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Abstract Water resource and hydrologic modeling studies
are intrinsically related to spatial processes of hydrologic
cycle. Due to generally sparse data, and high rainfall variabil-
ity, the accurate prediction of water availability in complex
semi-arid catchment depends to a great extent on how well
spatial input data describe realistically the relevant character-
istics. The Geographic Information System (GIS) provides the
framework within which spatially distributed data are collect-
ed and used to prepare model input files. Despite significant
recent developments in distributed hydrologic modeling, the
over-parameterization is usually a critical issue that can com-
plicate calibration process. Sensitivity analysis methods re-
ducing the number of parameters to be adjusted during cali-
bration are important for simplifying the use of these models.
The objective of this paper is to perform a sensitivity analysis
for flow in a semi-arid catchment (1,491 km2), located in
northwestern of Tunisia, using the Soil andWater Assessment
Tool (SWAT) model. The simulation results revealed that
among eight selected parameters, curve number (CN2), soil
evaporation compensation factor (ESCO), soil available water
capacity (SOL_AWC) and threshold depth of water in the
shallow aquifer required for return flow (GWQMN) were
found to be the most sensitive parameters. Calibration of
hydrology, facilitated by the sensitivity analysis, was per-
formed for the period 2001 through 2003. Results of calibra-
tion showed that the model accurately predict runoff and

performed well with a monthly Nash Sutcliffe efficiency
(NSE) of 0,78, a coefficient of determination (R2) of 0,85
and a percent of bias (PBIAS) equal to −13,22 %.

Keywords GIS-based hydrological model . Sensitivity
analysis . Runoff calibration . SWAT

Introduction

Located in northern Africa along the Mediterranean Sea,
Tunisia is a country dominated by a semi-arid climate. In this
region, hydrological processes are largely variable both in
time and space due to the high variability of rainfall regime
characterized with long dry periods followed by heavy bursts
of intensive rainfall. To the utmost extent, climate condition,
particularly rainfall is the key factor to determine runoff
characteristics (Liu 2004). However, in past decades, hydro-
logical processes have also dramatically changed due to hu-
man activities, such as, soil and water conservation works,
dams buildings and land use changes. The Sarrath river catch-
ment (1,491 km2), located in the north-west of Tunisia and
subject for a future dam, is a typical Mediterranean semi-arid
basin exposed to a high variability of rainfall, annual means
for the period 1985–2008 varies between 195 mm and
610 mm.

Over the past two decades, hydrologic models have
benefited from significant advances that improved the under-
standing and the interpretation of complicated hydrologic
systems. Since limited hydrological information is available
in semi arid watersheds, adequate hydrological assessment
tools should be flexible to deal with poor quantity and quality
input data (Pilgrim et al. 1988). One approach to assisting
sustainable water resource development and management
within river basins is the use of mathematical modeling of
watershed hydrology (Singh and Woolhiser 2002). In recent
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years, GIS has made an enormous contribution in the field of
water resources engineering and has shown to be a very useful
tool for manipulation, processing, visualization and analysis
of spatially referenced information (Westervelt 2002), there-
fore, the integration between GIS and watershed models be-
came a necessity.

A growing number of semi-distributed and distributed
hydrological models coupled with Geographic Information
Systems were developed in the last years such as AGNPS
(Agricultural None Point Source model) (Young et al. 1989),
WEPP (Water Erosion Prediction Project) (Laflen et al. 1991),
HSPF (Hydrologic Simulation Program in FORTRAN
website) (Bicknell et al. 1997), SWAT (Soil and Water As-
sessment Tool) (Arnold et al. 1998), SWIM (Soil and Water
Integrated Model) (Krysanova et al. 2000) and J2000 (Krause
2002), many of these models were applied for runoff, water
quality and soil loss modeling (Morgan 2001; Santhi et al.
2006; Abbaspour et al. 2007). Among the foregoing models,
the SWAT model was chosen for this study, because it has
gained international recognition as is evidenced by a large
number of applications and has shown the success of hydro-
logic simulation with scarce data, and because it is especially
applicable for large complex watersheds (Neitsch et al. 2002).
However, SWAT model presented also some limitations in-
herent in distributed hydrological models, as its sensitivity to
the DEM resolution (Chaplot 2005; Chaubey et al. 2005; Lin
et al. 2010), to subbasin size (Jha et al. 2004; Arabi et al. 2006;
Mosbahi et al. 2009; Gong et al. 2010), to spatial distribution
of rainfall (Chaplot et al. 2005; Cho et al. 2009; Gao et al.
2012) and to input parameters (Spruill et al. 2000; Francos
et al. 2003; Van Griensven et al. 2006; Chahinian et al. 2011;
Fiseha et al. 2013; Sellami et al. 2013; Aouissi et al. 2014).

Since, we are working on a complex semi-arid catchment
and the SWATmodel includes a large number of input param-
eters describing the different hydrological conditions across
the basin, sensitivity analysis was conducted for this case of
study on model input parameters that cannot be easily opti-
mized. Sensitivity analysis methods are needed for reducing
parameters to be adjusted during calibration and are important
for simplifying the use of model (Van Griensven et al. 2002).
These methods identify parameters that do or do not have a
significant influence on model simulations of real world ob-
servations for specific catchments (VanGriensven et al. 2006).
Classification of the existing methods refers to the way that
the parameters are treated (Saltelli et al. 2000), numerous
sensitivity analyses have been reported in the SWAT literature,
which provide valuable insights regarding which input param-
eters have the greatest impact on SWAToutput (Gassman et al.
2007):

Spruill et al. (2000) performed amanual sensitivity analysis
of 15 SWAT input parameters for a 5.5 km2 watershed in
Kentucky, USA. The approach adopted by Francos et al.
(2003) in the Ouse watershed (3.5 km2) in the U.K, consists

of two-step sensitivity analysis: (1) “Morris” screening proce-
dure that is based on the one factor at a time (OAT) design, and
(2) the use of a Fourier amplitude sensitivity test (FAST)
method.

Van Griensven et al. (2006) used the Latin hypercube (LH)
OAT sampling method for determining the most sensitive
parameters for the Upper North Bosque River catchment
(932 km2) in Texas and the Sandusky River catchment
(3,240 km2) in Ohio. The sensitivity analysis was assessed
for the total amount of water, sediments, nitrogen and
phosphorus.

Chahinian et al. (2011) have calibrated 14 SWAT model
parameters for modeling flow and nutrient emission process-
es. They found that 12 sensitive parameters are directly and
indirectly related to flow simulation.

Fiseha et al. 2013 have identified 18 parameters for flow
prediction in The Upper Tiber River Basin, located in central
Italy (4,145 km2). They used for sensitivity analysis, the
manual approach and Latin hypercube (LH) OAT approach.
On the basis of their relative indexes, only the top ten most
sensitive parameters were considered for further use in the
model calibration and validation processes.

Sellami et al. (2013) have tested the SWAT model to
simulate the flow for two small Mediterranean catchments
(the Vène and the Pallas) in southern France. The sensitivity
analysis was conducted using the LH-OAT method, 10 sensi-
tive SWAT parameters are identified for each of the Pallas and
the Vène catchment. The identified sensitive parameters are
the same for both cases but they differ in their rank.

In Tunisia, Aouissi et al. (2014) have applied the SWAT
model in Joumine basin (418 km2) for stream discharge pre-
dictions. They have selected 17 sensitive parameters, the 7
most sensitive were used for the hydrological calibration
process.

In this study, the SWAT model was applied in the Sarrath
catchment to assess flow. The model was calibrated using the
observed flow at the outlet of the basin for the period
(2001/2002–2003/2004). The objective of this paper is to
perform a sensitivity analysis of hydrological input data taking
into account limited data availability in such context.

Materials and methods

A GIS-based hydrological model

SWAT is a GIS-linked basin scale model capable of sim-
ulating, over long periods, the impact of land management
practices on water, sediment, and agricultural chemical
loads in large complex watersheds with varying soils, land
use, and management conditions. It is a physically based
model supported by the United States Department of
Agriculture-Agricultural Research Service (USDA-ARS)
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(Arnold et al. 1998); it operates on daily time-steps to
produce daily, monthly and annual results. The SWAT
model is embedded within Geographic Information Sys-
tem (GIS) that allows the discretization of watershed into
sub-watersheds which streams are routed. The sub-
watershed is further subdivided into Hydrological Re-
sponse Units (HRUs) that consist of homogeneous land
use, management, and soil characteristics.

The model requires a number of basin specific input data
encompassing different components like, weather, hydrology,
soil temperature, plant growth, nutrients, pesticides, and land
management. The hydrological component of SWAT is based
on the following water balance equation (Eq. (1)):

SW t ¼ SW 0 þ
X
i¼1

t

Rday−Qsuf −ET−Wseep−Qgw

� �
i

ð1Þ

Where:

SWt the final soil water content (mm)
SW0 the initial soil water content on day I (mm)
T the time (days)
Rday the precipitation on day i (mm)
Qsurf the surface runoff on day i (mm)
ET the evapotranspiration on day i (mm)
Wseep the amount of water entering the vadose zone from

the soil profile on day i (soil interflow) (mm)
Qgw the amount of return flow on day i (mm).

Soil water processes include infiltration, runoff, evapora-
tion, plant uptake, lateral flow, and percolation to lower layers,
the details of which can be found in SWAT theoretical docu-
ment (Neitsch et al. 2002). Thus, Surface runoff is estimated
using the SCS curve number equation (USDA-SCS 1972):

Q ¼ R−0; 2Sð Þ2
Rþ 0; 8S

; R > 0; 2S

Q ¼ 0:0 ; R ≤ 0 ; 2 S
ð2Þ

Where Q is the daily surface runoff (millimeters), R is the
daily rainfall (millimeters) and S is a retention parameter. The
retention parameter S, varies among watersheds because soils,
land use, management, and slope all vary, and with time
because of changes in soil water content. The parameter S is
related to CN by the SCS equation:

S ¼ 254
100

CN

� �
− 1 ð3Þ

The peak runoff rate is the maximum runoff rate that occurs
with a given rainfall event. SWAT calculates the peak runoff
rate with a modified rational method (Neitsch et al. 2005):

qpeak ¼ Qsurf � α� Area

3:6� tc
ð4Þ

Where qpeak is the peak runoff rate (m3/s), Qsurf is the
surface runoff (mm), Area is the HRU area (km2), tconc is the
time of concentration (h), and α is the fraction of daily rainfall
that occurs during the time of concentration.

Estimation of percolation is conducted by using a storage
routing technique combined with a crack flow model (Arnold
et al. 1995). This is based on the assumption that percolation
occurs when the field capacity of the soil is exceeded and if the
layer below is unsaturated. The model assumes that the poten-
tial evapotranspiration can be estimated in SWAT using three
options: Priestley-Taylor, Penman-Monteith, and Hargreaves
methods. In this study, the Hargreaves equation (Hargreaves
and Samani 1985) based on daily temperatures was used. The
flow routing in the river channels is computed using the vari-
able storage coefficient method (Williams and Berndt 1977).
Soil erosion and sediment caused by rainfall and runoff are
estimated with the Modified Universal Soil Loss Equation
(MUSLE) for each sub-catchment (Williams and Berndt 1977).

Location of the Sarrath Catchment

The Sarrath river basin is a part of the large TunisianMedjerda
catchment (24,000 km2), the principal watercourse and water
supply for more than half of the Tunisian population
(Bouraoui et al. 2005). This transboundary catchment is lo-
cated in Northwestern of Tunisia (Fig. 1); its river originates in
the semi-arid AtlasMountains of eastern Algeria and drains an
area of 1,491 km2. Topography is ranging from moderately
alluvial valleys along the major channels to important hilly
uplands where elevation ranges from 573 to 1,350 m.

The area under study lies in sub-humid to semi-arid climate
with hot summers and mild winters, It is characterized with an
extreme variability in annual and inter-annual rainfall. The
rainy season extends from September to May with intense
precipitations in September, October, and February. The mean
annual rainfall for the period 2001–2008 is 409 mm, average
temperature ranges from 4 to 28 °C. July is the hottest month
with maximum monthly temperatures values between 19 and
28 °C. The coldest month is usually January with maximum
monthly temperatures between 4 and 10 °C. Most of the
catchment area is poorly covered with vegetation with the
exception of some degraded forests and dense brushes on hilly
areas. Major land covers in the catchment are corn
representing 31 % of the total area, range brushes (27 %)
and forest (18 %). The major soil types found in the Sarrath
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river catchment include calcareous brown soils (32 %), com-
plex soils (30 %) and undeveloped soils (29 %).

Data generation

GIS data layers

The SWAT model interface uses ArcGIS as the platform for
inputting spatial data sets. The interface required a number of
data layers including a Digital Elevation Model (DEM), a soil
map and a land use map.

Digital Elevation Model is frequently a crucial source of
information for GIS hydrological modeling. The DEM is used
to define sub-catchment boundaries and a stream network. The
SWAT model interface has an ArcGIS script that automates the
process to define sub-catchment boundaries, stream network and
slope factors. The DEM of the Sarrath catchment, presented in
Fig. 2, was generated using contours lines created for the pur-
pose of this study from national topographicmapswith a scale of
1:50,000. The cell resolution with an interval of 50 m was used
to generate the derived physical characteristics of the catchment.

Landuse map is a critical input for SWAT model. Land use/
land cover map was obtained from the Soil and Water Conser-
vation Agency using remote sensing data of Landsat Thematic
Mapper images (Fig. 3). This database covers only the Tunisian
part of the basin. The Algerian part of the basin was completed
based on maps at the scale of 1/100,000 and validated with
Google maps.

Soil plays an important role in modeling various hydrolog-
ical processes; soil layer was produced from soil maps

(Fig. 4). Soil properties like texture, hydraulic conductivity,
bulk density and available water content were obtained from
Soil Database created by the Soil and Agriculture Land Au-
thority and completed for the transboundary part from geo-
logic maps at the scale of 1/100,000.

Weather data

SWAT requires daily meteorological data that could either be
read from a measured data set or be generated by the weather
generator of model. A hydro-meteorological observation net-
work was set up within and around the Sarrath catchment.
Daily precipitation time series were gathered from eleven rain
gauge stations for the period 2001–2008 from the National
Water Authority. Daily maximum and minimum temperatures
were collected for the same period, for Thala weather station,
from the National Meteorological Institute. The river

Fig. 1 Location of the sarrath
river catchment

Fig. 2 Digital elevation model (dem) of the sarrath catchment
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discharges of the Sarrath catchment outlet were obtained from
the National Water Authority. They were used for comparing
observed and simulated values in calibration and validation
periods.

Model setup

The ArcSWAT interface was used to delineate a catchment
into sub-catchments based on a DEM, with a resolution of
50 m, and drainage network. This tool uses and expands
ArcGIS Spatial Analyst function to perform watershed delin-
eation (Neitsch et al. 2002).

In the present study, ArcSWAT calculated 27 sub-
catchments as shown in Fig. 5. Based on the formation of
unique combinations of slope, land use and soil type, the sub-
catchments were further divided into 273 HRUs.

Subdividing the areas into hydrologic response units en-
ables the model to reflect the evapotranspiration and other
hydrologic conditions for different land cover and soils. One

of the main sets of input for simulating the hydrological
processes in SWAT is climate data, the ArcSWAT interface
prepared precipitation and weather data in a suitable format.
At this stage the model is ready to run and simulation to
proceed. Output loads were calculated separately from each
HRU and routed to obtain the total runoff for the catchment;
this increases accuracy and gives a much better of the water
balance.

Model performance

The statistical indicators used for evaluating model per-
formance are, the Nash-Sutcliffe Efficiency (NSE); Co-
efficient of Determination (R2) and the percent bias
(PBIAS) (Table 1).

Nash-Sutcliffe coefficient measures the efficiency of the
model by relating the goodness-of-fit of the model to the
variance of the measured data. Perfect agreement between
predicted and observed data results in NSE=1.

The R2 coefficient describes the proportion of the total
variance in the measured data that can be explained by the
model. Lastly, the PBIAS is a measurement of the tendency of
a simulated value to be smaller or larger than its observed
counterpart (Moriasi et al. 2007).

Results

Sensitivity analysis

Given that all SWAT input parameters do not have the
same weight on model outputs, sensitivity analysis prior
to the calibration process, is the investigation of the
relationship between model inputs and outputs, it aims
to determine the parameters whose variation leads to
significant changes in model results and on which more
attention should be paid during calibration (Francos
et al. 2003; Schuol and Abbaspour 2007). It speeds up
the optimization process by concentrating on finding the
optimum values for a limited number of parameters that
govern the model.

Sensitivity analysis was carried out for flow on a monthly
basis, over 8 years (2000/2001 to 2007/2008). The first year
was used as a warm-up period for the model. The provision of
the warming up period is to initialize unknown variables such
as moisture content.

In this research, since we are working on a complex
semi-arid catchment, with empirical parameters, the sen-
sitivity analysis was carried out by changing manually one
parameter at a time. Several model runs were executed for
each input parameter with a range of values, keeping
simulation options and other parameters values constant.

Fig. 3 Landuse map of the sarrath catchment

Fig. 4 Soil map of the sarrath catchment
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Manipulation of the sensitive parameters values was
assessed within the allowable range (Table 2).

A total of eight model input parameters were selected
for sensitivity analysis based on extensive literature re-
view on potential sensitive parameters of the SWAT model
and the model documentation (Neitsch et al. 2005; White
and Chaubey 2005; Cibin et al. 2010). These parameters
were classified according to the processes that they con-
strain: three parameters are related to surface runoff (CN2,
ESCO and Sol_AWC), and five parameters are involved in
base f low (ALFA_BF, GW_QMN, GW_REVAP,
REVAPMN, GW_DELAY). Table 2 lists the model pa-
rameters along with their initial values and acceptable
ranges. Parameter that induces the highest model output
change is the most sensitive.

CN2 parameter

The Curve Number (CN2), is an empirical parameter used
for approximating the amount of direct runoff for the
moisture condition, it varies with each HRU. Since, it
depends on soil properties and on land cover type, this
parameter is always open to question (Hawkins et al.
2009). Given the critical role of vegetation to minimize
runoff, Curve Number was varied for each land cover
type, a low value indicates high infiltration potential and
consequently low runoff. In this study, three CN values
were distributed among the sub-watersheds by the SWAT
model.

The sensitivity analysis of flow to CN2, shows that
the best efficiency is reached on reducing CN2 by 9 %
for forests and range brushes, 5 % for corn and 3 % for
pasture. On the whole, we can say that the decrease in
CN2, reduced the overestimated runoff and improved the
The Nash–Sutcliffe model efficiency coefficient (NSE)
from 0.62- 0.69.

SOL_AWC parameter

SOL_AWC is the ability of the soil to retain water, it is a
determining factor in the calculation of the field capacity of
soil parameter, its value varies between 0 and 1. This pa-
rameter depends on the soil type, thus, soil water saturation,
and hence the related processes of evaporation and percola-
tion, are strongly influenced by this factor. In the sensitivity
analysis of the hydrological component of the SWAT model,
SOL_AWC was varied in a range from −25 to 25 % for all
types of soils. It was found that the best NSE is reached
when this parameter is increased by 15 % (Fig. 6).

Hydrologic 
Response 

Units:   
273 HRUs

Channel network Delineated catchmentDEM

Soil map Landuse mapDelineated catchment

Fig. 5 sub-catchments
delineation in the study area

Table 1 Statistical indicators for evaluating model performance

Name Formula

Nash-Sutcliffe Efficiency

NSE ¼ 1−
∑
i¼1

n

Oi−Sið Þ2

∑
i¼1

n

Oi−Oð Þ2

Coefficient of Determination

R2 ¼ ∑ Oi−O
� �

⋅ Si−S
� �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑
i¼1

n

Oi−Oð Þ2
s

⋅

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
i¼1

n

Si−Sð Þ2
s

2
66664

3
77775

2

Percent bias

PBIAS ¼
∑
i¼1

n

Oi−Sið Þ*100

∑
i¼1

n

Oi

Oi observed flow (m3 /s), Si simulated flow (m3 /s), O mean observed
flow
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ESCO parameter

ESCO is the soil evaporation compensation factor, its value
represents the depth distribution of soil evaporation and varies
between 0 and 1. Raising the ESCO value decreases the soil
depth to which SWAT can satisfy potential soil evaporative
demand (Neitsch et al. 2002), thus decreasing soil evaporation
and evapotranspiration.

The sensitivity of SWAT runoff to the variation of this
parameter is shown in the graph of Fig. 6. There is a signifi-
cant trend towards greater efficiency by increasing the value
of the compensation factor up to 60 % (Fig. 6). When exceed-
ing 60 %, the efficiency decreases as it is shown by the NSE
coefficient. Higher ESCO value, causes less evaporation at a
given soil depth within the model and consequently results in
higher flow values.

ALPHA_BF parameter

ALPHA_BF is the base flow alpha factor; this parameter
affects the amount of base flow simulated in SWAT model.
Its value varies from 0.1-0.3 days for a slow response and
from 0.9-1 day for a quick response. The sensitivity of flow to
this factor is illustrated in the graph of Fig. 7.

The assessment of sensitivity analysis for ALPHA_BF is
done by varying this parameter from −50 to 50 % of its initial
value. It is noted that the increase of this parameter has

positively influenced the NSE coefficient. The efficiency be-
comes stable with an increase of 30 % and thereafter.

GWQMN parameter

GWQMN is the threshold depth of water in the shallow
aquifer required for return flow. Groundwater can flow
only, into the stream reach, when depth of water in the
aquifer is equal to or greater than this threshold.
GWQMN varies from 0 to 5,000 mm, changing this
parameter has a strong effect on model output, for this
reason SWAT model was run with many iterations of
changing values of GWQMN. The graph of Fig. 7 shows
the variation of this parameter with NSE coefficient. It is
found that increasing GWQMN, significantly improves
NSE coefficient up to 80 % (the best value). When
exceeds this value, there is a decrease in efficiency.

GW_REVAP parameter

GW_REVAP is the groundwater revaporation coefficient
which controls the rate of transfer of water from the shallow
aquifer to the root zone. It ranges between 0.02 and 0.2. The
closer it is to 0, the more upward movement of water from
superficial aquifer is reduced. The graph in Fig. 8 gives the
variation of this parameter depending on the NSE coefficient.
GW_REVAP showed some degree of sensitivity to the simu-
lated number of flow days for the catchment. The change in
this parameter does not greatly impact the NSE coefficient as

Table 2 Selected parameters for
sensitivity analysis and their
range of perturbation

Parameter Process Initial value Range Optimal value

CN2 Surface runoff – 35–98 –

ESCO Surface runoff 0.55 (–) 0–1 0.88 (–)

SOL_AWC Surface runoff 0.12 (mm/mm) 0–1 0.14 (mm/mm)

GWQMN Base flow 500 (mm) 0–5,000 900 (mm)

ALPHA_BF Base flow 0.048 (days) 0–1 0.062 (days)

GW_REVAP Base flow 0.02 (–) 0.02–0.2 0.032 (–)

REVAPMN NNN Base flow 1 (mm) 0–500 1.5 (mm)

GWD_ELAY Base flow 31 (days) 0–500 46 (days)
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Fig. 6 Runoff sensitivity to
SOL_AWC and ESCO
parameters
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it ranges between 0.63 and 0.62 when varying GW_REVAP
from −30 % to 100 %.

REVAPMN parameter

REVAPMN is the minimum depth of water in shallow
aquifer for re-evaporation to occur. Under this threshold,
movement of water from the shallow aquifer to the unsat-
urated zone is not allowed. This parameter varies between
0.5 and 500 mm. Fig. 8 showed that varying REVAMN
values didn’t significantly affect the NSE coefficient.
Hence, it does not impact the simulated flow significantly
as the groundwater flow is not important in this basin.

GW_DELAY parameter

GW_DELAY is the groundwater delay time (days), its
value is comprised between 0 and 500 days. The variation
of NSE coefficient as a function of variability in this
model input parameter is shown in Fig. 9. It is noted that
different values of GW_DELAY used in this study do not
have significant effects on the NSE coefficients. This
parameter, showed a low sensitivity under the base-case
condition in this study, it is found that it is slightly sensi-
tive in a fairly narrow range of values between 35 and
50 days. The best efficiency is obtained for an increase of
GW_DELAY with 50 % which corresponds to a value of
46 days.

Among the eight parameters used in this sensitivity analy-
sis, CN2, ESCO, SOL_AWC and GWQMN were the most
sensitive parameters in this case study.

This result supports those found by other studies
confirming that these three parameters are the crucial sensitive
parameters for the water balance (White and Chaubey 2005).
Gassman et al. (2007) summarized the results of the SWAT
sensitivity analysis and reported that CN2 is the primary
influence on the amount of runoff generated from a hydrologic
response unit, and hence a relatively greater sensitivity index
can be expected for most of the watersheds. Other researchers
have reported that flow was also found to be sensitive to
ESCO and SOL_AWC parameters in catchment with higher
evapotranspiration as well as semi-arid catchments, due to
greater mean air temperature and solar radiation (Fadil et al.
2011; Bilondi et al. 2013). It should be noted that both of these
parameters affect simulation of evapotranspiration processes
in SWAT model.

The parameters ALPHA-BF and GW-REVAP affecting the
groundwater flow were the next most sensitive parameters in
this case study. The two parameters having relatively minor
impact on Nash Sutcliffe Efficiency are REVAPMN and
GW_DELAY, thus, these input parameters were not consid-
ered in calibration process.

The results obtained from the sensitivity analysis give
a clear understanding of the relationship between SWAT
input parameters and different outputs of hydrological
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Fig. 7 Runoff sensitivity to
ALPHA_BF and GWQMN
parameters
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Fig. 8 Runoff sensitivity to
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processes under arid catchment conditions. The relation-
ship of changes in the values of the investigated input
parameters to Nash Sutcliffe Efficiency (NSE) is
depicted in Fig. 10.

Model calibration

Facilitated by the sensitivity analysis, the calibration process
was performed, it focused on the adjustment of model sensi-
tive input parameters. In this process, model parameters varied
until recorded flow patterns are accurately simulated. For this
study, since we are working on a complex catchment, and
given that empirical parameters in SWAT model are not di-
rectly measurable at the scale of application, the manual
calibration was applied, it forces the user to better understand
the model and the important processes in the catchment (Ar-
nold et al. 2012).

The SWAT model was calibrated using monthly data of
discharge observed at the outlet of the Sarrath catchment
for 2 years period (2001/2002–2002/2003). Based on their
influence on Nash Sutcliffe Efficiency, the most sensitive
parameters that can be calibrated are CN2, ESCO,
SOL_AWC, GWQMN, ALPHA-BF AND GW-REVAP.
The two other parameters (REVAPMN and GW_DELAY)
were not taken into consideration in the process of cali-
bration since their variation induced a minor impact on
hydrologic response predictions (Fig. 10).

Running SWAT model with the specified optimal
values reduced uncertainty and greatly improved the
agreement between measured and simulated monthly flow.
The time series plot of observed and simulated monthly
runoff for calibration period are showed in Fig. 11.

In general, it can be observed that the model overestimated
major peaks of runoff, despite the optimization of parameters.
However, the overall flow trend is well simulated by the
model and there is a good correlation between simulated and
observed flow which is indicted by an R2 of 0.8, as shown in
linear graph (Fig. 12).

A better model efficiency is also obtained with the two
other goodness-of-fit measures, NSE and PBIAS, that are
within good ranges, respectively, 0.78 and −13.22 %. This
negative value of PBIAS indicates model overestimation bias
(Gupta et al. 1999).

Model validation

After the calibration, the accuracy of the model was deter-
mined during the validation process. SWATwas validated by
using a different time-period flow data, from September 2003
to August 2008. The final value of all calibrated parameters
that showed optimal model efficiency was used for model
validation without their further modification.

Figure 13 shows the time-series plot of simulated and
measured monthly discharge for validation period, it appears
that observed and the simulated flows matched well, despite
the overestimation of some peaks that occurred in high rainfall
events (October and December 2003). The measured and
simulated average monthly flow volumes for the validation
period were 20.3 and 21.5 mm, respectively.

Overall, the validation performance is expected to be less
than the calibration performance (Moriasi et al. 2007). In this
study, in spite of the improvement of coefficient of determi-
nation (R2=0.90), (Fig. 14), the obtained validation results
presented comparable results to that obtained for the calibra-
tion phase, with a NSE and PBIAS equal to 0.75 and −16.5 %,
respectively.

Discussions

Like many other models, SWAT is based on conceptual rep-
resentation of physical processes that govern the flow of water
through the catchment. Model input parameters are of two
types: physical parameters, measurable from the catchment
and empirical parameters that are not directly measurable at
the scale of application and need to be calibrated to optimize
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the simulated monthly discharge at the catchment’s outlet. The
implementation of the sensitivity analysis procedure before
calibration is very important step for simplifying the use of the
model, since it reduces the number of parameters to be
adjusted.

In this study, sensitivity analysis was performed for the
period 2000/2001–2007/2008, on eight SWAT model param-
eters that may have a potential to influence the flow in the
Sarrath catchment, northwestern Tunisia. The sensitive pa-
rameters were evaluated using different model simulations;
the variation of each parameter was reported depending on the
NSE coefficient. The ranges of variation are based on the
SWAT manual (Neitsch et al. 2005).

Results of sensitivity analysis showed that the largest in-
fluence on the hydrologic modelling was induced by surface
runoff. This process, expressed by the runoff curve number
(CN2), the soil evaporation compensation factor (ESCO) and
the soil available water capacity (SOL_AWC), is the most
sensitive process in this catchment.

Changes in CN2 and ESCO parameters values can improve
NSE by approximately 11 % and 7 % respectively, whereas
changes in SOL_AWC Values can influence annual NSE by

approximately 5 % (Fig. 10). Thus, CN2 and ESCO are more
critical in maximizing model efficiency during model calibra-
tion than is SOL_AWC.

The default value for CN2 parameter was determined in
SWATand assigned to each HRU, depending on the soils type
and land-use cover information. The parameter CN2 is the
primary influence on the amount of runoff generated from a
hydrologic response unit, thus, decreasing the CN2 values
increases the soil infiltration capability and, therefore, de-
creases the resulting simulated surface runoff. The CN2 pa-
rameter is the primary control on the abstraction of runoff
from precipitation and has been reported to be a significant
driver of model output by many researchers (Francos et al.
2003; White and Chaubey 2005; Holvoet et al. 2005; van
Griensven et al. 2006).

Gassman et al. (2007) summarized the results of the SWAT
calibration and reported that CN2 was an important parameter
affecting hydrologic simulations in all of the model
applications.

The ESCO parameter adjusts the depth distribution for
evaporation from the soil, it is a calibration parameter and
not a property that can be directly measured. This parameter
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which directly influences the evapotranspiration losses from
the watershed was found to have a higher impact on flow, due
greater mean air temperature and solar radiation in semi-arid
catchment. Other researchers have also reported ESCO to be a
sensitive parameter for SWAT model (White and Chaubey
2005; van Griensven et al. 2006; Fadil et al. 2011; Bilondi
et al. 2013; Aouissi et al. 2014).

Less sensitivity of the model is shown for the soil available
water capacity (SOL_AWC) parameter. Higher values of
SOL_AWC means higher soil water capacity, causing less
water available for surface runoff and percolation.

The most sensitive groundwater parameter is threshold
water level in shallow aquifer for base flow (GWQMN), it
affected greatly the base flow process and hence the total
water yield. This parameter turned out to be the most influen-
tial factors for lowering the base flow and improving the
simulation of water discharge, the changes of GWQMN pa-
rameter values improve NSE by approximately 8 % (Fig. 10).
The base flow alpha factor (ALPHA_BF), is the next sensitive
groundwater parameter, followed by groundwater
revaporation coefficient GW_REVAP, these two parameters
do not have a great influence when each one is treated only,
but when they are adjusted together they allow an improve-
ment of hydrologic response predictions in the watershed.
Other groundwater model parameters (REVAPMN and
GW_DELAY REVAP) were not significant in either water-
shed implying that these parameters may not play a critical
role in calibrating the SWAT.

While sensitivity analysis is a routine process, it is imper-
ative for successful calibration and application of the model.
Calibration is performed manually and consists of changing
values of the six most sensitive input parameters to produce
simulated values that are within a certain range of the mea-
sured data.

Both calibration and validation graphs showed good simi-
larity between observed and predicted flow, with most ob-
served runoff events being replicated by SWAT. The statistic
evaluators computed in this study for calibration and valida-
tion period showed a good correlation between the monthly
observed and simulated river discharge with R2 of 0.80, NSE
of 0.78 and PBIAS of −13.22 for the calibration period. The
validation period revealed good values for R2 (0.90), but less
accurate values for NSE (0.75) and PBIAS (−16.5). Accord-
ing to Moriasi et al. (2007) this model performance for both
calibration and validation periods is evaluated as good to very
good performance rating. The values of PBIAS indicate that
the model had slightly overestimated the discharge during
calibration and validation period.

Further, these results are in agreement with those reported
in other case studies, which have shown successful applica-
tions of SWAT for flow predictions in Tunisia. Bouraoui et al.
(2005) found NSE coefficients ranging between 0.53 and 0.84
depending to the gauging stations in the Medjerda catchment.

It was also successfully applied in the watershed ofWadi Oum
Zessar, southeast of Tunisia, by Ouessar et al. (2006), with a
Nash coefficient of 0.83 for calibration period.

The performance of SWAT model in this case study can be
enhanced furthermore using more accurate input data espe-
cially for the soil that were estimated with global data. The
integration of some other climatic data such as solar radiation,
humidity and wind can also improve the accuracy of the
evapotranspiration estimation and therefore the other water
balance components. More accurate daily rainfall data can
also improve results of simulation.

Therefore, better calibration is possible if seasonally de-
pendent parameters could be adjusted throughout the year. For
example, since we are working in a semi-arid catchment,
different values for the ESCO parameter during winter and
summer would permit more realistic simulations of water
evaporation during both seasons and thereby increase model
efficiency.

Conclusion

In the present study, SWAT a distributed hydrological model
having an interface with ArcGIS software was assessed for
predicting the flows of Sarrath river basin in northwestern
Tunisia. This was meant to determine whether SWAT is a
suitable alternative for modeling semi-arid catchment with
scarce data, and therefore could be applicable for water re-
sources assessments. The main objective of this study was to
analyze the sensitivity of hydrologic component to input
parameters. After preparing all GIS data layers and database
required by ArcSWAT, the model was setup and run at a
monthly time step.

Analysis of the influence of the most sensitive parameters
on NSE for the hydrologic response indicated that surface
runoff has the major impact with three sensitive parameters:
CN2, ESCO and SOL_AWC. The groundwater flow is in next
sensitive, from most to least, GWQMN, ALPHA_BF,
GW_REVAP, REVAPMN and GW_DELAY REVAP.

The sensitivity analysis provides good insight into the
model input parameters especially in the case of highly pa-
rameterized models, such as the SWAT model. Based on the
assessment of investigated parameters to which the model is
most sensitive, SWATwas calibrated and validated for flow at
the watershed outlet. The calibration process used measured
data for 2 years period (2001/2002–2002/2003) and yielded a
good correlation (R2=0.80 and NSE=0.78) between mea-
sured and simulated flow. Model validation was performed
for the period 2003/2004–2007/2008 and generated an R2

value of 0.9 and NSE=0,75. Based on these coefficients,
model performance evaluation was reasonably good for
predicting flow in this semi-arid catchment with limited data
availability.
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This study indicates that the SWAT model can be an
effective tool for accurately simulating the hydrology of
Sarrath river basin. Accurate flow simulations are required
to accurately predict sediment loads and chemical
concentrations.
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