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Abstract This study investigates the effect of discrete wavelet
transform data pre-processing method on neural network-based
successive-station monthly streamflow prediction models. For
this aim, using data from two successive gauging stations on
Çoruh River, Turkey, we initially developed eight different
single-step-ahead neural monthly streamflow predictionmodels.
Typical three-layer feed-forward (FFNN) topology, trained with
Levenberg-Marquardt (LM) algorithm, has been employed to
develop the best structure of each model. Then, the input time
series of eachmodel were decomposed into subseries at different
resolution modes using Daubechies (db4) wavelet function. At
the next step, eight hybrid neuro-wavelet (NW) models were
generated using the subseries of each model. Ultimately, root
mean square error and Nash-Sutcliffe efficiency measures have
been used to compare the performance of both FFNN and NW
models. The results indicated that the successive-station predic-
tion strategy using a pair of upstream-downstream records tends
to decrease the lagged prediction effect of single-station runoff-
runoff models. Higher performances of NW models compared
to those of FFNN in all combinations demonstrated that the db4
wavelet transform function is a powerful tool to capture the non-
stationary feature of the successive-station streamflow process.
The comparative performance analysis among different combi-
nations showed that the highest improvement for FFNN occurs
when simultaneous lag-time is considered for both stations.

Keywords Feed-forward neural networks . streamflow
prediction . successive-station forecasting . wavelet transform

1. Introduction

Conventional black-box regression models such as auto-
regressive, auto-regressive moving average and the likes are
linear models, which were widely used for hydrological fore-
casting (Abrahart and See 2000; Guang-Te and Singh 1994;
Mondal and Wasimi 2006). Based on a basic necessity of
being stationary, these models have limited ability to predict
non-linear hydrologic time series (Nourani et al. 2011). It is
the reason behind a great deal of research into the application
of artificial intelligence (AI) techniques in hydrological fore-
casting. Artificial neural network (ANN) is one of the most
popular AI techniques, which has been employed in various
fields of hydrological forecasting and successful results have
been reported (Altunkaynak 2007; Aytek et al. 2008; Besaw
et al. 2010; Can et al. 2012; Dahamshe and Aksoy 2009;
Kakahaji et al. 2013; Taormina et al. 2012). A comprehensive
review concerning the application of neural networks in river
forecasting was presented by Abrahart et al. (2012).

Both short-term and long-term streamflow predictions are
required to plan, operate and optimize the activities associated
with water resource system (Kisi 2010). Each of them has their
own benefits and applications in operational hydrology.
Monthly period prediction, as a long-term or transition from
short- to long-term period, is useful for many water resource
applications such as environmental protection, drought manage-
ment, and optimal reservoir operation (Wang et al. 2009).
However; Short-term forecasts, with lead times of hours or days,
are necessary for flood warning systems and real-time reservoir
operation (Chang et al. 2004). Based upon the aim of forecasting
issue, different kinds of daily, monthly, and annual streamflow
prediction models were developed individually by researchers
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without considering the efficiency of the proposed model in
other time horizons and successful results were reported. For
instance, genetic programing model (Makkeasorn et al. 2008),
wavelet regression model (Kücük and Agiralioglu 2006, Kisi
2010), stand-alone wavelet and cross-wavelet model
(Adamowski 2008), and wavelet-ANN model (Kisi 2009,
Krishna 2013) were suggested for daily streamflow forecasting.
Moreover, an adaptive-network-based fuzzy inference system
(Lin et al. 2005), a single station neuro-wavelet model (Cannas
et al. 2006), and a wavelet predictor–corrector model (Zhou
et al. 2008) were also suggested for monthly streamflow predic-
tion. Coulibaly and Burn (2004) used wavelet analysis method
with climatic patterns for both describing inter-annual features
and quantifying the temporal variability of Canadian annual
streamflow. Their results indicated that streamflow regionaliza-
tion can be refined based on their wavelet spectra.

As known, streamflow series are highly non-stationary and
quasi-periodic signals contaminated by various noises at differ-
ent flow levels (Wu et al. 2009a). Unsatisfactory prediction
results of ANN models have been widely reported for this kind
of signals (Cannas et al. 2006;Nourani et al. 2011). ANNmodels
were not also performed good enough in the case of runoff-
runoff streamflow prediction due to the lagged prediction effect,
which has been mentioned by some researchers (Chang et al.
2007; De Vos and Rientjes 2005; Muttil and Chau 2006; Wu
et al 2009a). In such cases, application of data pre-processing
methods, such as moving average, singular spectrum analysis,
and continues/discrete wavelet transform (WT) integrated with
ANN models have been suggested to improve the accuracy of
the model (Adamowski and Sun 2010; Cannas et al. 2006; Kisi
2008; Krishna 2013; Niu and Sivakumar 2013; Nourani et al.
2011, Wu et al. 2009b). Application of the abovementioned data
pre-processing methods along with some other feasible alterna-
tives was discussed in detail by Chau and Wu (2011).

Our review in the relevant literature showed that hybrid
single-station daily/monthly streamflow prediction models have
received tremendous attention of researches (e.g. Cannas et al.
2006; Adamowski 2008; Kisi 2009; Shiri and Kisi 2010;
Krishna 2013). however, at the best of our knowledge, general-
ization of NW techniques in successive–station monthly
streamflow prediction was not discussed. Thus, the main chal-
lenge of this study is to investigate the effect of wavelet-based
data pre-processing method on the performance of ANN-based
successive-station monthly streamflow predictions models in a
perennial river. The successive-station prediction strategy using
a pair of upstream-downstream records tends to decrease the
lagged prediction effect of commonly proposed single-station
runoff-runoff modes, while the wavelet component of the model
provides a powerful tool to capture the non-stationary feature of
the process. Following this, in the first phase of the current
research, we put forward eight black-boxANN-based prediction
models using streamflow records from two successive gauging
stations on Çoruh River, Turkey. Typical three-layer feed-

forward neural network (FFNN) algorithm has been applied to
develop the best structure for each model. In the second phase,
we applied discrete wavelet decomposition procedure to gener-
ate our NW models. Finally, a comparative efficiency analysis
between ad hoc FFNN and hybrid NWmodels has been done in
terms of accuracy and simplicity.

Overview of FFNN

FFNN is one of the commonly used ANN techniques that
typically involve three parts (American Society of Civil
Engineers, ASCE Task committee 2000): including input layers
with a number of input nodes, one or several hidden layers, and a
number of output nodes. The number of hidden layers and nodes
in each layer are two key design parameters. The input nodes do
not perform any transformation upon the input data sets. They
only send their initial weighted values to the nodes in the hidden
layer. The hidden layer nodes typically receive the weighted
inputs from the input layer or a previous hidden layer, perform
their transformations on it and pass the output to the next
adjacent layer which is generally another hidden layer or the
output layer. The output layer consists of nodes that receive the
hidden-layer outputs and send it to the modeller. Initial weight
values are progressively corrected during a training process (at
each iteration) that compares predicted outputs with correspond-
ing observations and back-propagates any errors to determine the
fitting weights which is required to minimize the errors.

A critical issue in ANN modeling is to avoid likely
undertraining and overtraining problems. In the former situation,
the network may not be possible to fully detect all attributes of a
complex time series, while overtraining may reduce the model
capacity for generalization properties. Application of cross-
validation or selection of appropriate number of neurons in
hidden layer using the trial-and-error procedure with a confined
training iteration number (epoch), which were commonly sug-
gested to prevent these problems (Cannas et al. 2006;
Elshorbagy et al. 2010a; Wu et al. 2009b; Kisi 2008; Krishna
2013, Nourani et al. 2008 and 2009; Principe et al 2000). The
design issues, training mechanisms and application of FFNN in
hydrological studies have been the subject of different studies
(ASCE Task committee 2000, Abrahart et al. 2012) and the
explicit expression for an output value of a three-layered
FFNN networks is given by (Nourani et al. 2013). Therefore,
to avoid duplication, we only introduced the main concepts of
the FFNN here. The FFNN modelling attributes used in this
study will be given in Section 5.1.

Wavelet transform

Wavelet transforms (WT) have recently begun to be used as a
beneficial data pre-processing tool for hydrological time series.
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The term wavelet means small wave. The wave refers to the
condition that it is oscillatory and the smallness refers to the
condition that the function is of finite length (Cannas et al.
2006). By a WT, a time series decomposes into multiple levels
of details, sub-time series, which provide an interpretation of the
original time series structure and history in both the time and
frequency domains using a few coefficients (Nourani et al.
2013). Wavelets are waving-like mathematical functions with
amplitude begin at zero, increases, and then decreases back to
zero. Figure 1 represents three types of the most popular wavelet
functions. As it clear from the figure, a wavelet tends to be
irregular and asymmetric unlike the sine waves (Ozger, 2010).

WT appears to be more effective tool than the Fourier
transform (FT) in studying non-stationary time series (Partal
and Kücük 2006; Partal and Kisi 2007). The main advantage
of WT is their ability to simultaneously obtain information on
the location and frequency of a signal, while FT separates a
time series in to sine waves of various frequencies, WT
separates it into shifted and scaled waves using a predefined
(or mother) wavelet (Ozger, 2010).WTAdvantages compared
to FT was discussed in detail by Sifuzzaman et al. (2009).

Continuous wavelet transforms (CWT)

In mathematics, an integral transform (Tf) is particular kind of
mathematical linear operator, which has the following form:

Tf uð Þ ¼
Z t2

t1
K t; uð Þ f tð Þdt ð1Þ

where f(t) is an square-integrable function such as a continuous
time series andK is a two variable, t and u, function called kernel.

According to Eq. 1, any integral transform is specified by a
choice of the kernel function. If function K is chosen as
wavelet function, then CWT is (Mallat, 1998):

T a; bð Þ ¼ 1ffiffiffiffiffi
aj jp
Zþ∞

−∞

ψ* t−b
a

� �
f tð Þdt ð2Þ

where T(a, b) is the wavelet coefficients, ψ (t) is a mother
wavelet function, in time and frequency domain, and * de-
notes operation of complex conjugate.

The parameter a, is scaling factor which acts as a dilation
(a>1) or a contradiction (a<1) coefficient of the mother
wavelet. When the scaling factor is less than 1, the mother
wavelet is more contracted which results more detailed sub-
time series. In contrast, the scaling factor greater than 1 means
the stretched mother wavelet which results less detail sub-time
series. The parameter b is the translation (or position) value
and also called time factor of the mother wavelet, which
allows the study of the signal f(t) locally around the time b
(Kücük and agiralioglu, 2006). The main property of wavelets
is localized in both time (b) and frequency (a) whereas the
Fourier transform is only localized in frequency.

The CWT calculation produce N2 coefficients from a data
set of length N; hence redundant information is locked up
within the coefficients which may or may not be a desirable
property (Addison et al., 2001; Krishna 2013). As an alterna-
tive, the discrete wavelet transform is usually preferred for
practical applications in hydrological time series decomposi-
tion (Rajaee et al., 2011; Rathinasamy and Khosa, 2012).

Discrete wavelet transforms (DWT)

Hydrologic data usually are recorded in discrete time inter-
vals. Hence, DWT is preferred to CWT for practical applica-
tions (Nourani et al. 2013). The wavelet function in its discrete
form can be represented as:

ψa;b tð Þ ¼ 1ffiffiffi
a

p ψ
t − b

a

� �
ð3Þ

where a and b are scaling and position parameters,
respectively.

In DWT, wavelet coefficients are commonly calculated at
every dyadic step, i.e. the operation of WT is carried out at
dyadic dilation (a=2m) and integer translations (b=2mn);

Fig. 1 Schematics of aHarr
wavelet, b db4 wavelet, and c
Meyer Hat wavelet
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where m and n are integers that control the wavelet dilation
and translation respectively. Therefore, the dyadic wavelet
function can be obtained by Eq. (4) and DWT coefficients,
Ti (m, n), for a time series such as f (t) can be defined as
Eq. (5).

ψm;n tð Þ ¼ 2−m=2ψ 2−m−nð Þ ð4Þ

Ti m; nð Þ ¼
XN−1
i¼0

ψi: tð Þ f i tð Þ ¼ 2−m=2
XN−1
i¼0

ψ 2−m−nð Þ f i tð Þ ð5Þ

Study area and data

Our study area is Çoruh River, the perennial river in eastern
Black Sea region, Turkey (Fig. 2). The river springs from
Mescit Mountains in Bayburt and reaches the Black Sea in
Batum City of Georgia after a course of 431 kms. Mean
annual flow of the river before leaving Turkey’s border is
about 200 m3/s. General characteristics of the river catchment
were already described by Can et al. (2012).

The reliability of any hydrological prediction model will be
crucially dependent on the quality of the underlying data. It is
therefore important that sufficient attention is placed on gath-
ering good quality data before they are used in prediction
analysis. There are 11 successive gauging stations, with def-
erent recording time period, on the main course of the Çoruh
River. Respect to the spatial and temporal consistency of the
stations, we selected our study gauges (Fig. 2 stations 2322
and 2315) and observation period (1972–2000) from available
data in such a way that provide both the longest and the most
reliable records concurrently. Monthly streamflow time series
of stations at 29-year period has been depicted in Fig. 3.
Table 1 presents the statistical characteristics of the relevant
data.

Çoruh is a shared river between Turkey and Georgia.
Monthly streamflow prediction at the lower reach of the river,
trans-boundary reach, will help both countries’ water re-
courses managers make suitable decisions in dry or wet spells
or to resolve probable conflicts about sharing of river water.

Prior to the training of our ANN and NW models, the
normalization was applied for the data. The main goal of data
normalization is to scale the data within a certain range in

Fig. 2 Location of study area (Çoruh River Catchment)
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order to minimize bias within the neural networks. In this
study, we applied the following formula for the min-max
normalization method (Eq. (6)). This formula rescales target
values to lie within a range of 0.1 to 1.0 and produces the
arithmetic mean of target values larger than that of
common min-max normalization method and at the
same time being closer to the mean of activation factor
(=0.5 in our networks). In commonly used min-max
normalization method with a range of 0.0 to 1.0 (Priddy
and Keller 2005), inefficient learning process of ANN is
reported (Sajikumar and Thandaveswara 1999; Tahershamsi
et al. 2012).

Xn ¼ 0:1þ 0:8� X

Xmax −Xmin

� �
ð6Þ

where Xn=normalized value of X, Xmax=maximum value
and Xmin=minimum value of each variable of the orig-
inal data.

After training, the model that yields the best results in terms
of Nash-Sutcliffe efficiency (NSE) and root mean squared
error (RMSE) can be selected as the most efficient model.

NSE (Eq. (7)) is a normalized indicator of the model’s ability
to predict about the 1:1 line between observed and predicted
data. RMSE (Eq. (8)) measures the root average of the squares
of errors. The error is the amount by which the value implied
by the estimator differs from the target or quantity to be
estimated.

NSE ¼ 1−

X
i¼1

n

Xobs
i −Xpre

i

� �2
X
i¼1

n

Xobs
i −Xobs

mean

� �2 ð7Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i¼1

n

Xobs
i −Xpre

i

� �2

n

vuuut
ð8Þ

where Xi
obs = observed value of X, Xi

pre = predicted value
Xmean
obs = mean value of observed data and n=number of ob-

served data.

Fig. 3 Monthly streamflow time
series for the 29-year period

Table 1 The monthly statistical
parameters of observed
streamflow data

Statistical parameter Station

Upstream (2322) Downstream (2315)

Raw Normalized Raw Normalized

Number of data (X) 348 348 348 348

Xmax (m
3/s) 867.4 0.9321 1018.2 0.9404

Xmin (m
3/s) 33.5 0.1321 48.9 0.1404

Xmean (m
3/s) 158.6 0.2522 207.1 0.2709

Standard deviation (m3/s) 159.1 0.1526 184.4 0.1522

Coefficient of Skewness 1.7271 1.7271 1.7001 1.7001
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Proposed models and results

At many of the hydrological modeling studies, modelers have
developed different empirical relationships between input and
output variables based upon single- or multi-step-ahead fore-
casting scenarios (Chang et al. 2007; Kisi 2004 and 2008;
Krishna 2013; Nourani et al. 2009 and 2012). Sudheer et al.
(2002) suggested a statistical procedure, based on cross-
correlation, autocorrelation and partial autocorrelation proper-
ties of the time series for identifying the appropriate input
vector for the model. However, Modarres (2009) showed that
global statistics are insufficient indicators for the best ANN. In
this study, a number of successive-station combinations
(Models (1) to (8)) were trained and compared with each other
to identify the appropriate input vector. Such an identification
methodology has previously applied by Kisi (2004 and 2007)
for single-statin daily and monthly streamflow prediction. The
structure of the proposed models expressed as follows.

(1) Model (1) Dt=f(Dt-1, εt)
(2) Model (2) Dt=f(Ut, εt)
(3) Model (3) Dt=f(Dt-1, Ut, εt)
(4) Model (4) Dt=f(Ut-1, Dt-1, εt)
(5) Model (5) Dt=f(Ut-1,Ut, Dt-1, εt)
(6) Model (6) Dt=f(Ut-1, Ut, Dt-2, Dt-1, εt)
(7) Model (7) Dt=f(Ut-2, Ut-1 , Dt-2, Dt-1, εt)
(8) Model (8) Dt=f(Ut-2,Ut-1,Ut,Dt-2,Dt-1, εt)

where Dt and Ut represent downstream and upstream monthly
streamflow respectively and εt is an uncertainty term (to be
minimized).

FFNN modelling results

Our data record is composed of 348 monthly streamflow
observations at each station. Due to the temporal consequence
of hydrological process, such as streamflow between gauging
stations, it is recommended to use the first part of observed
time series for training and the rest for the verification (Kisi
2007; Krishna 2013; Nourani et al. 2012). In this study, the
first 70 and the rest 30 percentage of 348 observations were
selected for training and validation of the networks, respec-
tively. Therefore, the entire data set were divided into two
subsets. The statistical parameters of each subset were pre-
sented in Table 2.

At the first stage of streamflow prediction, several three-
layer FFNNs with the sigmoid transfer function in hidden
layer and linear transfer function in output layer has been
developed as a nonlinear modelling structure. It has been
proved that three-layer FFNNs are satisfied for the hydrolog-
ical forecasting (ASCE Task committee 2000; Chau et al.
2005; Nourani et al. 2008; Rezaeianzadeh 2013a). The
three-layer FFNN network, which is well known as universal
approximator (Hornik et al. 1989), is probably the most pop-
ular ANN in the case of nonlinear mapping (Tahershamsi et al.
2012, Krishna 2013). The satisfactory application of the sig-
moid and linear transfer functions in hidden and output layers,
respectively for streamflow prediction was extensively report-
ed (e.g. Chang et al. 2007, Krishna 2013; Rezaeianzadeh et al.
2013b). Following the structure definition, we trained our
models using the Levenberg-Marquardt (LM) algorithm with
a useful toolbox available in the MATLAB® software. The
LM is one of the Newtonian optimization techniques and
more powerful than conventional gradient descent techniques
(Kisi, 2007), which widely used in FFNNs (Haykin, 1999).
The successful implementation of LM algorithm to train

Table 2 Statistical parameters of subsets

Parameters Entire data Training set Validation set

Number of data (X) 348 244 104

Xmax (m
3/s) 1,018 930 1,018

Xmin (m
3/s) 33.5 36 48

Xmean (m
3/s) 158.6 158 223

Standard deviation (m3/s) 159.1 156 204

Coefficient of Skewness 1.7271 1.71 1.71

Table 3 Performance compari-
son of FFNN and NW techniques
at validation period

a Nodes in hidden layer (NHL),
the result has been presented for
the best structure
b The RMSE is dimensionless

Model Prediction scenario FFNN NW

NHLa RMSEb NSE NHLa RMSEb NSE

1 Dt=f(Dt-1) 3 0.131 0.355 2 0.130 0.364

2 Dt=f(Ut) 3 0.130 0.363 4 0.117 0.482

3 Dt=f(Dt-1, Ut) 4 0.079 0.766 4 0.078 0.772

4 Dt=f(Ut-1, Dt-1) 5 0.039 0.943 6 0.032 0.962

5 Dt=f(Ut-1,Ut, Dt-1) 4 0.037 0.948 5 0.034 0.955

6 Dt=f(Ut-1, Ut, Dt-2, Dt-1) 6 0.046 0.921 6 0.044 0.925

7 Dt=f(Ut-2, Ut-1, Dt-2, Dt-1) 7 0.043 0.918 9 0.040 0.922

8 Dt=f(Ut-2, Ut-1,Ut,Dt-2, Dt-1) 9 0.033 0.922 9 0.031 0.926
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ANN-based hourly, daily, and monthly streamflow prediction
models is frequently reported (e.g. De Vos and Rientjes 2005;
Chau et al. 2005; Cannas et al. 2006; Kisi 2010)

As broadly suggested in the literature (e.g. Cheng et al.
2005; Chang et al. 2007; Taormina et al. 2012), in this

research, a fixed number of input nodes, equals to the number
of input time series at each model, a single hidden layer with
dynamic nodes varying from 1 to 10 with a step size of 1 in
each trial, and one output node (the desired output) was
adopted to train the proposed models. Determination of

Fig. 4 Comparison of dimensionless predicated streamflow for the Calibrations and validations by different models; aModel 1, bModel 2, cModel 3, d
Model 4, eModel 5, fModel 6, g Model 7, hModel 8
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optimum number of neurons in hidden layer is an important
aspect of an efficient network. As it mentioned previously, in
order to check any under- or over-fitting problem during the
training process, a commonly suggested trial-and-error ap-
proach (Kisi 2008) is utilized to select the optimum number
of neurons in the hidden layer. If the number of nodes in the
hidden layer is too small, the network may not have sufficient
degrees of freedom to learn the process correctly. On the
contrary, if it is too high, the training will take a long time
and the network may sometimes overfit (Kisi 2004). Cannas
et al. (2006) found that the optimal FFNN models are con-
structed with a few number of hidden neurons. As it men-
tioned previously, in present study, the upper hidden neurons
threshold was adopted to be 10. The mean square error value
at validation step in each trial is used as a criterion for selecting
the optimal number of hidden neurons. No significant im-
provement in model performance was found when the number
of hidden neurons was increased from the limit, which is
similar to the experiences of other researchers (Cheng et al.
2005; Cannas et al. 2006; Wu et al. 2009b). Results of the best
FFNN structure for each model and their performance levels
have been tabulated in Table 3. Scatterplots of the best

predictions compared to their corresponding observed values
were illustrated in Fig. 4.

NW modelling results

The proposed NW models are hybrid-ANN models, which
mean the pre-processed data via wavelet transform, are en-
tered to the ANN model in order to improve the accuracy of
the formerly structured FFNN models. The schematic struc-
ture of the proposed NW model is illustrated in Fig. 5. The
structure includes two phases. In the pre-processing phase, the
original monthly streamflow time series including Dt, Ut and
their previous observations are decomposed into sub-series of
approximations (A) and details (D) through the high-pass and
low-pass filter coefficients of a chosen mother wavelet. In this
manner each sub-series may represent a special level of the
temporal characteristics of the original input time series.
Appropriate mother wavelet may be selected in this
phase according to shape pattern similarity between the
mother wavelet and the investigated time series (Onderka
et al. 2013). The Brute-force search method can also be

Fig. 5 Schematic view of
proposed NW model
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applied as an alternative to choose an appropriate mother
wavelet (Nourani et al. 2013).

Our time series is characterized by a very irregular signal
shape, fast decaying and oscillating, thus an irregular mother
wavelet, the Daubechies wavelet with four vanishing mo-
ments (db4, Fig. 1b) was selected for use (Daubechies,
1990). Nourani et al. (2011) compared the effect of db4 with
three different irregular mother wavelets, comprising Haar,
Sym3 and Coif1 wavelets, on daily and monthly streamflow
prediction and showed that the db4 provides the best perfor-
mance. The effective application of the db4 for decomposition
of non-stationary monthly streamflow time series has also
been reported by Cannas et al. (2006). Therefore, in the
present study, we applied dyadic DWT with the db4 mother
wavelet at different resolution modes (i.e. 2, 4, 8, 16, and 32-
month mode) to decompose the original observed streamflow
time series. Each resolution demonstrates specific time feature
of the investigated time series. In decomposition level 5 (i.e.
dyadic dilation a=32), there is five details (or resolution
modes) and one approximation sub-signal. We wrote a special
code to use the MATLAB® software for NW simulation in
this research. For instance, the approximation (a5) and detail
sub- series (d1 through d5) for the streamflow time series of
downstream station has been illustrated in Fig. 6.

In the second phase, simulation phase, at first, the
three-layer FFNN models are built afresh such that the
sub-series, a5 and d1 through d5 in our experiment, of

the original time series are the input neurons to the
FFNN. Then, training and validation process are per-
formed using the input sub-series to determine output time
series. The number of input layer neurons was determined
according to the used decomposition level and the output layer
neuron was a fixed one. Results for the best NW structure and
their performance level compared to those of FFNN are pre-
sented in Table 3.

Discussion

The efficiency results of the best developed FFNN and NW
models for all proposed combinations are compared in Table 3
using NSE and RMSE indices at the validation period. It can
be implied from the table that Model (1) resulted in the lowest
achieved performance level. Suggested decomposition pro-
cess did not also provide any noteworthy improvement in
the results of corresponding FFNN. It may be because of
introducing insufficient lag time (input neurons) to the
models. It indicated that this single-step-ahead monthly
streamflow prediction scenario could not provide a suitable
prediction model for the river.

Based upon aforementioned successive-station prediction
strategy, in the second scenario upstream data records was
considered as input neurons instead of increasing in the lag-
time of downstream station records. Model (2), provides a

Fig. 6 Approximation and detail sub-series of streamflow at station 2315
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downstream flow prediction scenario using only simultaneous
upstream station records. Although it makes a considerable
improvement in the performance levels of corresponding NW-
based model compared with those of Model (1), it does not
provide a suitable streamflow prediction model yet (NSE=
0.482). The reason is obviously related to the fact that the
mean monthly flow in the study reach has a spatially increas-
ing regime which is also distinguishable in Fig. 3. Comparing
with all other scenarios, Model (2) shows that the highest

effect of wavelet decomposition on the accuracy of FFNN
models occurs in this case. It is due to the fact that temporal
characteristics of the downstream time series are thought to be
highly simultaneously correlated with time features of up-
stream sub-series. The results of these first two models also
indicated the necessity of additional forecasting lead time and/
or efficient input variables.

The first combination of upstream and downstream flow,
Model (3), resulted in significant improvement in the

Fig. 7 Scatter plots of predicted data at validation period (station 2315)

Fig. 8 Predicted and observed
monthly streamflow (a) and
prediction residuals (b) at station
2315 for validation period
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performance levels. It implies that that existing sub-basins
between the stations have considerable physical effects (i.e.,
increasing drainage area) on the occurrence of flow at down-
stream station. This is the reason why we intentionally keep
downstream flow at time (t-1), Dt-1, in constructing of the
other combinations (Models (4) to (8)). Similar to Model (1),
Although NW slightly outperformed FFNN; wavelet decom-
position technique did not provide considerable improvement
for the ad hoc FFNN in Model (3). It may be due to the
presence of inefficient decomposed sub-series within the input
nodes of NW. Therefore, it is suggested that suitable filtering
strategies would be implemented on the choice of effective
decomposed sub-series in future studies. For instance, corre-
lation between decomposed sub-series with original input
time series can be used to distinguish the effective discrete
wavelet components (Krishna 2013).

Models (4) to (8) represent five effective prediction
successive-station combinations with high performance
levels, which all perform similar to each other. NW provided
comparatively better outcomes than FFNN in all cases. Due to
remarkable coherence between the observed and predicted
values in these models, there is a very strict competition
among them to be chosen as an optimum streamflow predic-
tion model of the river. From Table 3, it is observed that
Models (4) and (5) are the most appropriate combinations
for streamflow prediction by FFNN and NW. Both of them
use downstream and upstream flows at time (t-1) (Dt-1 and Ut-

1); however, the former also contains an extra input variable
namely upstream flow at time (t) (Ut). Adding one more
variable into the input layer of Model (4) intentionally, result-
ed in imperceptible improvement in FFNN and reduction in
NWefficiency. Such a diminishing accuracy is also observed
in NW results of Models (6) to (8). This drawback of NW
might be due to increasing number of input neurons. Adding
one more input variable in our FFNN models generates six
more input sub-signals within the corresponding NWstructure
that significantly increases the complexity of the model. It is
important to note that inevitable errors of each input series
(sub-series) magnify the total error of the NW, and thus the
model efficiency diminishes. Therefore, we suggest the NW
modellers to be very careful when selecting the input variables
whether or not it is inefficient or efficient multivariable NW
model.

The efficiency values of NW-based Model (4) (RMSE=
0.032 and NSE=0.962) demonstrate that successive-station
strategy using only 1-month lag provides the most accurate
monthly streamflow prediction model on Çoruh River. It
provides more than 60 percentage improvement in NSE value
of single-station-1-month-ahead model (i.e. Model (1)). It is
why in single-station runoff-runoff models application of at
least 3 to 4 lag-times in order to achieve the best modelling
structure were commonly recommended (Wu et al. 2009a, b;
Kisi 2010; Shiri and Kisi 2010).

Considering all the aforementioned results and the concept
of simplicity and applicability as a main issue in modelling,
Model (4) has been selected as the best monthly streamflow
prediction at station 2315 on Çoruh River. In order to present
detailed comparison between the NW and FFNN models, the
scatterplots and the plots of the observed and predicted
time series of 1-month-ahead forecast for Çoruh River
(Model (4)) at validation period were illustrated in Figs. 7
and 8, respectively. The residuals of the models have also
depicted in the Fig. 8b.

These figures show the high ability of both proposed
FFNN and NW models to predict the low and medium
monthly streamflow (150<Dt<400 m3/s). NW is more capa-
ble of capturing local extremes (i.e. minima and maxima),
global maximums (or annual peaks) than FFNN and generated
5m3/s mean absolute error less than those of FFNN which
warrant its superiority to FFNN in overall sense. Furthermore,
Fig. 8 shows that some of the FFNN model’s timing of the
peaks is lagged. This lagged prediction effect is the result of
using antecedent observed values as FFNN inputs without
considering any data pre-processing approach, which is con-
sistent with the findings of other researchers (De Vos and
Rientjes 2005; Wu et al. 2009a, b). It reveals the fact that the
chosen mother wavelet, db4, has performed well as expected.

Conclusion

In this study, we attempted to investigate how and howmuch a
wavelet-based data pre-processing method can improve the
performance of the common tree-layer FFNN models in
successive-station monthly streamflow prediction. For this
aim, we firstly developed eight different FFNN prediction
models using historical observations from two successive
gauging stations on Çoruh River, Turkey. Then, we tried to
optimize our models via a discrete wavelet transform method.
Wavelet-transformed data in conjunction with ANN structures
generated our proposed hybrid NW models that were capable
of capturing useful information about history of the observa-
tions on various time resolution levels with the use of only a
few coefficients.

The obtained results indicated a promising role of NW in
successive-station monthly streamflow prediction, which led
all FFNN models to more accurate predictions. Our proposed
NW model provides flexible choice of mother wavelet selec-
tion to decompose the input time series. The results showed
that Daubechies mother wavelet with four vanishing moments
provides acceptable outcomes for monthly streamflow de-
composition. Therefore, its application to decompose similar
monthly streamflow signals is suggested. The comparative
analysis between different input combinations pointed out that
only 1 month-lagged records of both downstream and
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upstream stations are enough to establish the best prediction
model for the study catchment.

Owing to our study limited to the implementation of a
distinct catchment data, applying this approach to pairs of
stations from different catchments is suggested to strengthen
these conclusions. We evaluated a single ANN algorithm
along with a single db4 mother wavelet in order to propose
our NW model. Other ANN techniques, such as generalized
regression and/or radial basis function algorithms using dif-
ferent mother wavelets (e.g., Harr, Mayer, and others) can also
be investigated in order to improve the efficiency of NW-
based successive-station streamflow prediction models.
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