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Abstract In the field of applied geochemistry, it is important
to obtain quantitative descriptions of geochemical patterns
and identify geochemical anomalies. In this paper, we present
a MATLAB-based program for processing geochemical
data by means of fractal/multifractal modeling. The pro-
cedure consists of two functional parts. First, we quan-
tify the spatial distribution characteristics of geochemi-
cal patterns using the multifractal spectrum. Second, geo-
chemical anomalies are identified using various fractal/
multifractal models. These models include the concentration-
area fractal model, spectrum-area multifractal model, and
multifractal singularity analysis. The results can be visualized
in the MATLAB platform or saved for further analysis, i.e., by
geographic information systems software.We demonstrate the
applicability of this program by processing a geochemical
dataset from soil samples taken in Inner Mongolia,
China. We examine the concentrations of Ag in these
soil samples, and show that the results obtained by our
program are highly correlated with known Ag deposits in
the region of interest.
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Introduction

Regional geochemical maps are often interpolated from point
data, which are usually sampled in surficial media such as
stream or lake sediments. These data may contain large
amounts of information that are critical for environmental
studies and geochemical exploration (e.g., Xu and Cheng
2001). The spatial distribution of elements in a given geolog-
ical–geochemical environment is the end product of human
activities and geological processes such as volcanic or intru-
sive activities, sedimentary processes, tectonism, metamor-
phism, and mineralization. Characterizing the geochemical
patterns and delimiting geochemical anomalies are crucial
tasks in the field of environmental studies and mineral explo-
ration. Conventional methods for these tasks are limited, be-
cause they are generally based on the frequency distribution of
sampled values. These approaches process geochemical data
with a variety of techniques, including the calculation of
threshold values corresponding to the mean plus twice the
standard deviation (Hawkes and Webb 1962), probability
graphs (Sinclair 1974), exploration data analysis (Tukey
1977; Behrens 1997; Reimann 2005a, b; Carranza 2010),
and multivariate statistics (e.g., Zuo 2011a, b; Zuo et al.
2009a, b, 2013a, b; Yousefi et al. 2012, 2014), each of which
may be limited depending on the type of elemental distribu-
tion. Such techniques have been extensively and, in some
cases, successfully used in geochemical data processing, es-
pecially for the separation of geochemical anomalies from the
background. However, most conventional methods assume
that concentrations of geochemical elements in the crust fol-
low a normal or log-normal distribution (e.g., Davis 2002; Li
et al. 2003), with some requiring the samples to be collected
uniformly over the region of interest (Cheng et al. 1994). In
addition, the fundamental geological assumption for these
methods is that the populations generated by different
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geological processes are statistically distinguishable (Xu and
Cheng 2001). Furthermore, conventional methods based on
frequency distributions often ignore spatial variations in the
geochemical data, but these can provide valuable information
for mineral exploration and environmental studies.

Allègre and Lewin (1995) demonstrated that the ordinary
distribution of trace elements can be normal, non-normal, or
multimodal. Since fractals were first applied to the field of
geochemistry in the early 1990s (e.g., Bölviken et al. 1992),
research on fractal/multifractal models has shown that most
geological processes, such as surficial weathering and erosion,
generate scale-invariant patterns (Lavallee et al. 1993). This
applies to surficial elemental concentrations (e.g., Cheng et al.
1994, 1999, 2000; Xu and Cheng 2001; Li et al. 2003; Lima
et al. 2003; Cheng 2007; Zuo and Cheng 2008; Zuo et al.
2009a, b, 2013a, b, 2015; Zuo 2011a, b; Afzal et al. 2010,
2011, 2012, 2013; Agterberg 2012; Arias et al. 2012; Mehran
Heidari et al. 2013; Wang et al. 2015).

The properties that could potentially be used to differentiate
between distinctive populations of geochemical data include
the geochemical value frequency, spatial variability of geo-
chemical values, geometrical characteristics of anomalies,
and scaling properties of a geochemical anomaly (e.g.,
Cheng et al. 1994, 1996, 1997, 2000; Xu and Cheng 2001;
Li et al. 2003; Lima et al. 2003; Afzal et al. 2010, 2011, 2012,
2013; Agterberg 2012; Zuo et al. 2015). There is no doubt that
the most effective way to identify geochemical anomalies or
quantify the characteristics of geochemical patterns is to adopt
a comprehensive technique that combines the properties men-
tioned above. Over the past few decades, many attempts have
been made to develop such models. For instance, nonlinear
models based on fractal/multifractal theory are widely ac-
knowledged as powerful tools (e.g., the grade-tonnage model
(Turcotte 2002), size-frequency distribution analyses of giant
mineral deposits (Agterberg 1996), concentration-area model
(C-A: Cheng et al. 1994), spectrum-area model (S-A: Cheng
et al. 2000), concentration-distancemodel (C-D: Li et al. 2003),
singularity analysis (Cheng 2007; Cheng and Agterberg 2009),
and concentration-volume method (C-V: Afzal et al. 2011).
These methods are gradually being adopted as an effective
and efficient means of decomposing geochemical patterns into
different components (e.g., Cheng and Agterberg 2009; Zuo
2011a; Zuo and Cheng 2008; Zuo and Xia 2009; Zuo et al.
2009a, b, 2013a, b, 2015; Agterberg 2012).

In this study, we present a simple MATLAB-based pro-
gram for processing geochemical data by means of fractal/
multifractal modeling. Our program has two main functions.
The first quantifies the spatial distribution characteristics of
geochemical patterns using the multifractal spectrum, and
the second identifies geochemical anomalies using C-A, S-
A, and singularity analysis. The applicability of this program
is demonstrated by processing a soil geochemical dataset from
Inner Mongolia, China.

Multifractal spectrum

Multifractals are spatially intertwined fractals with a
continuous spectrum of fractal dimensions (e.g., Cheng
and Agterberg 1996). The basic concepts involved in a
multifractal model include the partition function χq(ε),
mass exponent τ(q), singularity exponent α(q), and the
multifractal spectrum f (α). Let μi(ε) be the total amount
of a measure (or total concentration of an element) μ in
the ith cell of a linear scale ε. The partition function
χq(ε) can then be defined as (Evertsz and Mandelbrot
1992):

χq εð Þ ¼
XN εð Þ

i¼1

μi
q εð Þ; ð1Þ

where N(ε) is the total number of cells of size ε. If the
distribution of μi(ε) is multifractal, the partition function
of χq(ε) has a simple power-law relation with the cell
size ε for q with –∞≤q≤+∞, or

χq εð Þ∝ετ qð Þ; ð2Þ

where ∝ represents proportionality, and τ(q) is the mass
exponent of order q. The singularity exponent α(q) and
the multifractal spectrum can be obtained by a Legendre
transformation (Evertsz and Mandelbrot 1992):

a qð Þ ¼ dτ qð Þ
dq

; ð3Þ

f α qð Þ½ � ¼ α qð Þq − τ qð Þ: ð4Þ

Further details on multifractal models and the moment
method can be found in Cheng and Agterberg (1996) and
Evertsz and Mandelbrot (1992). The moment method is used
to create the multifractal spectrum. The specific process con-
sists of the following steps:

(1) Generate a grid map by interpolating the original geo-
chemical sample data;

(2) Define a series of square boxes with edge size εi and a
series of moment values qi;

(3) The total amount of a measure μi(ε) in the ith cell with
linear size ε is obtained as:

μi εð Þ ¼ ci � ε2; ð5Þ

938 Earth Sci Inform (2015) 8:937–947



(4) Calculate the mass partition function for the qth order of

χq(ε) using χq εð Þ ¼ ∑
N εð Þ

i¼1
μi

q εð Þ;
(5) If μi(ε) follows a multifractal distribution, then a power-

law relationship exists between χq(ε) and ε, i.e.,
χq(ε)∝ετ(q);

(6) Obtain the singularity exponent α and multifractal spec-
trum f(α) by a Legendre transformation: α(q)=dτ(q)/dq,
f[α(q)]=α(q)q−τ(q).

Concentration-area multifractal model

Cheng et al. (1994) proposed the C-A model to separate geo-
chemical anomalies from the background. This represented
the first significant progress in the fractal/multifractal model-
ing of geochemical data (e.g., Zuo et al. 2012), and is a fun-
damental technique that is frequently used to model geochem-
ical anomalies (Carranza 2009). The C-A model gives

A ρð Þ∝ρ‐β; ð6Þ

where A(ρ) denotes the area with concentration values greater
than or equal to ρ, ∝ represents proportionality, and β is the
fractal dimension. Several straight lines can be fitted on a log-
log plot of A(ρ) against ρ by means of the least-squares meth-
od, and we can estimate β from the slope of these lines. The
values of ρ corresponding to the breaks in these straight lines
act as thresholds that separate a geochemical map into areas of
high, moderate, and low anomalies (e.g., Cheng et al. 1994;
Carranza 2009; Afzal et al. 2010; Arias et al. 2012; Zuo
2011a; Zuo et al. 2013a; Mehran Heidari et al. 2013).

Spectrum-area multifractal model

By extending the idea of the C-A model into the frequency
domain, Cheng et al. (2000) developed the S-A model to
characterize the power spectrum density-area relationship
(Zuo and Xia 2009; Zuo et al. 2013a, b). The S-A model
can be expressed as:

A ≥Eð Þ∝E‐β; ð7Þ

where E represents the power spectrum density as a function
of the wave number vector, A(≥E) denotes the area (in units of
the wave number) with values above E, and β is an exponent
that can be estimated by plotting A against E on a log-log plot;
subsequently, the filters can be constructed.

To implement the S-A model and identify geochemical
anomalies, we perform the following steps (Xu and Cheng
2001; Zuo 2011a, b; Zuo et al. 2013a, b; Afzal et al. 2012,
2013):

(1) Generate a grid map by interpolating the original geo-
chemical sampling data;

(2) Convert the interpolated map from the spatial domain to
the Fourier domain using a fast Fourier transform;

(3) Calculate the power spectrum of the converted map, and
form a dataset consisting of the power spectrum density
(E) and the area with power spectrum density values
greater than or equal to E. Plot these data on a log-log
scale;

(4) Determine breakpoints to divide the data pairs into sev-
eral segments with different scaling properties, and use
these to build up filters;

(5) Apply the filters to the map in the frequency domain, and
transform the filtered map back to the spatial domain
using the inverse Fourier transform.

This fractal filtering method enables a geochemical map to
be divided into a background map and an anomaly map
(Cheng et al. 2010; Zuo 2011a, b, 2012).

Singularity analysis

The concept of a singularity can be used to depict the
characteristics of singular processes, i.e., those that result in
anomalous energy releases or material accumulations within a
narrow spatio-temporal interval (Cheng 2007). From a
multifractal perspective, the phenomenon derived from a sin-
gular process can be described by the following power-law
model:

C εð Þ∝εα‐E; ð8Þ

where ε is a normalized distance measure such as the block
cell edge, E is the Euclidian dimension, C(ε) represents the
element concentration in a space whose characteristic scale is
ε, and α is the exponent of the power-law relationship. This
exponent is the singularity index, which characterizes how the
element concentration varies in the defined space with respect
to ε. When α<E, we say there is abnormal enrichment of the
element concentration, whereas α>E indicates a depletion of
the element concentration. The case α≈E represents a
nonsingular location.

To estimate the singularity index from a geochemical map,
Cheng (2007) proposed a window-based approach that
formed the original singularity analysis method. The algo-
rithm can be described as follows: first, given a location on
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the geochemical map, we define a series of sliding windows
A(ri) (square, circular, rectangular, or other shapes) with var-
iable window sizes rmin=r1<r2<…<rn=rmax. Next, the aver-
age element concentration C[A(ri)] is calculated for each win-
dow size (this is equal to the sum of all the cells’ concentra-
tions divided by the total number of cells within the window).
We plot C[A(ri)] against ri on a log-log plot, and then obtain
the linear relationship:

logC A rið Þ½ � ¼ C þ α−2ð Þlogri: ð9Þ

Using this relationship, the singularity index α at the cur-
rent location can be estimated as the slope plus 2. We repeat
these steps to create a singularity distribution map, and then
delineate areas of geochemical anomalies on the basis of the
singularity index.

Program description

The software was written in MATLAB 2012a. The program
uses a graphical user interface (Fig. 1) that presents the inte-
gral structure and operation of the software (Fig. 2). We now
describe the various parameters and options in each model,
and identify several problems with parameter selection.

The program has the following menus:

(1) File. This menu contains three submenus, Set path,
Open, and Exit. When the program is opened, only the
File and Help menus are active; the other menus are
grayed out, because these features are not available.
Users must first set the path for which the results of
further operations will be saved, and then all menus will
be activated once the user opens the geochemical data to
be processed. Our procedure can process both ASCII
data and point vector data in the default “.xls” format.
For the point vector data, columns one and two represent
the X and Y coordinates, respectively, and the other col-
umns represent element concentrations. The first row of
the .xls file should contain the characters X, Y and the
abbreviated geochemical element names. For the ASCII
data, the headers for the six rows document the size of
the data matrix (e.g., N columns and M rows), the coor-
dinates of the lower-left corner (e.g., xllcorner=30 and
yllcorner=−20), the cell size, and a flag for data voids,
which is followed by values arranged as a data matrix.

(2) Preprocessing. This menu consists of two submenus,
Spatial interpolation and Descriptive statistics. Spatial
interpolation is only available for point vector data, and
refers to common interpolation methods (e.g., the inverse
distance weighted method). It is used to convert original
sampling point data into a grid map. The other option
calculates the statistical properties of the input data, such
as the mean, standard deviation, median, kurtosis, and so
on. Certain graphical outputs are also available, i.e., his-
togram, cumulative histogram, boxplot, and quantile-
quantile (Q-Q) plot.

(3) Anomaly identification. One of the core functions of this
software, this menu contains three submenus, Singularity
analysis, Spectrum-area model, and Concentration-area
model. Singularity analysis executes the singularity
mapping technique. This has two parameters, the incre-
ment of the window radius and the number of windows.
By default, the minimum window size is 3×3, so if the
increment of the window radius is set to 1, then the next
window size is 5×5; the number of windows is self-ev-
ident. There are no rules on how to select values for these
two parameters. When the Spectrum-area model is se-
lected, we must first specify the number of points in the
X direction, which represent the power spectrum density.
This number cannot be too small, otherwise the inflec-
tion points will not be revealed; however, this number
should not be too large, either, or the computation time
will be excessive. Of course, this parameter value cannot
exceed the total number of input data. Once a value has
been entered, the log-log plot of the area against the
spectrum density can be obtained. Note that a progress
bar monitors the computational process. Users can then
determine the appropriate number of breakpoints by
means of toolbar buttons, and the split lines can be locat-
ed by clicking the left mouse button on the area of the
coordinates. In terms of howmany breakpoints should be
selected, the shape of the curve and practical demands
are the main considerations. Accurate values of the
abscissas of the breakpoints and the goodness of linear
fitting for each segment are displayed at the bottom of the
interface. These breakpoints can be used as reference
values to set thresholds for the Pattern separation option.
After the filters have been constructed, the corresponding
anomalous and background components can be obtain-
ed. ThePower spectrum option allows users to obtain the
power spectrum for the interpolated data in the Fourier
domain. Note that users are prompted to save the results

Fig. 1 Anomaly identification system (AIS) graphical user interface

940 Earth Sci Inform (2015) 8:937–947



of every manipulation, and the data pairs of the S-A
model and fitting parameters can be exported via a tool-
bar button. The Concentration-area model has a similar
interface and operation.

(4) Multifractal modeling. This menu refers to the
multifractal spectrum analysis. For this option, there
are two key parameters: the scale vector and the moment
vector. The scale should consist of positive integers, and
the increment is set to a default value of 1. The moment
vector should be symmetric about the origin, and its
absolute value should not be too large. For a large pos-
itive moment, the partition function is dominated by a
few large cell measures, whereas for a negative moment,
the partition function is mainly determined by a few
small measures. This indicates that the partition func-
tions of different moments reflect different distributions
of the measure (Xie and Bao 2004). Unlike the scale
vector, the increment for the moment vector can be set
via a pop-up menu. The analysis results can be visual-
ized as graphs, or saved for further analysis.

(5) Help. This menu provides contact information for the
author. Users are encouraged to contact the author if they
encounter any problems.

Case study

Study area and data

To demonstrate the applicability of the software program, we
examine geochemical data taken from the northeast of Dong
Ujimqin Banner district (45.66°N–46.17°N, 117.5°E–118°E).
Located in Inner Mongolia, near the boundary between China
and Mongolia, this is one of the most important Ag
polymetallic belts in the north of China (Wang 2003). This
grass-covered district is mainly composed of Tertiary and
Quaternary sediments overlying Devonian, Permian, and
Jurassic Formations. The Devonian Formation consists of
sandstone, siltstone, slate, and volcanic clastic, and is rich in
ore-forming elements (Huang et al. 2013). Intrusions, also
overlain by the sediments, are distributed across the whole
district, largely extending along a NE trending belt, and there

are well-developed faults in the NE and NW directions
that control the spatial distribution of deposits (Fig. 3a).
Yanshanian intrusions, characterized by plutonic granitic
rocks, are associated with hydrothermal mineralization
(Huang et al. 2013). Three Ag polymetallic deposits have
been discovered in recent years (Jiang et al. 2007; Yu et al.
2011).More detailed information on the geological setting can
be found in Liu (2011).

A total of 1974 soil samples from depths from −20 to
−80 cm were collected at a density of 1–2 samples per km2

(Liu et al. 2013). We select the data on Ag, one of the main
ore-forming elements, to illustrate the validity of the program.
Concentrations of Ag (detection limit 0.02 ppb) were deter-
mined by electrospray mass spectrometry. In the original point
data, the Ag concentration ranges from 21.9 to 373. 9 ppb
(mean of 83.4 ppb). The higher concentrations of Ag mainly
occur in the upper-right of the study area (Fig. 3b). More
detailed information on sample preparation and analysis can
be found in Liu (2011).

Statistical properties of the original data

To investigate the overall distribution characteristics and fea-
tures of outliers, we used the Descriptive statistics option to
produce a histogram, cumulative histogram, Q-Q plot, and
boxplot (Fig. 4). The histogram is broadly symmetric, except
for the heavy-tailed distribution of extremely high values.
This characteristic is corroborated by the Q-Q plot, in which
high values deviate heavily from the straight line. A high
percentage of outliers can be observed on the boxplot.
Therefore, the assumption of a normal distribution for the
original data may not be accurate or effective for dealing with
singular values. Instead, the original geochemical data should
be analyzed by means of fractal/multifractal modeling via the
proposed program.

Quantifying the spatial distribution characteristics
of geochemical patterns

A grid map was created from the original geochemical data by
means of the inverse distance weighted method. To quantify
the spatial distribution characteristics of Ag, we calculated the

Fig. 2 Integral structure and
operation procedure of AIS
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Fig. 3 a Simplified geochemical
map of the study area in Inner
Mongolia, northern China (after
China Geological Survey); b
Geochemical sampling data of Ag
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multifractal spectrum of the element concentrations using the
method of moments via theMultifractal modeling option. The
moment (q) varied from −6 to +6 in steps of 0.5, and the
results imply that this interval was sufficiently wide to gener-
ate the necessary information (Fig. 5). The scale vector ranged
from 1 to 7 in steps of 1. As shown in Fig. 5a, the χq(ε)−ε
plots are drawn on a log-log scale, and the slopes of the
straight lines (termed the τ(q) parameters) are estimated by
least-squares fitting. The estimated mass exponents are plotted
in Fig. 5b. The singularity exponent α(q) can then be derived

by numerically differentiating the data, as shown in Fig. 5c.
Finally, the multifractal spectrum f(α) was obtained
through a Legendre transformation, as displayed in Fig. 5d.
We can observe that the multifractal spectrum of Ag is
a continuous curve, but this is not symmetric, and de-
viates distinctly to the left. This asymmetry may reflect the
fact that the spatial distribution of concentrations has a con-
tinuous multifractal nature, and has undergone a certain de-
gree of local superimposition or other modifications (e.g., Xie
and Bao 2004).

Fig. 4 Statistical properties of
original geochemical data of Ag

Fig. 5 The moment method used
to deduce multifractal spectrum. a
Log-log plot of the mass partition
function χq(ε) versus scale ε b
Relationship between mass
exponent τ(q) and moment q c
Relationship between singularity
exponent α(q) and moment q d
Relationship between multifractal
spectrum f(α) and singularity
exponent α
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Identifying anomalies by means of singularity analysis

Prior to the calculation of the singularity index, several param-
eters must be set. We used a series of square windows with
half-window sizes ranging from 1 to 17 km at intervals of

2 km. Singularity index values of α<2 and α>2 represent
enrichment and depletion, respectively. The patterns given

Fig. 6 Estimated singularity index α by means of original singularity
analysis

Fig. 7 MATLAB interface for log-log plot showing the relationship
between power spectrum value E and area A(≥E). Three straight lines
are fitted by means of least squares fitting. And the abscissas of the
breakpoints and goodness of the linear fitting are showed at the bottom

Fig. 8 Background map obtained from the S-A model

Fig. 9 Anomaly map obtained from the S-A model
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by the singularity index illustrate that the anomalous areas
coincide with the locations of three known Ag deposits
(Fig. 6), particularly for the two deposits located in the north-
eastern part of the study area. This suggests that the singularity
index can readily identify geochemical anomalies.

A number of anomalous areas are delineated in Fig. 6.
These include one located in the lower-left region of the two
northeastern (known) deposits, and some less intensive anom-
alies that are mainly distributed in the middle and northern
part of the study area. Such anomalous areas should be further
investigated in the next round of mineral exploration in the
study area.

Separation of anomalies from the background using
the S-A model

The interpolated map was converted to the frequency domain
by means of a Fourier transformation. The power spectrum
values were calculated and plotted with the Spectrum-area
model option. Two vertical lines were selected to divide the
calculated data pairs, and three straight lines were fitted by the
least-squares method. The abscissas of the breakpoints and
goodness of the linear fitting are shown in the lower part of
the interface (Fig. 7). These data imply the existence of three
subsets of frequencies in terms of distinct scaling properties.

The breakpoints indicated by the two vertical lines were
taken as thresholds to construct the corresponding filters based
on the power spectrum given by the Pattern separation op-
tion. By applying these filters to the Fourier-transformed func-
tions and then converting them back to the spatial domain, we
generated three components corresponding to the background,
anomalies, and noise. The background and anomaly maps are
shown in Figs. 8 and 9, respectively. The anomalous areas
obtained from the S-A model had a high spatial correlation
with the known deposits, which suggests that our model can
effectively decompose mixed patterns into a varied geochem-
ical background and an anomalous map.

Comparing the results obtained by the S-A model (Fig. 9)
and the singularity analysis (Fig. 6), we can observe a high
spatial correlation, and the three known Ag deposits are locat-
ed in or near the highly anomalous areas. This indicates that
both the S-Amodel and singularity analysis are powerful tools
for identifying anomalies associated with mineralization.

Conclusions

The software program presented in this paper is a MATLAB-
based graphical user interface for processing geochemical data
bymeans of fractal/multifractal modeling. Themodels provid-
ed by this program are powerful tools for characterizing the
distribution of geochemical data and separating geochemical
patterns into several components. The application of this

software is not limited to the geochemical data considered in
our case study, and could also be applied to geophysical data.
The graphical user interface allows for easy data input and
graphical representation of the analysis results.

One of the key advantages of this program is its ease of use.
Another benefit is that the analysis results can be further in-
vestigated in ArcGIS bymeans of a simple format conversion.
The main limitation is the inability to add map features to data
when the analysis results are exported as a graph. Any criti-
cisms or suggestions arising from the use of this program will
be warmly welcomed.
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