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Abstract Climate regionalization is an important but often
under-emphasized step in studies of climate variability. While
most investigations of regional climate make at least an implicit
attempt to focus on a study region or sub-regions that are climat-
ically coherent in some respect, rigorous climate regionaliza-
tion––in which the study area is divided on the basis of the most
relevant climate metrics and at a resolution most appropriate to
the data and the scientific question––has the potential to enhance
the precision and explanatory power of climate studies in many
cases. To facilitate the application of rigorous regionalization for
climate studies, we introduce an improved hierarchical clustering
method, describe a new open-source R package designed spe-
cifically for climate regionalization, and offer concise sugges-
tions for performing appropriate regionalization. This paper de-
scribes the regionalization algorithms and presents a demonstra-
tion application in which the R package is used to regionalize
Africa on the basis of interannual precipitation variability. Both
the proposed methodology and the R package can be used for a
broad range of applications and over different areas of the globe.

Keywords Climate regionalization . Spatio-temporal
analysis . Africa . Precipitation . Hierarchical clustering .

Hybridclustering .Multi-variateclustering .Clustervalidation

Introduction

Climate regionalization is the process of dividing an area
into smaller regions that are homogeneous with respect to
a specified climatic characteristic. Regionalization is a fun-
damental exercise in climate studies because it enables us to
distinguish between the mechanisms responsible for spatio-
temporal variability specific to each region (e.g., Dezfuli and
Nicholson 2013; Nicholson and Dezfuli 2013). Methodolog-
ically, climate regionalization is typically achieved using
some form of objective multivariate statistical technique.
Cluster Analysis (CA) of various types has been applied
widely for this purpose (e.g., Burn 1989; Gong and
Richman 1995; Ramachandra Rao and Srinivas 2006; Isik
and Singh 2008; Dezfuli 2011). CA methods are divided
into two main categories: hierarchical and nonhierarchical
(or flat) methods (Jain et al. 1999), and hierarchical cluster-
ing in turn includes two different approaches: agglomerative
(or bottom-up) and divisive (or top-down).

Each clustering technique has its own advantages and
shortcomings, and there is no clear consensus in the litera-
ture regarding the best-performing method (Manning et al.
2008). Recent studies, however, have identified a number of
advantages of agglomerative hierarchical clustering (AHC)
relative to other methods. First, AHC offers an easily under-
standable cluster definition process that successively merges
the most similar members (or small-size clusters). The divi-
sive hierarchical approach is harder to trace, as it splits clus-
ters using a flat clustering algorithm (Cimiano et al. 2004;
Manning et al. 2008). Second, AHC methods are more de-
terministic, informative and predictable than the highly var-
iable nonhierarchical methods that return unstructured set of
clusters, and “often converge to a local optimum of poor
quality” (Manning et al. 2008). Third, AHC methods facil-
itate validating clusters (Fovell and Fovell 1993; Dezfuli

Communicated by: H. A. Babaie

* Hamada S. Badr
badr@jhu.edu

Benjamin F. Zaitchik
zaitchik@jhu.edu

Amin K. Dezfuli
dez@jhu.edu

1 Department of Earth and Planetary Sciences, The Johns Hopkins
University (JHU), 3400 N. Charles Street, Olin Hall,
Baltimore, MD 21218, USA

Earth Sci Inform (2015) 8:949–958
DOI 10.1007/s12145-015-0221-7



2011), which is perhaps the most challenging part of the
cluster analysis (Jain and Dubes 1988). This issue is more
difficult to address in nonhierarchical methods that require a
prespecified number of clusters.

AHC methods are not without their limitations. For exam-
ple, all commonly used AHC algorithms are unidirectional:
once individual members are merged into a region they cannot
be reassigned. AHC algorithms can also be negatively affect-
ed by noise in the input data––a problem that is not negligible
in most climate datasets. However, previous studies have
shown that the problem of noise can be significantly reduced
when CA methods are used in conjunction with the principal
component analysis (PCA, Baeriswyl and Rebetez 1997;
Busuioc et al. 2001; Argüeso et al. 2011; Dezfuli 2011). In
this approach, PCA is applied to raw data, and the leading PCs
that together explain a large fraction of the variance are
retained and used as the inputs of cluster model. The PCs
are sometimes rotated, using orthogonal or oblique methods,
in order to better identify the dominant modes of variability
(e.g., Munoz-Diaz and Rodrigo 2004; Rogers and McHugh
2002; Dezfuli 2011). The choice of rotation method and num-
ber of PCs retained are known to affect the stability of clus-
tering results (White et al. 1991; Comrie and Glenn 1998).

For climate regionalization, criteria used to evaluate cluster
validity may vary with the analysis objectives. Here, we adopt
a set of criteria suggested by Dezfuli (2011) that a satisfactory
level is reached primarily when the regions are homogeneous
and geographically contiguous, the size of regions is consis-
tent with problem-specific size constraints (e.g., landscape
structure, data coverage and density, known climate phenom-
ena), and the total number of regions is consistent with the
inherent physical properties of interest. We should emphasize
that climate regionalization is a combined physical-statistical
problem, so that the optimum solution involves some subjec-
tive decisions such as examining the contiguity or geograph-
ical characteristics of regions. The objective criteria, however,
are often met by simultaneously minimizing the inter-regional
correlations (i.e., correlations between clusters) and maximiz-
ing the intra-regional correlations (i.e., correlations between
the mean of each cluster and its members).

In summary, there is a diversity of climate regionalization
techniques in the literature, and these techniques are sensitive
to conceptual approach, clustering algorithm, data processing,
and validation criteria. The density of the clustering literature
and the lack of easily accessible, climate-oriented clustering
software tools presents a barrier to the utilization of objective
regionalization in the climate science community and makes it
difficult to compare across studies. This is our motivation for
developing a flexible and clearly documented software tool
designed for climate regionalization, which we have imple-
mented as an open-source R package for hierarchical cluster-
based climate regionalization (“HiClimR”). The remainder of
this paper describes the theoretical basis for original

functionalities in HiClimR (Section 2), design and implemen-
tation including a summary of the available features (-
Section 3), presents a demonstration application in which
HiClimR is used to regionalize Africa on the basis of interan-
nual precipitation variability (Section 4), and offers brief dis-
cussion of the uses of the package (Section 5).

Theoretical basis

The HiClimR package is based on statistical theory and soft-
ware tools that are well established in the literature. Most rele-
vantly, the package is built on the foundation of the efficient
code of the “hclust” function in the “stats” library of the R
project for statistical computing (Team 2012). This function
includes seven AHC methods: Ward’s minimum variance, sin-
gle linkage, complete linkage, average linkage, Mcquitty’s,
Median, and centroid methods. Among these, Ward’s (Ward
1963; Murtagh 1983) and average linkage (Sokal 1958;
Murtagh 1983) methods have been most frequently applied to
climate analyses (El-Hamdouchi and Willett 1989; Fovell and
Fovell 1993; Dezfuli 2011; Legendre and Legendre 2012).

We have added an eighth AHC method (called “regional
linkage”) to the set of available methods in hclust. Like the
other clustering methods in hclust, the regional linkage meth-
od is generally applicable to a wide range of clustering prob-
lems, but we present it here in the context of a spatio-temporal
analysis, in which N spatial elements (e.g., weather stations)
are divided into k regions, given that each element has a time
series of lengthM. The regional linkage method is theoretical-
ly similar to the existing average linkage method, but it offers
practical advantages of computational speed, a built-in objec-
tive tree cutting method based on inter-regional correlations
(described in Section 3), and the ability to isolate noisy data
during the clustering process. These advantages are achieved
by using the mean time series and standard deviation of re-
gions as input variables for the cluster update function. This
differs from the average linkage method, for example, in
which the update function is based on correlation between
individual spatial elements.

In the regional linkage update method, similarity in tempo-
ral variability between two timeseries x and y is quantified
using Pearson’s correlation r between the spatially averaged
timeseries of each region:

rx;y ¼ 1

M−1

XM

i¼1

xi−x
σx

� �
yi−y
σy

� �
ð1Þ

where xi and yi are the spatial mean value of the variable of
interest (e.g., precipitation) in two different regions (or ele-
ments) at time i, and x are y the temporal mean values for each
region, and σx and σy are the standard deviations of the time
series x and y, respectively. The time series mean x is
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x ¼ 1

M

XM

i¼1

xi ð2Þ

The variance σx
2 can be written in the form

σ2
x ¼

1

M−1

XM

i¼1

xi−xð Þ2 ð3Þ

The dissimilarity measure, between two regions based on their
mean timeseries x and y is calculated as the Pearson correla-
tion distance,

dx;y ¼ 1−rx;y ð4Þ

It can be shown that this distance is equivalent to the squared
Euclidean distance if the data are standardized, which is the
recommended metric for Ward’s method that minimizes the
error sum of squares (Ward 1963; Murtagh 1983).

Given a set ofN spatial elements, an AHC algorithm can be
summarized generically as follows:

& Compute N×N distance matrix (dissimilarities)
& Assign each station to one cluster

i. Find the most similar pair of clusters and merge them
ii. Update distances between the new cluster and others

& Repeat steps i and ii until all clusters are merged

Clustering methods have different update formulae (step
ii). Regional linkage modifies the average linkage algorithm,
which has the following update formulae:

dx∪y;z ¼ nxdx;z þ nydy;z
nx þ ny

ð5Þ

where nx and ny are the number of members (stations) used to
calculate time series x and y. dx,z and dy,z are Pearson correlation
distances between the two original time series x and y and a third
time series, z, and dx∪y,z is the Pearson correlation distance be-

tween the time series x∪y ¼ nxxþnyy
nxþny

, representative of a newly

merged region, and z.Regional linkage modifies the average
linkage update formulae by incorporating the standard deviation
of the timeseries of the merged region x∪y as shown below

dx∪y;z ¼
nx

σx

σx∪y

� �
dx;z þ ny

σy

σx∪y

� �
dy;z

nx þ ny
ð6Þ

where σx∪y is the standard deviation of the new region’s mean
timeseries which can be calculated in terms of the standard
deviations of the individual regions’ means as follows

σx∪y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2xσ

2
x þ n2yσ

2
y þ 2nxnyσxσyrx;y

q

nx þ ny
ð7Þ

Equations (6) and (7) can be directly derived from Eqs. (1) to
(5). It is clear that standard deviation of the new region, in
Eq. (7), is a function of the correlation between the individ-
ual regions and their standard deviations before merging. It is
equal to the average of their standard deviations if and only
if the correlation between the two merged regions is 100 %.
In this special case, the regional linkage method is reduced to
the classic average linkage clustering method. It is also re-
duced to the classic centroid linkage method if the data are
standardized. Note that the range of possible values for cor-
relation is between −1 and 1 and the dissimilarity measure
has a range between 0 and 2. The correlation distance can be
divided by 2 to make a standard range between 0 and 1, but
this has no effect on the regionalization results except for the
dendrogram height which is more interpretable when using
the correlation distance with regional linkage method as the
maximum inter-regional correlation.

The merging history of this method is based on the
inter-regional correlation between the temporal means of
the regions. Regions with strongly correlated means are
successively merged. This guaranties the homogeneity of
each region, where homogeneity is defined as strength of
correlation between the regional mean of that region and
its members (stations). At the end of clustering process,
the optimum cut-level of the tree diagram, which illus-
trates the arrangement of the clusters, is determined by
minimizing the inter-regional correlations. An advantage
of the regional linkage method is that it allows us to find
the optimum number of clusters objectively by imposing a
significance level threshold on the maximum acceptable
value of inter-regional correlations. At each merging step,
the highly correlated regions (maximum inter-regional cor-
relation) are merged first. The statistical history of maxi-
mum inter-regional correlations is typically the merging
criterion. It is a measure of separation or contiguity, and
it is used as an objective measure to determine the tree
cut (to find the “optimal” number of regions at a certain
confidence level). Additionally, for validation purposes,
detailed information on the inter-regional and intra-
regional correlations for each selected region, together
with cluster sizes, can be computed at any merging step.
The average intra-regional correlation measures overall ho-
mogeneity, while the cluster size provides useful informa-
tion for size constraints such as minimum cluster size.

Note that the physical meaning of regions returned by
any AHC algorithm depends entirely on the nature of the
time series data. A regionalization based on weekly or
monthly data, for example, may be dominated by differ-
ences in the seasonal cycle across the analysis area, while
a regionalization based on deseasonalized, annual, or re-
peated month or season data (e.g., “July only” or “winter
only” time series) will capture differences in interannual
variability.
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Design and implementation

The clustering algorithm described above is contained in the R
package HiClimR described in the flowchart in Fig. 1. The core
function, also called HiClimR, performs AHC using any of the
eight clustering algorithms listed above. The required input is an
N row byM columnmatrix of ‘double’ values:N objects (spatial
points or stations) to be clustered by M observations (temporal
points or years). While we describe N andM in terms of typical
climate datasets, any data matrix can be used as input (described
in the manual). x is the input N × M data matrix, xc is the
coarsened N0 × M data matrix where N0 ≤ N (N0 = N only
if lonStep = 1 and lonStep = 1), xm is the masked and filtered
N1 × M1 data matrix where N1 ≤ N0 (N1 = N0 only if the
number of masked stations/points is zero) and M1 ≤ M (M1 =
M only if no columns are removed due to missing values),
and x1 is the reconstructed N1 × M1 data matrix if PCA is
performed. Zero-variance rows (e.g., stations with zero vari-
ability) and/or missing values (e.g., years with missing obser-
vations) are allowed, as they can be removed by preprocessor
functions (recommended) or will be removed automatically
during clustering.

In addition, the package includes six helper functions (cyan
blocks in Fig. 1) that can be used as free-standing routines or
can be called internally by the HiClimR function to perform
initialization, masking, preprocessing, and postprocessing, in-
cluding validation and visualization. The validClimR helper
function is used to select the “optimal” number of clusters objec-
tively based on a specified significance level and to return infor-
mation and summary statistics for the clusters. The regional link-
age method is automatically supported in the objective selection
of number of clusters, since its update formulae––Eqs. (6) and (7)
––are based on minimizing inter-regional correlations (i.e., the
history of maximum inter-regional correlation is computed di-
rectly at each merging step). Other methods can utilize the ob-
jective tree cut either by calling the validClimR function with a
user-specified range for the number of clusters or by using a
hybrid hierarchical-regional clustering feature in the package.

Several features have been implemented to facilitate spatio-
temporal analysis applications aswell as cluster validation. These
include options for preprocessing and postprocessing (Wilks
2011) as well as efficient code execution for large datasets. The
ability to perform multi-variate clustering (MVC) and hybrid
hierarchical-regional clustering introduced in section 3.1 and

Fig. 1 Detailed flowchart for the package as executed by the HiClimR
function. Cyan blocks represent helper functions, green is input data or
parameters, yellow indicates agglomeration Fortran code, and purple
shows graphics options. For multi-variate clustering (MVC), the input
data are a list of matrices (one matrix for each variable with the same

number of rows to be clustered; the number of columns may vary per
variable). The blue dashed boxes involve a loop for all variables to apply
mean and/or variance thresholds, detrending, and/or standardization per
variable before weighing the preprocessed variables and binding them by
columns in one matrix for clustering
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3.2, respectively. Section 3.3 describes the available features for
preprocessing, while the postpocessing features are presented in
Section 3.4. Section 3.5 describes code performance.

Multi-variate clustering

In many climate regionalization applications, the clustering may
involvemultiple variables. For example, traditional climate zones
are often defined by temperature and precipitation along with
other characteristics. Multi-variate clustering (MVC) can be per-
formed by providing HiClimRwith a list of matrices (one matrix
for each variable) rather than a single variable matrix. These
matrices should have the same number of rows (objects or sta-
tions to be clustered) while the number of columns may vary per
variable (e.g., different temporal periods or record lengths). The
preprocessing options are then separately applied for each vari-
able including filtering all variables before preprocessing,
detrending and standardization of each variable, and applying
weight for the preprocessed variables. Standardization is strongly
recommended since variables may have different magnitudes.
The correlation distance for MVC represents the (weighted) av-
erage of distances between all variables.

Hybrid clustering

This feature allows the user to apply any of the available clus-
tering algorithms to generate the AHC dendrogram and then
invoke the regional linkage method as a second step for objec-
tive tree cut. The upper part of the tree at a user-specified num-
ber of clusters will be reconstructed. By default, when the hy-
brid option is requested the first merging cost (the loss of overall
homogeneity at each merging step) larger than the mean merg-
ing cost for the entire tree will be used. For hybrid clustering, the
updated upper part of the tree will be used for cluster validation.

Preprocessing

Gridding and geographic masking

For gridded data, two gridding functions are offered to assist
in data management. The grid2D helper function generates
longitude (lon) and latitude (lat) matrices for gridded data,
and the coarseR function can be used to thin large datasets
using user-specified skip values for longitude and latitude
(lonSkip and latSkip). coarseR is useful when applying region-
alization on machines with limited memory resources and
when performing initial tests or sensitivity studies.

Geographic masking capabilities are also included in the
package, as there are many cases in which a user may want to
focus on an area that is a mask-defined subset of the full dataset.
For instance, the NASA Tropical Rainfall Measuring Mission
(TRMM) data covers ocean and land, while a researcher might
be interested in the precipitation variability only over land, a

country, or a list of countries (e.g., Nile Basin countries). This
masking capability is supported by the helper function
geogMask, which can preprocess input data matrix within the
HiClimR function if the geogMask logical parameter is set to
TRUE as shown in Fig. 1. Alternatively, geogMask can be run
as a preprocessor, and the output can be supplied toHiClimR as
the gMask argument. This saves computational time when re-
peating the analysis. geogMask requires the longitude and lat-
itude vectors together with a string (or array of strings) to spec-
ify continent name(s), region name(s), or country ISO3 charac-
ter code(s) via either continent, region, or country parameters.
Valid geogMask parameter values can be obtained by running
geogMask(). World mask data are based on the Humanitarian
Information Unit (HIU) Large Scale International Boundaries
(LSIB) dataset (https://hiu.state.gov/data/).

Data thresholds

Optional thresholds can be applied to the observation mean
(meanThresh) and/or variance (varThresh) in the HiClimR
function to mask zero- and near-zero-variance data. Observa-
tions with mean/variance less than or equal to meanThresh/
varThresh will be removed. The default is to only mask zero-
variance data (meanThresh=NULL and varThresh=0). The
user can increase the variance threshold and/or set a value
for the mean threshold. The masked data by thresholds and/
or geographic masking is checked again for the correct dimen-
sions before proceeding to the next processing step (Fig. 1).

Detrending and standardization

The HiClimR function uses an optional logical parameter
detrend for removing a linear trend from the data. This is
important when variation rather than secular change is of in-
terest (e.g., interannual variability). Another logical optional
parameter, standardize, can be turned on/off in the HiClimR
function to standardize the data before clustering. When data
are standardized, clustering algorithms are applied to the mean
of equally-weighted elements within each cluster (cluster
mean = mean of standardized variables within the cluster).
Otherwise, the mean of the raw data will be used (cluster mean
= mean of raw variables within the cluster). The variance of
the mean is updated at each agglomeration step.

PCA

Principal component analysis (PCA) can be conducted to filter
the data before clustering. The nPC parameter in the HiClimR
function represents the number of PCs to be retained. If
nPC=NULL, then the raw data will be used for clustering. Oth-
erwise, the data will be filtered and reconstructed using nPC PCs
obtained from PCA based on singular value decomposition
(SVD). The eigenvalues, explained variance, and accumulated
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variance will be returned to inform the choice of the most appro-
priate number of PCs. The detrend and/or standardize options
will be applied, if requested, before PCA. The preprocessed
data are returned in the output so that the user can easily
apply HiClimR preprocessing tools for other applications.

Postprocessing

A number of options are available to return additional process-
ing information, statistical summaries, and plots from the
HiClimR function. A logical parameter plot can be turned on
to display the dendrogram tree immediately after processing
completes. The validClimR function validates clustering results
on the basis of cluster means, sizes, intra- and inter-cluster
correlations, and overall statistical properties, and can be in-
voked as a flag onHiClimR or as an independent call. Statistical
information and validation indices can be computed based on
either the raw data or PCA-filtered data (if PCA preprocessing
is applied), as controlled by the rawStat parameter. An optional
parameter can be used to validate clustering for a selected num-
ber of clusters k. If k=NULL, the default, objective cutting of
the tree to select the optimal number of clusters will be applied
based on a user-specified significance level (alpha parameter).
HiClimR and validClimR call the fastCor function to compute
the correlation matrix efficiently, and theminSigCor function to
estimate the “cut level”—defined as the minimum significant
correlation for a given sample size (number of observations or
temporal points in a timeseries) at a specified confidence level.
Maps of climate regions can be produced for gridded data using
the plot parameter.

In the regional linkage method, noisy spatial elements are
isolated or placed in their own very small-size clusters since they
do not correlate well with any other elements. They can be ex-
cluded from validation indices by setting a value for the mini-
mum size of clusters (parameter minSize) greater than one. The
excluded clusters are identified in the output of validClimR in the
clustFlag component, which is assigned a value of one for valid
clusters and zero for excluded clusters. The sum of clustFlag
elements represents the selected number of clusters.

Performance

The clustering code is available in both R and Fortran languages.
The R code is easier to modify when the user needs to customize
the code for his or her own application/development. The Fortran
code is a modification of “hclust” function in the “stats” library
of the R project for statistical computing (Team 2012), in which
we have included an optimized algorithm to deal with only the
upper/lower triangular-half of the symmetric dissimilarity matrix
instead of the old algorithm that uses the full matrix in the merg-
ing steps. For high-resolution gridded data, the function coarseR
enables the user to coarsen data in any spatial dimension: longi-
tude, latitude, or both. This can be useful for very large datasets

and on older computers. The fastCor function computes the cor-
relation matrix by calling the cross product function in the Basic
Linear Algebra Subroutines (BLAS) library used by R. A signif-
icant performance improvement can be achieved when building
R on 64-bit machines with an optimized BLAS library, such as
ATLAS, OpenBLAS, or the commercial Intel® Math Kernel
Library. It also uses a memory-efficient algorithm that allows
for splitting the data matrix and computes only the upper-
triangular half of the correlation matrix. This almost halves
memory use, which can be very important for big data with
very large number of objects (stations of observations).

Demonstration

To demonstrate the functionality of HClimR we apply the
package to regionalize Africa on the basis of interannual var-
iability in precipitation. This is a simple demonstration for
using the package with some of the available features. The
current version of HiClimR makes the extension to multi-
variate applications straightforward with more options to pre-
process each variable separately. The data matrix for each
variable controls the nature of clustering problem: rows rep-
resent objects or stations to be clustered while columns are for
observations that define a specific climatic metric. For in-
stance, Fig. 2a shows regionalization of Africa based on an-
nual cycle (columns are 12 observations for the mean rainfall
of each month) while regions in Fig. 2b are based on interan-
nual variability of annual rainfall (columns are observation for
year-to-year variations). Only precipitation data and Ward’s
clustering with 12 regions are used for simplicity, but the
extension to multi-variate clustering using multiple climate
variables and/or other clustering methods is a straightforward
application of HiClimR.

The input dataset is the University of East Anglia Climatic
Research Unit (CRU) TS (timeseries) precipitation dataset ver-
sion 3.2 (Harris et al. 2013). CRU TS 3.21 data (1901–2012)
are monthly gridded precipitation with 0.5° resolution. The
dataset used in this demonstration case is included in the
HClimR package, and the core commands to repeat the analysis
are listed in the package manual. The “Set3” color palette from
package RColorBrewer (Neuwirth 2011) was used for
colPalette (an optional argument of HiClimR to customize
colors in region maps). As regions can change by month and
by season, we present only the regionalization for interannual
variability in January precipitation. Additional regionalizations
can be performed for other months, groups of months, or total
annual precipitation.

Method intercomparison

Figure 3 shows a comparison of three AHCmethods: regional
linkage (Fig. 3a), average linkage (Fig. 3b), Ward’s (Fig. 3c),
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and the popular nonhierarchical k-means method (Fig. 3d).
The regions are created for the same preprocessing options
and a statistically “optimal” number of clusters (k=9) obtained

from the validClimR function at 99 % confidence level
(alpha=0.01 and minimum significant correlation=0.398)
and minimum cluster size of 100 –– which is equivalent to

Fig. 2 Regionalization of Africa
based on: (a) Annual Cycle and
(b) Annual Mean via Ward’s
clustering with 12 regions. Only
precipitation data (1949–1989) is
used for simplicity, but the
extension to multi-variate
clustering using multiple climate
variables and/or other clustering
methods is a straightforward
application

Fig. 3 Method intercomparison
for regionalization of January
African precipitation (1949–
1989) and region separation at
99 % confidence level. The color
key is for region order (ID) as
generated by the clustering
process
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an area of 5°×5°. In this particular application, the regional
linkage method strongly outperforms Ward’s and k-means
methods with regard to inter-regional correlation (i.e., it pro-
vides insignificant inter-regional correlations less than 0.398
while the other methods tend to divide South Africa in to two
regions with relatively a significant inter-regional correlation
of ~0.5 or more) and slightly outperforms the average linkage
method. Differences in homogeneity are negligible across
methods, though Ward’s and k-means methods do provide
slightly higher intra-regional correlation values. As described
above, the regional linkage method isolates and masks noisy
regions. This can be seen in parts ofWestern Equatorial Africa
(WEA), which is consistent with the fact that this region suf-
fers from extremely limited data availability and is character-
ized by intrinsically complex patterns of rainfall variability
(Dezfuli 2011; Nicholson et al. 2012).

Sensitivity analysis

Figure 4 shows the effect that detrending and standardizing
input data has on the regions produced by the regional linkage

method. Figure panels are for regionalization with both
detrending and standardization (Fig. 4a), no preprocessing
(Fig. 4b), only detrending (Fig. 4c), and only standardization
(Fig. 4d). There are differences between all four maps, espe-
cially in WEA and Southern Africa. However, the spatial pat-
terns in East Equatorial Africa (EEA) are very similar for all
approaches, implying that EEA has a small or spatially con-
sistent trend in January, and that the amount of the precipita-
tion in this month is relatively uniform across the region. The
choice of the best set of detrending and standardization op-
tions depends on the purpose of the regionalization––e.g.,
focus on interannual variability vs. focus on multi-decadal
variability (e.g., climate change response), or focus on total
amount of precipitation vs. focus on common variabilities
across precipitation gradients.

Figure 5 shows the sensitivity of regionalization results to
geographic masking and PCA. It is clear that masking the data
for a study area of interest before clustering does affect the
results. Figure 5a shows the reference case where geogMask
function was applied for Africa together with detrending and/
or standardizing the raw data. Figure 5b is the same as Fig. 5a

Fig. 4 Sensitivity of the regional
linkage method to preprocessing
features: detrending and
standardizing the data before
clustering at 99 % confidence
level. The color key is for region
order (ID) as generated by the
clustering process
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but without geographic masking. This causes of parts of
southern Europe and southwest Asia to be included in the
analysis, which influences the clustering algorithm in a way
that alters regionalization in central and southern Africa. For
other applications––for example, when the region of interest is
surrounded by regions with very different variability, or when
the climate dataset includes observations over ocean as well as
land––the influence of geographic masking will be even more
dramatic. Figure 5c shows the regions generated by the re-
gional linkage method when PCA is applied on the reference
case and 27 PCs (~90 % of the total variance) are used to
reconstruct a filtered data before clustering. Figure 5d shows
regions when PCA is applied as in Fig. 3d but without
detrending or standardization. Again, the choice of pre-
processing options has a noticeable influence on regionaliza-
tion results. The analyst must consider whether the noise-
reducing effect of PCA has a beneficial impact on the region-
alization in any given application, as well as whether
detrending and standardization are justified for the given sci-
entific purpose of the regionalization. There is no objective
“right” answer for these preprocessing decisions, since the

value of the regionalization is a function of both objective
performance metrics and the purpose of the exercise.

Discussion

This paper has introduced an R package designed to support
objective climate regionalization using hierarchical cluster
analysis. The package includes Ward’s method and average
linkage method clustering algorithms, which have been wide-
ly applied to climate regionalization in the past, a number of
other methods (single linkage, complete linkage, Mcquitty’s,
Median, and centroid) that may be of interest to users applying
the package to other clustering problems, and a new, modified
clustering algorithm that is designed specifically for climate
regionalization—the “regional linkage” method. The regional
linkage method is a modification of the average linkage meth-
od that minimizes inter-regional correlations between region
means. It also provides the ability to identify noisy elements
for quality control and to perform an objective tree cut based
on correlation significance.

Fig. 5 Sensitivity of the regional
linkage method to preprocessing
features geographic masking and
PCA before clustering at 99 %
confidence level. The color key is
for region order (ID) as generated
by the clustering process
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In addition to the core clustering algorithms, the HiClimR
package includes several preprocessing and postprocessing
features to facilitate climate regionalization and related
applications.

Availability and requirements

A stable release of the package is available through the Com-
prehensive R Archive Network at http://CRAN.R-project.org/
package=HiClimR. This release includes sample data used in
the test case presented in this paper. In the future we plan to
expand the package to include additional clustering algorithms
and processing options, as informed by user experience.

The package requires R, which is a free software environ-
ment for statistical computing and graphics. It compiles and
runs on a wide variety of UNIX platforms, Windows and
MacOS. The hardware requirements depend on the problem
size, mainly the memory required for very large data sets.
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