denoted by
α= (c0, c, a) and the basic variogrammodel is denoted by γ(hi;
α), and the experimental variogram model is denoted by

γ̂ hj

� �
. The objective is to find the value of α for minimizing

the error variance as follows:

X
i¼1

nb

wi γ̂ hið Þ−γ hi;αð Þ
n o2

; ð9Þ

Where nb is the number of bins and the hi, i=1,…, nb are
the lag distances for which the experimental variogram is es-
timated. The weigts wi account for the varying reliability of
each entry of the experimental variogram due to the number of
the pairs used to calculate γ̂ hið Þ and the inverse relation be-
tween the reliability of γ̂ hið Þ and the actual value of γ(hi). The
weights chosen in this paper are those given by Cressie (1985)

wi ¼ N hið Þ
γ̂ hið Þ2

ð10Þ

In above-mentioned traditional approach, the variogram
modeling has relied on fitting the known conditional negative
definite functions such as spherical, exponential, and
Gaussian models. Any positive linear combinations of the
variogram models were also considered as the valid functions
(Deutsch and Journel 1998).While this provided the workable
mechanism for modeling optimal variograms, there were
some cases to do not well fit with this framework. Figure 3
shows the example commonly observed in the experimental
variograms, which is not easy to fit with the conventional
model shapes (Pyrcz and Deutsch 2006).

The application of more flexible variogram modeling
method is inhibited by the difficulty in ensuring the condition-
al negative definiteness. There is a largely unexplored suite of
the conditional negative definite models to provide the addi-
tional flexibility. We find the corresponding candidate in the
artificial intelligence (AI) methods such as SVR and MGGP.

In the next sections, we represent how to carry out more
flexibly the modeling of variogram from the experiment
variograms without assuming the basic structures of
variogram based on the SVR and MGGP.

SVR-based method

The most popular and advanced technique in the field of arti-
ficial intelligence is the support vector machine (SVM). The
structure of SVM is shown in Fig. 4.

The SVM model is comprised of the input process vari-
ables, support vectors, kernel function and output variable.
SVM has been well applied to solve the classification prob-
lems and it is known as SVR for applying to regression prob-
lems (Gupta 2008; Hearst et al. 1998; Byvatov and Schneider
2003; Garg et al. 2013b). Unlike the regression analysis or
other statistical models, SVR is not based on the statistical
assumptions (model structure, error dependency, etc.), and
does not require any assumption of the model structure and
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also easily formulates the models based only on the given
data. The SVR models are known for their unique capability
of imparting generalization ability to the model. Therefore,
SVR has been extensively used in solving the symbolic re-
gression problems (Kecman 2001; Hadi and Ahmed 2006; Al-
Ahmari 2007; Basak et al. 2007).

SVR is based on the statistical learning theory of which the
framework is formulated based on the structural risk minimi-
zation (SRM) principle. The SRM principle is the modified
form of the empirical risk minimization principle. SRM min-
imizes the upper bound on the expected risk and therefore play
a key role in the SVR algorithm formulation. The original
input variables in the lower dimensional space are projected
into the higher dimensional space so as to convert the regres-
sion problem with non-linearity to the linear regression prob-
lem. The conversion is carried out using several nonlinear
hyperspace functions.

The training data {(xi, yi)}i=1
N ∈Rm×R are used to formulate

the SVR model, where xi and yi are the input variable and the
actual output value of the process, respectively. In the present
work, there are one input (i.e. lag distance) and one output (i.e.
variogram). The SVR model is given by:

y ¼ f xð Þ ¼
XN
i¼1

wi∂i xð Þ þ b ¼ wT∂ xð Þ þ b ð11Þ

where the function ∂i(x) is the feature space to be converted
into the higher dimensional space, and w= [w1w2⋯wN]

T and
∂= [∂1∂2⋯∂N]T.

Equation (11) represents the non-linear regressionmodel as
the hyper-surface projected from the input variable space into
the higher dimensional space. The regression model given by
∂(x) represents the converted linear form of the original non-
linear model in the higher dimensional space. Based on the
data obtained from the process, the chosen kernel function
learns and minimizes the regularized risk function (Lr). By
this optimizing risk function Lr, the parameters, namely, sup-
port vector weight (w) and bias (b), are evaluated.

Lr wð Þ ¼ 1

2
wTwþ λ

XN
i¼1

yi− f xð Þj je ð12Þ

where

yi− f xð Þj je ¼
0 ; if yi− f xð Þj j < ε
yi− f xð Þj j−ε; otherwise



ð13Þ

The regularization parameter (λ) regulates the trade-off be-
tween the approximation error and the weight vector norm

( wk k ¼
ffiffiffiffiffiffiffiffiffi
wTw

p
). The approximation error will be decreased

according to the increase λ or the weight vector norm, but this
may not ensure the higher generalization ability of the model

y = f (x)

Tolerance width

Support
vectors

x

y

ε

Fig. 5 SVR model and its support vectors and tolerance width
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and lead to the over-fitting. λ and ε are defined by the user
where ε is the tolerance level or band width of the model
(Vapnik 1995). (|yi− f(x)|e) is the ε-insensitive loss function
given in Eq. (13). If the predicted values f(x) lies within the
defined tolerance width ε, the loss function is zero while for
points outside ε, the loss function equal to the absolute mag-
nitude of difference between the values predicted by the SVR
model and tolerance width ε.

The points on the margin lines defined by (y= f(x) ± ε) are
called the support vectors, whereas those outside these lines
are known as the error set (Fig. 5).

Increasing ε decreases support vectors and thus lead to the
data reduction.

In this study, we will use the LS-SVM toolbox (Pelckmans
et al. 2002) built in MATLAB for implementing the SVR

method. Least squares support vector machine, originally pro-
posed by Suykens et al. (2001), is a variant of SVM. LS-SVM
transforms the inequality constraints of the standard SVM to
equality constraints. The recent extensive applications of this
toolbox (Salgado and Alonso 2007; Salgado et al. 2009;
Çaydas and Ekici 2012; Saptoro et al. 2012; Garg et al.
2014d) for solving symbolic regression problems in the vary-
ing nature show that the chosen method is reliable. Huang
et al. (2012) and Chen et al. (2015) also used LS-SVM for
modeling of variogram.

The implementation and performance of the SVR-based
variogram model is discussed in “Case study”.

MGGP-based method

Except for SVR, the promising variogrammodeling technique
without assuming their basic structure is MGGP. In order to
understand the concept of the proposed methodology MGGP-
based variogram modeling, we first discuss about GP.

GP is considered to be the most famous for solving sym-
bolic regression problems and is widely used in modeling
process of varying nature (Koza 1994; Madár et al. 2005;
Wang et al. 2011; Garg et al. 2013a, b). GP based on the
Darwinian’s theory of “survival of fittest” finds the optimal
model automatically by mimicking the process of the evolu-
tion in nature (Koza 1994). GP works on the principles of
genetic algorithm (GA) but there are several differences be-
tween GP and GA (Garg et al. 2014a, b, c). The solutions in
GP are usually represented by the tree structures of varying

New GP models

swapping

GP model1: y = 8sin(x )+6x1 2

sin

x1

8 6 x2

GP model2: y = tan(x )+(x ÷8)1 2

x1
8x2

tan ÷

New GP model1: y = 8sin(x )+tan(x )1 1

sin

x1

8 x1

tan

New GP model2: y = 6x +(x ÷8)2 2

8x2

÷

6 x2

Fig. 7 Crossover operation of
GP model

^

x 2

8 5

6x

elements of
Function Set

elements of
Terminal Set

2GP model: y = 8x +6x+5

Fig. 6 Example of GP model
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sizes while the solutions in GA are represented by strings
(binary or real number) of fixed length. Thus researchers said
that GA is the parameter optimization method whereas GP is
the structure optimization method. GP generates both of mod-
el types and its coefficients automatically based on the given
input data. The main advantage of GP over the other regres-
sion analysis and statistical modeling techniques is to have the
ability of generating the mathematical expressions without
assuming any prior form of the existing relationships.

GP algorithm is started by generating the models randomly.
The numbers of the generated models are represented by the
population size. The models are encoded in form of a tree,
each tree node representing a function, variable or a constant
number by combining the elements randomly from the func-
tional and terminal set. The function set F usually comprise of
elements such as arithmetic operators (+, −, ×, /, etc.), non-
linear functions (sin, cos, tan, exp, tanh and log), Boolean
operators (AND, OR, etc.), or other operators as defined by
the user. The terminal set Tconsists of the elements such as the
random numerical constants and input variables of the pro-
cess. An example of the GP model is shown in Fig. 6. The
performance of the initial population in the models is evaluat-
ed on the training data according to the fitness function, name-
ly, root mean square error (RMSE), given by

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX N

i¼1
Gi−Aij j2
N

vuut � 100 ð14Þ

where Gi is the predicted value of ith data sample by the GP
model, Ai is the actual value of the ith data sample and N is the
number of training samples.

Based on the performance on training data, the algorithm
selects models for the genetic operations such as reproduction,
mutation and crossover. The selection methods such as tour-
nament selection, rank selection, and roulette wheel are used
to select the individuals for the genetic operations. The most
commonly used method is the tournament selection, which is
well known for maintaining the genetic diversity in the popu-
lation. The purpose of performing the genetic operations is to
form the new population which represents the new generation.
The individuals with minimum fitness value would be
reproduced in the next generation whereas the crossover and
mutation operations are applied on the remaining selected

x3

sin

1.880.36

MGGP model:
y =d0+d1(0.36x3+sin(x2 x1))+d2(1.88x3+sqrt(x2))

x2 x1

x3 x2

Gene1 Gene2

sqrt

Fig. 9 Example of MGGP model
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Fig. 8 Mutation operation of GP
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individuals. The subtree crossover operation is shown in
Fig. 7, in which two branches are selected randomly from
two trees and swapped. The subtree mutation operation is
shown in Fig. 8, in which the node (terminal or functional)
is selected at random from the given tree to be replaced by
branch of the new generated random tree. This iterative algo-
rithm of generating the new populations continues until the
termination criterion is satisfied. The termination criterion can
be the maximum number of generations or the threshold error
of the model as specified by the user, whichever is achieved
earlier.

MGGP is the robust variant of GP, which effectively com-
bines the model structure selection ability of the standard GP
with the parameter estimation power of the classical regres-
sion by using the new characteristic called ‘multi-gene’. In
traditional GP method, the model is the single tree/gene ex-
pression whereas the model formed in MGGP is the linear
combination of several low order non-linear trees/genes which
each of them is the traditional GP tree (Searson et al. 2010).
Recently, the MGGP have been used successfully for engi-
neering modeling problems (Gandomi and Alavi 2012; Garg
et al. 2014b). It has been shown that MGGP regression would
bemore accurate and efficient than the standardGP for model-
ing the nonlinear problems.

Specifically speaking, the key difference between GP and
MGGP is that, in the latter, the model participating in the
evolution is the combination of several sets of genes/trees.
For the system with u input of dimension Rn×m to produce
the model output y with dimension Rn×1, where n is the num-
ber of observations taken and m is the number of input vari-
ables, we could produce the tree structure which introduces
the mathematical relationship:

ŷ ¼ f u1;⋯; uið Þ ð15Þ

In MGGP symbolic regression, each prediction of the
output variable ŷ is formed by the weighted output of
each of the trees/genes in the multi-gene individual plus
the bias term. Each tree is the function of zero or more
of the i input variables u1, …, ui. Mathematically, the
MGGP model can be written as:

ŷ ¼ d0 þ d1 � tree1 þ⋯þ dM � treeM ð16Þ

whered0 represents thebias of offset termwhiled1,…,dM are the
gene weights and M is the number of genes (i.e. trees) which
constitute the available individual. The weights (i.e. regression

Table 1 Parameter setting for MGGP

Parameters Setting values

Population size 300

Number of generations 200

Tournament size 20

Function set (F) Multiply, plus, minus, protected
divide, protected power, tanh,
exp, atan, ifth

Terminal set (T) h (i.e. lag distance), [−2 2]

Crossover probability 0.85

Reproduction probability 0.10

Mutation probability 0.05
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coefficients) are automatically determined by the least
squares procedure for each multi-gene individual. In
multi-gene symbolic regression, each symbolic model
is represented by number of GP trees weighted by linear
combination. Each tree is considered as the gene by
itself. The typical example of MGGP model and its
mathematical expression are shown in Fig. 9.

The MGGP algorithm is outlined as follows:
BEGIN
Step1: Formulate problem
Step2: MGGP algorithm
Begin
2.a Set initial parameters such as func-

tion and terminal set, number of genera-
tions, population size, maximum depth of
gene, maximum number of genes to be combined,
probability rate of genetic operators and
termination criterion, etc.

2.b Randomly generate initial population
of genes

2.c Form models by combining set of genes
using least squares method

2.d Evaluate performance of models based
on the fitness function

2.e Apply genetic operations and form the
new population

2.f Cross-check the models performance
against the termination criterion, if not
satisfied, GO TO Step 2.e, and else if satis-
fied, select the best model

End;
END;
Returning to the aim of the present work, our goal is to get

the variogram model from the experimental variograms by
using MGGP. For this purpose, we can formulate problem as
follows:

Input and output variables of the process are the lag
distance h and variogram γ(h), respectively. The training
data can be composed of the lag distances h1, …, hN
and experimental variograms γ̂1, …, γ̂N . The fitness
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function used for performance evaluation of population
in the variogram modeling can be defined by:

fitness ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX N

i¼1
γi−γ̂i
��� ���2
N

vuut
ð17Þ

Where γi is the predicted value at the ith lag distance by the
MGGP model, γ̂i is the experimental variogram value at the
ith lag distance and N is the number of training samples.

MGGP-based variogram model is selected based on mini-
mum fitness on training data from all runs. This implementa-
tion and performance are discussed in “Case study”.

Case study

This section aimed to compare the proposed methods with the
traditional method in the modeling of variogram to demon-
strate their performance. Studies of Huang et al. (2012) and
Chen et al. (2015) using SVR limited to variogram modeling

with no nugget effects, and also they did not consider condi-
tion about the size of input data for modeling variogram (i.e.
number of discrete points corresponding to experimental
variogram). It is well known that a good fit of the variogram
near the origin is especially important (Cressie 1991; Stein
1988). In addition, AI method such as SVR depends greatly
on the size of training data. For this illustration, we have se-
lected three data taken from the geostatistical studies well-
known in many of geoscientists. The first and second is the
simulated coal mine and iron ore deposit data from the Clark’s
geostatistical study (Clark 1979, 1983; Clark and Harper
2000), respectively, and the third data is nickel (Ni) concen-
trations in the topsoil of a region of the Swiss Jura, analyzed
by Lark (2000).

The coal mine data based on a real coal seam in Southern
Africa. Several measurements are made on each sample:
width of coal seam (m); calorific value of the coal (KJ); and
the vertical location of the top of the seam (elevation, m).
Among of them, the calorific value of the coal is selected for
the performance of the variogram modeled by various
methods. It includes 116 borehole samples drilled into a coal
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seam. After outlier processing, 110 data are used for our anal-
ysis. The calorific value of the coal ranges from 19.89KJ to
26.90KJ. All coordinates are in meters.

The simulated data of low-grade iron ore deposit used in
Clark’s geostatistical studies (Clark 1979, 1983), with an over-
all average of about 35 % Fe, has been sampled by means of
50 randomly positioned boreholes perpendicular to the dip of
the ore body. This iron ore grades data are known to have a
variogram model with no nugget effect.

The coal mine data and iron ore deposit data can be
accessed from http://www.kriging.com/datasets/.

Jura data were collected and described by Atteia et al.
(1994) and analyzed fairly exhaustively by the authors
(Atteia et al. 1994; Webster et al. 1994; Goovaerts et al.
1997; Lark 2000; Marchant and Lark 2007b). Following
Lark (2000), the data set was divided into a group of 106
prediction data and one of 104 validation data. Among them,
the former set consisted of 10 intersecting transects of differ-
ent length, which would be used in our analysis. At each site
the metal concentrations of the soil to 25 cm is measured, in
which nickel value ranges from 5.24 to 43.68 mg/kg.

Jura data can be accessed from http://home.comcast.net/
~pgoovaerts/book.html/.

The layouts of three data sets are shown in Fig. 10.

The analyses of these data sets described in the literature
show the little evidence of anisotropy. Therefore, the
variograms in this study were modeled assuming isotropy.

Our work is carried out according to the flow process as
shown in Fig 1.

Calculation of experimental variogram

The experimental variograms for various cases are calculated
based on Eq. (3). It was already mentioned that the lag interval
and bin width affect the reliability of the experimental
variogram, as well as the sample size.

Experimental variogram for the coal mine data is calculated
at lags hl=225× l (meter), l=1, …, 30. The lags for iron ore
deposit data are hl=225× l (meter), l=1,…, 30. In Jura data,
the calculation of experimental variogram was applied for lag
classes centred on 250 m, 500 m, 750 m, …, 2000 m.

Implementation of traditional WLS variogram estimator

Based on the principle as shown in “Standard variogram
modeling”, the rational shape of the variogram model is se-
lected and the weighted least-squares algorithm recommended
by Cressie (1985) is applied in modeling of the variogram. In
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all cases, the spherical or exponential model gave the best fit
as judged by the Akaike information criterion (McBratney and
Webster 1986; Oliver and Webster 2014).

SVR implementation

The selection of kernel function plays the key role in learning
and minimizing the loss function efficiently since it affects the
generalization ability of the SVR model. Huang et al. (2012)
and Chen et al. (2015) used RBF kernel function in the model-
ing of variogram. But the select of the kernel function must be
changed according to the practical demands. In this work, four
kernel functions such as linear, polynomial, radial basis func-
tion and multi layer perceptron are chosen for the performance
of SVR models. Among them, the Gaussian radial basis func-
tion (in the coal mine data and iron ore deposit data) and
polynomial (in Jura data) kernel functions show the advantage
for the faster and efficient training, and therefore, they are
selected for our analysis.

The optimal kernel parameters of λ, σ2 (radial basis func-
tion) and t (polynomial) are determined using a combination
of coupled simulated annealing (CSA) and the grid search
method. The CSA determines the good initial values of λ,
σ2 and t, and then, these are passed to the grid search method,
which uses cross-validation to fine tune the parameters.
Optimal parameters for coal mine data are λ=42.8769 and
σ2 =15938.4781. λ=31.0137 and σ2 = 12133.0025 for iron
ore deposit data and λ=1.6487 and t=1.6487 for Jura data
are set, respectively.

MGGP implementation

In modeling of the variogram, the implementation of MGGP
method also requires adjustment of its parameters.

The parameter setting is important since it affects the gen-
eralization ability of the MGGPmodel. The parameters select-
ed based on trail-and-error approach are shown in Table 1.

The elements in the function set are the broader set of
functions so as to evolve the variety of the non-linear mathe-
matical models. The elements in the terminal set consists of
the one input process variable (i.e. lag distance h) and random
constants chosen in the range [−2 2]. The range of random
constants is chosen so as to take into account the variance of
measurement errors in the data collection.

The parameters like population size and number of gener-
ations fairly depends on the complexity of the regression prob-
lem. In generally, the population size and number of genera-
tions should be fairly small for training data of the large sam-
ples. Since the MGGP model is formulated from the set of
genes, the model will have the higher complexity i.e. greater
number of nodes along with the evolution, and may result in
over-fitting. The restriction on the maximum number of genes
and depth of the gene exerts influence over the complexity of
the models and results in accurate and compact models. One
of major goals in this study is to find the smooth curve that
ignore the point-to-point erratic fluctuation based on the ex-
perimental variogram values so as to ensure the conditional
negative definiteness. Therefore, in this study, the maximum
number of genes andmaximum depth of gene are kept at 3 and

Table 3 Mathematic expressions of different variogram models for iron ore deposit data

Model Mathematic expression

Spherical model

γ hð Þ ¼ 23:6191� 3h

2� 113:1663
−

h3

2� 113:16633

� �
; 0≤h≤113:1663

23:6191; h > 113:1663

8<
:

Exponential model
γ hð Þ ¼ 24:8005� 1−e− h

60:1255

� 	

MGGP model
γ hð Þ ¼ −334:606−66:6977� 1:0206h

� �0:2722 þ 0:9650� h1:7705 þ 319:68� atan 1:0206h
� �þ 191:318� atan 0:9758h

� �
−0:1545� h1:6714; 0≤h≤305:4765

26:6630; h > 305:4765




Table 2 Mathematic expressions of different variogram models for coal mine data

Model Mathematic expression

Spherical model

γ hð Þ ¼ 0:9166þ 2:2190� 3h

2� 2923:3
−

h3

2� 2923:33

� �
; 0≤h≤2923:3

0:9166 þ 2:2190; h > 2923:3

8<
:

Exponential
model γ hð Þ ¼ 0:6452þ 2:6102� 1−e− h

1204:7

� 	

MGGP model γ(h) = 2.6164− 2.3376× (0.9996)2h+ 0.2595× h0.1082
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2 for the coal mine data and Jura data and 3 and 5 for the iron
ore deposit data, respectively.

Assessments of the various variogram models

The variogrammodeling result obtained from the three model-
ingmethods, traditionalWLS, SVR andMGGP, are illustrated
in Figs. 11, 12, and 13 and Tables 2, 3, and 4.

As shown in Figs. 11, 12, and 13, the coal mine data and
Jura data have the variogram with nugget effect while the iron
ore deposit data have one with no nugget effect. In addition,
the number of discrete points for modeling of variogram in the
iron ore deposit and coal mine data are relatively large (30 and
50, respectively) whereas one in the Jura data small (8 of
discrete points).

In all cases, the SVR-based and MGGP-based variogram
models are shown in Figs. 11, 12, and 13, which indicate these
two models have impressively learned the non-linear relation-
ship between spatial variation (output variables) and lag dis-
tance (input variables) without assuming their basic structure
in comparison with the traditional WLS method.

Now, we have to test whether these specified functions
satisfy the conditionally negative-definite. For this purpose,
Bochner’s theorem can be applied directly to assert that γ(h)
is conditionally negative definite.

Theorem (Bochner): A continuous real function –γ(h) de-
fined in Rn is continuous and positive definite if and only if it
is the Fourier transform of a positive bounded Borel measure
F(du):

−γ hð Þ ¼
Z

e2πi u;hh iF duð Þ ¼
Z

cos 2π u; hh ið ÞF duð Þ ð18Þ

with
Z

F duð Þ < ∞

where u represents the frequency, i the unit pure imaginary
number. That is, we must take the Fourier transform of –γ(h)
and testify that it is positive bounded.

The obtained MGGP variogram models consist of the lin-
ear combination of the complicated functions with the positive
or negative coefficients. This makes it difficult to take the
Fourier transform of the obtained variogram model using the
analysis method. Therefore, we used the numerical approxi-
mation method to see whether its Fourier transform have the
positive bounded symmetric measure. The obtained results
(Figs. 14, 15, and 16) show that it is positive bounded, sum-
mable ∫F(du) <∞ and then that the MGGP variogram models
is a valid for satisfying the conditionally negative definiteness
property.

When the size of input data is small (in the case of Jura
data), the MGGP model is more robust than SVR model. In
addition, MGGP approach completely surmounts the defi-
ciency of SVR that does not provide explicit formulation of
obtained variogram model (Table 2, 3, and 4).

In the cases of Coal mine and Jura data, MGGP model is
almost close to the exponent model. However, in the case of
Iron ore deposit, it reflects more exactly the non-linear rela-
tionship between the experimental points than in the tradition-
al WLS method.

Once the variogram was estimated, it would be used in the
kriging interpolation. Kriging predicts the unknown values
from the weighted average of the sparse sampled values in
the neighborhood of non-sampled location based on the sto-
chastic model of the spatial variation i.e. the variogrammodel.
The estimate of the error variance for each prediction is also
generated by the kriging. Performance of the variogrammodel
must be assessed with the results of kriging interpolation. For

Table 5 Hypothesis testing to compare the kriging prediction using
MGGP and SVR models

95 % CI p value

Coal mine Iron ore deposit Jura data

MGGP SVR MGGP SVR MGGP SVR

Mean t test 0.4922 0.4827 0.4881 0.4905 0.4922 0.4979

Variance F test 0.9364 0.8632 0.7986 0.7914 0.8101 0.8320

Table 4 Mathematic expressions of different variogram models for Jura data

Model Mathematic expression

Spherical model

γ hð Þ ¼ 27:1þ 29:2� 3h

2� 1542
−

h3

2� 15423

� �
0≤h≤1542

27:1 þ 29:2 h > 1542

8<
:

Exponential
model γ hð Þ ¼ 12:6551þ 44:4545� 1−e− h

462:7579

� 	

MGGP model γ(h) = 52.8865 + 0.4094× (atan(h) + 0.0048h)− 42.3957× 0.9975h
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this purpose, here we used the ordinary kriging prediction to
enable the fair comparison to bemade between the variograms
modeling by the traditional WLS, SVR and MGGP method.
The kriging variances were also computed from the corre-
sponding variogram models.

As the comparison of the kriging interpolation results, the
cross-validation technique was used. That is, we attempt to
validate our models by dropping out each observed values
and cross estimating the value at that location from the neigh-
boring residual samples. For each spatial location xi, based on
the set of observations without Z(xi), a predictor of Z(xi) is
calculated as following:

Ẑ xið Þ ¼
X
j≠i

λ jZ x j
� � ð19Þ

And their kriging variance is obtained correspondingly.
Firstly, hypothesis tests are used to compare the goodness of

krigingpredictionusingtheMGGPandSVRmodels.Thesesare t
tests to test themeanand f tests forvariance (Table5).For the tand
f tests, the p values of the two models are >0.05, so there is not
enough evidence to conclude that the observed values and pre-
dicted values from these twomodels differ. Therefore, all the two
models have statistically satisfactorygoodness of the krigingpre-
diction from the sample points.

And then, the best method of variogram modeling to give
the good kriging prediction is determined by comparing these
modeling methods using the three statistics given by:

RMSPE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

Z xið Þ−Ẑ xið Þ
h i2

vuut ð20Þ

MAPE ¼ 1

N

XN
i¼1

Z xið Þ−Ẑ xið Þ
��� ��� ð21Þ

θ xð Þ ¼
Z xð Þ−Ẑ xð Þ

n o2

σ2
K xð Þ ð22Þ

Where Z(x) is the observed value at sampling location x,
Ẑ(xi) is the predicted value at that location using the estimated
variogram model, σK

2 (x) is the corresponding kriging variance
and N is the number of points for cross-examination. MAPE
can express the estimation accuracy generally, and RMSPE is
the fundamental measurement for comparing the accuracy of
different interpolation methods. RMSPE is smaller, the inter-
polation method is better. Error statistics combined with
kriging variance is known as the useful statistic for validation
of kriging (Fernández-Casal and Francisco-Fernández 2014;
Lark 2000). We follow Lark (2000) and assess the variogram
models with his statistic θ(x). If the correct variogram is

modeled, θ (the mean of θ(x)) should be 1 since the kriging
variances must be consistent with the observed variances
(Lark 2000; Marchant and Lark 2007b; Fernández-Casal and
Francisco-Fernández 2014). However, the outliers in the
cross-validation data will influence θ(x) irrespective of their
effect on the variogram estimate. Since outlier occurred at x
will affect the Z(x) term in Eq. (21) or the outlier occurred
close to x will affect the Ẑ(x) and σK

2 (x) term, Lark (2000)

proposes ~θ the median of θ(x) for a more robust measure of
the suitability of the estimated variogram model. If the correct
variogram model is used in the kriging interpolation at the

cross-validation locations, then the expectation of ~θ would
be 0.455 (Lark 2000).

Table 7 assessment of different variogram models by error statistics in the iron ore deposit data

Model RMSPE MAPE
~θ xð Þ

Spherical model 3.6285 2.9096 0.5217

Exponential model 3.7194 3.0618 0.5063

SVR model 3.4879 2.7598 0.4684

MGGP model 3.3854 2.7108 0.4605

Table 6 assessment of different variogram models by error statistics in the coal mine data

Model RMSPE MAPE
~θ xð Þ

Spherical model 1.5183 1.1872 0.7263

Exponential model 1.4656 1.1464 0.6283

SVR model 1.4399 1.1251 0.4327

MGGP model 1.4178 1.1056 0.4702
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The results of error statistics analysis in all cases are shown
in Table 6, 7, and 8, where the both of SVR and MGGP
methods yielded the better results for three measures than
the traditional WLS method. Especially, in the case of iron
ore deposit, they yielded the best results.

In all cases, the value of ~θ xð Þ obtained from the WLS
method was significantly larger than the expected value for
the correct variogram. This indicates that the variance is

underestimated. However, the values of ~θ xð Þ obtained from
the SVR and MGGP variogram models were much closer to
the expected value of 0.455 than those of the traditional WLS
models. The accuracy of selected variogram model is known

to be more sensitive to ~θ xð Þ than RMSPE or MAPE (Lark
2000; Marchant and Lark 2007b). This shows an improved
performance of SVR andMGGPmethod against the tradition-
al WLS method.

Compared with the MGGP and SVR model, in the case of
Coal mine data and Iron ore deposit data the performance of
SVR model is slightly lower than the MGGP model. In the
case of Jura data, the value of RMSPE and MPAE obtained
from SVR model is slightly better than MGGP model, where-

as the value of ~θ xð Þ was smaller than the expected value for
the correct variogram while those of MGGP is closer to one. It
indicates thatMGGPmodel is rarely affected than SVRmodel
by the discrete degree and size of the input points for the
variogram modeling.

Conclusions

The variogram modeling is the critical stage for the kriging
interpolation because it becomes the mouthpiece of the spatial
variation in the real field and its exact estimation can affect the
interpolation accuracy. From the case studies, we can con-
clude as following:

Firstly, the performance of SVR-based variogram model-
ing method is tested for various cases such as the case
with/without nugget effect, using relatively large/small num-
ber of the input data for modeling of the variogram.

Secondly, MGGP-based method as well as SVR-based
method for variogram modeling has the ability to fit more
exactly experimental variogram without assuming the basic
model shape and reflect more objectively spatial variation of

the real field comparing with traditional WLS method, and
improve the kriging interpolation precision significantly.

Thirdly, MGGP method overcomes the defect of the SVR
that does not provide the explicit formulation for the
variogrammodel. In addition, MGGPmethod is more flexible
than SVR in the case the discrete degree and size of input data
for modeling of variogram are changed.

In a word, the application of MGGP has the potential value
in variogram modeling.

The present study is limited to the three set of case studies
which have been done previously by other researchers. Future
work perhaps would generate the more realizations to evaluate
the benefits in implementing AI models such as MGGP and
SVR for the modeling variogram and prediction of the ore
grade.
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