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educational researchers employ advanced designs and tech-
niques to assess cognitive load rather than using only sub-
jective measures fraught with limitations (Anmarkrud et al., 
2019; Brunken et al., 2003). Given the ongoing advances 
in technology, it is anticipated that these challenges can be 
mitigated through the use of EEG as a direct physiologi-
cal measure (Wickens et al., 2013). Nonetheless, the field 
of EEG-related research encounters several noteworthy 
issues. First, the researchers captured different EEG fre-
quency bands using electrodes in different brain regions. 
Second, these cognitive load studies have been conducted 
in specific environmental and technological contexts, and 
the findings show a great deal of variability. Therefore, this 
study adopted a meta-analytical approach to quantitatively 
review and integrate the findings of the existing literature, to 
sort out the EEG measurement index system in multimedia 
learning environments as a whole, and to analyze the factors 
that may affect the experimental results.

Introduction

Multimedia learning theories are rapidly expanding with the 
increased use of educational technology, which also pro-
vides more opportunities to design learning environments 
to provide a myriad of engaging audiovisual channels (Liu 
et al., 2018; Mayer & Moreno, 2003). These educational 
technologies provide large amounts of information through 
a combination of text and visuals, creating a more complex 
cognitive load that is not readily apparent (Brunken et al., 
2003; Sweller, 1994). Addressing the intricacies and the 
implicit nature of this cognitive load, it is imperative that 
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The implicit nature and complexity of cognitive load in multimedia learning environments make it difficult for researchers 
to observe it objectively. Although many studies have used electroencephalogram (EEG) spectral power to measure cogni-
tive load in multimedia learning, different EEG frequencies, such as θ, α, β, γ, and δ, or combinations of some of these 
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Although the effects of α and its sub-bands in terms of cognitive load were more significant (in absolute values), the analy-
sis of heterogeneity in α and some important literature suggested a preference for θ. Furthermore, the highest effect size 
was calculated for frontal θ / parietal α (r = 0.78, CI [0.59,0.89]). The position and number of electrodes had a borderline 
significant moderating effect on cognitive load measures. A number of tasks, interactivity, and type of learning resource 
had significant moderating effects on cognitive load measures. Meta-regression analysis indicated that sample size and 
mean age of subjects were not significantly or not simply linearly related to cognitive load measurements. Finally, limita-
tions of the current meta-analysis and future approaches to cognitive load measurement are discussed.
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An overview of EEG measurements of 
cognitive load

Multimedia learning theory posits that learners amalgamate 
information from speech and images with existing knowl-
edge to construct new schemas. This process requires cog-
nitive engagement (Mayer & Moreno, 1998, 2003). This 
process is obviously complex in multimedia learning envi-
ronments, which provide extensive access to information, 
and learners have to invest in cognitive resources to process, 
integrate, think creatively, solve problems and organize 
their knowledge in order to complete generative learning 
tasks. Therefore, cognitive load measurement is well-suited 
for studying multimedia learning, offering a framework 
to comprehend and quantify cognitive load in this context 
(Mutlu-Bayraktar et al., 2019; van Merrienboer & Sweller, 
2010; Paas et al., 2003).

EEG is a direct physiological measure of cognitive load 
(Taylor et al., 2010). Like techniques such as ECG and 
fMRI, EEG has been widely used in multimedia learning 
environments. The most commonly used for analyzing cog-
nitive load in EEG is the frequency domain analysis tech-
nique, which is a method of transforming a signal into the 
frequency domain for analysis, revealing the interrelation-
ships between the frequency components and frequencies in 
the signal. Through frequency domain analysis, some infor-
mation about brain activity can be obtained, such as fre-
quency characteristics and energy distribution in frequency 
bands (Kramer, 1991).

Many studies have used EEG spectral power to measure 
cognitive load in multimedia learning under different condi-
tions, and after organizing them, we found that they include 
the following three main aspects:

(1) Instructional resource characteristics: Examining 
how the design of learning resource influences cognitive 
load, such as the impact of text or image size and place-
ment (Liu et al., 2021), as well as the role of teacher’s hand 
gestures in lecture-type videos (Pi et al., 2022). (2) Learner 
characteristics: Exploring the relationship between cogni-
tive load and different learning styles, such as generative 
vs. self-explanatory learning (Pi et al., 2021) and passive 
vs. generative learning (Pi, Zhang, Liu et al., 2023). Addi-
tionally, considering learner psychological characteristics, 
such as anxiety levels (Rajendran et al., 2022), and the 
learners’ level of specialization in the subject matter (Bilalić 
& Campitelli, 2018). (3) Learning environment character-
istics: Investigating how the presence of a teacher (Wang et 
al., 2020), the presence of peers, and external interferences 
can influence cognitive load (Nigbur et al., 2011). While the 
specific goals of these studies may differ, they all share a 
common technical foundation: the use of EEG metrics to 
effectively gauge learners’ cognitive load levels.

Despite the informative nature of the aforementioned 
studies, their aims and results are intricate, there are many 
possible moderating factors in the experimental process that 
affect the validity of the results, and there are no meta-anal-
ysis that specifically address the relationship between EEG 
spectral power and cognitive load in the field of multime-
dia learning. Therefore, the primary aim of this quantita-
tive review is to synthesize and combine the results of the 
literature to quantify the effect of cognitive load on different 
EEG spectral powers, clarify the system of EEG measure-
ment metrics as a whole, and analyze the factors that may 
affect the experimental results and compare them to derive 
which spectral powers are more suitable for measuring cog-
nitive load. The current meta-analysis involves the follow-
ing moderating variables including frequencies, Electrode 
position, Number of electrodes, Number of tasks, Interactiv-
ity, Learning resource, Gender, Age, Sample size.

The moderator variable of EEG 
measurements of cognitive load

Frequencies

Common frequency bands include δ (0.5–4 Hz), θ (4–8 Hz), 
α (8–13 Hz), β (13–30 Hz), and γ (above 30 Hz) (Staufen-
biel et al., 2014). Increases in θ have been associated with 
high working memory activity, successful memory encod-
ing, and retrieval (Miller et al., 2018). Increases in α reflect 
inhibitory functioning to deal with non-task-related pro-
cesses, and its reduction reflects attentional concentration 
(Klimesch et al., 2007). Lobier et al. (2018) also found 
that low α (8–10 Hz) and high α (10–13 Hz) subbands in 
occipital-parietal regions have different roles, with low α 
having been shown to be associated with general attentional 
demands, and high α with the co-ordination and modula-
tion of neuronal processing in the frontoparietal and visual 
systems. Studies have confirmed the involvement of β fre-
quency in working memory, action processing, and atten-
tional demands (Brinkman et al., 2014; Chen & Huang, 
2016; Ray & Cole, 1985). In addition, some studies have 
been conducted on the sub-bands of β. Hanslmayr et al. 
(2009) found that an increase in β1 (13–20 Hz) helps to 
protect the representation of working memory, and Pavlov 
and Kotchoubey (2017) found that an increase in β2 (20–30 
Hz) indicates an increase in the processing of information 
in learners. In addition, based on evidence that increases in 
mental load are associated with decreases in α power and 
increases in θ power as described above, θ / α ratios have 
also been used to assess mental workload (Fernandez Rojas 
et al., 2020; Fritz et al., 2014). β channels also have such 
ratios, although less commonly, e.g., β / (θ + α) has been 
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used to assess engagement or task difficulty (Kramer, 1991). 
The different frequencies mentioned above, and the ratios 
within them, have the potential to greatly influence mea-
sures of cognitive load.

In addition, in EEG measurements, the spectral power of 
the measured frequencies varies depending on the electrode 
position, mainly in the frontal and central regions, where 
theta waves are more sensitive to cognitive processing 
activity than in other regions, and in the parieto-occipital 
region, where alpha waves are more sensitive to cognitive 
processing activity than in other regions. However, many 
studies have analyzed cognition or attention using EEG 
in multimedia learning environments not by measuring 
the spectral power of only one region, but by using elec-
trodes distributed in multiple brain regions to acquire and 
synthesize these data (Suzuki et al., 2023). Therefore, we 
hypothesized that the use of different regions of electrodes 
at specific frequencies would have an effect on measures of 
cognitive load.

Electrode position

During the experiment, electrodes placed on the head or 
electrode caps captured electrode signals from different posi-
tions, which may lead to differences in measurement results. 
Many studies have examined EEG frequencies recorded at 
key electrode sites such as the frontal midline, parietal mid-
line, and occipital midline, as these sites offer more compre-
hensive insights into cognitive processes (Eschmann et al., 
2018; Meltzer et al., 2007, 2008). We therefore used elec-
trode position as a grouping condition for the moderation 
analysis into midline electrodes versus other electrodes.

Number of electrodes

Despite the general acceptance of measuring EEG spectral 
power from multiple channels, there are still a few studies in 
recent years that have captured spectral power from a single 
channel, which may have focused on the activity at only 
one electrode position or due to practical conditions (Suzuki 
et al., 2023). Therefore, we performed moderation analysis 
based on experiments using single-electrode data and multi-
electrode data as grouping conditions.

Number of tasks

Studies of multitasking conditions are very common, where 
participants are required to deal with multiple tasks at the 
same time, which leads to problems of competition and allo-
cation of cognitive resources. In this case, changes in cog-
nitive load may be more dramatic and easier to observe by 
being EEG. Therefore, we analyzed the number of tasks as a 

moderating variable for the grouping condition. We consid-
ered that the study used multitasking when there were dis-
tractor tasks or real-time subtasks competing with the main 
task for learners’ cognitive resources.

Interactivity

Research has shown that increased learner interaction with 
the learning system can be effective in managing cognitive 
load, depending on the nature of the task and the relevance of 
the interactive elements to the subject matter (Darejeh et al., 
2022; Paas et al., 2004).In task conditions with interaction, 
where learners need to use cognitive resources that interact 
with the task system in addition to learning, the cognitive 
load on learners tends to surge (Yang et al., 2021). Con-
versely, a lack of feedback may in turn increase cognitive 
load due to self-doubt, or it may lead to cognitive laziness, 
which reduces cognitive load due to the learner’s lack of 
cues for the next task (Clark, 1994). We therefore conducted 
a moderation analysis by considering whether the task sys-
tem used by participants was interactive or non-interactive.

Learning resource

In multimedia learning environments, the type of learn-
ing material has a significant effect on the cognitive load 
of learners. Video and pictures are two common types of 
learning materials that have different characteristics in con-
veying information and stimulating learners’ perceptual 
processes. It was found that the dynamic information and 
diverse visual stimuli in video materials made learners pro-
cess more cognitive resources at a certain time compared 
to static pictures, which increased the measure of mental 
effort (Liu et al., 2018). It is likely that cognitive load is also 
susceptible to significant changes under different workload 
conditions due to complex cognitive processes. Therefore, 
we moderated and analyzed the forms of learning resources 
into pictures and videos.

Gender

We also examined the gender of the individuals who par-
ticipated in the study. de Moura et al. (2017) investigated 
using psychophysiological data and found that there were 
differences in cognitive workload between the negotiation 
styles of males and females. Güntekin et al. (2007) found 
significantly higher amplitude of maximal peak-to-peak δ 
response in females than in males in EEG measurements, 
and differences in β and γ oscillatory responses. We there-
fore examined the moderating effect by including gender as 
a variable.
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Purely theoretical articles and reviews were excluded. (2) 
The dependent variable of the included studies must be the 
spectral power of at least one frequency band measured by 
the EEG (i.e. δ,θ,α,β and γ). (3) The independent variable 
of the studies must be the level of cognitive load, and the 
experiments must include at least two sets of controlled 
experiments, i.e., a high level and a low level cognitive load 
condition. (4) The studies must have provided adequate sta-
tistical data to calculate effect sizes, such as means, standard 
deviations, sample sizes, or values from ANOVA and t-tests, 
as well as p-values; (5) The subjects of the studies can only 
be students. (6) Be published in the English language. (7) 
Studies involving other forms of EEG analyses (e.g. ERPs, 
brain network connectivity) were not considered.

Search strategy

Our literature search encompassed authoritative English 
language databases up until August 2023, including but not 
limited to: Medline, ERIC, Springer, IEEE Xplore, Web of 
Science, and Elsevier Science Direct. The search employed 
keyword combinations such as “cognitive load,” “cognitive 
workload,” “working memory,” “mental workload” in con-
junction with “EEG,” “electroencephalogram,” “electroen-
cephalography,” “brain waves,” and “spectral power.” The 
articles’ focus was limited to domains related to education 
and psychology, and the retrieval time range was set from 
January 1997 to July 2023.To further supplement the litera-
ture, we checked the references of identified articles and 
searched for relevant literature using Google Scholar and 
ResearchGate. Finally, we asked researchers in the field for 
unpublished manuscripts. We also contacted authors who 
did not provide specific data in their articles to obtain raw 
data but received no response.

The screening process was conducted in four phases: 
Identification: Duplicates were removed from the complete 
search record. Screening: Studies were screened by title 
and abstract to exclude those not meeting the inclusion cri-
teria. Eligibility: When abstracts lacked essential informa-
tion (e.g., details about EEG frequency domain analysis), 
the full text was examined to determine eligibility accord-
ing to the screening criteria. Inclusion: Inclusion of studies 
that met the inclusion criteria in the analysis. Eventually, 26 
records met the inclusion criteria for the meta-analysis, as 
illustrated in Fig. 1.

Coding procedures

Coding was done by the second author and double-checked 
by the first, third, and fourth authors. Uncertain items were 
decided by discussion. The following literature character-
istics were extracted from each study: author, publication 

Age

Another potential moderator is age. Lemke et al. (2016) 
found that as adults age, the availability of mental resources 
and the ability to utilize them effectively changes, and that 
older adults may increase listening effort when performing 
the same listening task, and thus changes in EEG activity 
in response to cognitive load may be more pronounced. 
Cellier et al. (2021) found that early childhood (3–7 years) 
was characterized by a predominance of θ oscillations at 
the posterior electrodes, whereas the peak frequency of the 
dominant oscillations in the α range increased between the 
ages of 7 and 24 years. Therefore, we also included age as 
a moderator variable to examine its effect on cognitive load 
measures.

Sample size

We also analyzed the effect of sample size on cognitive load 
measures. The purpose of meta-analysis is to synthesize the 
results of multiple studies to obtain more comprehensive 
and reliable conclusions. However, small sample effects 
may have a misleading impact on the results of meta-anal-
ysis, as small sample studies tend to have lower statistical 
efficacy and higher risk of bias. Thus, analyzing sample size 
as a moderating variable helps us to rule out the possibility 
of a “small sample” effect.

Therefore, our study aims to address the following 
research questions:

RQ1: Which EEG frequencies and their subband frequen-
cies are most suitable for quantifying cognitive load in 
multimedia learning? For a given frequency, is it more 
beneficial to measure cognitive load by acquiring sig-
nals from electrodes located in multiple brain regions?

RQ2: How do electrode position, number of electrodes, 
number of tasks, interactivity, learning resources, gen-
der, age, and sample size affect EEG measures of learn-
ers’ cognitive load in multimedia learning?

Methods

Inclusion and exclusion criteria

To ensure the rigor and comprehensiveness of our review, 
we only considered studies published in peer-reviewed 
journals for inclusion. The selected studies have been 
determined to have to meet the following criteria: (1) The 
study had to be an empirical study investigating the cogni-
tive load of learners in a multimedia learning environment. 
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between variables and is more practical in interpreting study 
results compared to effect sizes like Cohen’s d or Hedges’ 
g. Therefore, this study adopted the correlation coefficient, 
r, as the effect size for quantifying the impact of each EEG 
measure on cognitive load. In this context, a positive effect 
size indicates an increase in mean EEG power with a rise 
in cognitive load, while a negative effect size signifies the 
opposite. According to Cohen (2016)’s criteria, an absolute 
effect size r between 0.10 and 0.30 is considered small, 
between 0.30 and 0.50 is deemed medium, and exceeding 
0.50 is classified as large. The calculation of r is in the sup-
plementary material.

Heterogeneity analysis

Heterogeneity was assessed using the I2 statistic, which 
quantifies the percentage of variation in effect sizes. 
According to Higgins et al. (2003)’s proposal, I2 greater 

year, sample size, mean age of participants, standard devia-
tion, gender, frequency band used, electrode position, num-
ber of electrodes, number of tasks, and type of learning 
resource. Characteristics and effect sizes of studies are sum-
marized in Table 1.

Statistical analysis

Calculation of effect sizes and weights

For the data analysis in this study, we employed Compre-
hensive Meta-Analysis software, specifically designed for 
conducting meta-analysis, along with its Meta-regression 
2 program (Brüggemann & Rajguru, 2022). Following 
the recommendation of Rosenthal and DiMatteo (2001), 
the effect size chosen was the product-moment correlation 
coefficient, denoted as r. This metric is preferred because it 
provides a robust representation of the linear relationship 

Fig. 1  Flow Diagram of the Study Selection
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Study Sam-
ple 
size

Age mean 
(SD) [range]

Gender Frequency 
band

Region Electros 
position

Number of 
electrodes

Number 
of tasks

Interactivity Learning 
resource

r

Antonenko and 
Niederhauser, 
2010

18 20.5[18–23] F α M O M S N P -0.424
β M O M S N P 0.411
θ M O M S N P 0.590

Brouwer et 
al., 2014

35 27 [19–40] M (19 F) θ F M S S I P 0.122
α P M S S I p -0.523

Castro-Mene-
ses et al., 2020

35 25.11(2.33) M (27 F) θ F O M S N V 0.150

Dan and 
Reiner, 2018

14 29.71(2.704) 
[21–40]

M (4 F) θ / α M O M S N V 0.646

Dasari et 
al., 2017

8 25(4.3) M θ F M S M I V 0.502
α M M M M I V 0.586

Gevins, 1997 8 27 M (4 F) θ F M M M I P 0.993
Low α P O M M I P -0.982
High α P O M M I P -0.899

Grissmann et 
al., 2017

24 23 F θ M M M S I P 0.530
α P M M S I P -0.394

Hsu et al., 
2017

16 22.9 M (12 F) β C O M M N A 0.167

Lee, 2014 43 - M (21 F) β P O S S N V 0.306
β F O S S N V 0.461

Liu et al., 2021 38 20.81 (1.13) 
[18-]

M (16 F) δ M O M S N V -0.078
θ M O M S N V 0.444
α M O M S N V -0.323
β M O M S N V 0.338
γ M O M S N V 0.322

Negi and 
Mitra, 2022

42 [16–18] M θ / α M O M S N V 0.433

Pavlov and 
Kotchoubey, 
2017

65 20.92(2.96) F β2 M O M M I P 0.265

Pergher et al., 
2019

20 25.16 M (12 F) θ F O M M I P 0.418
α P O M M I P -0.160

Plechawska-
Wójcik et al., 
2019

11 22 M β1 C M S S N P 0.350
β2 C M S S N P 0.320
β1 F M S S N P 0.270

Pi et al., 2021 26 22.54(2.18) 
[19–28]

M (21 F) θ M O M S N V 0.585
α M O M S N V -0.623

Pi et al., 2022 25 23(3.14) 
[19–36]

M (21 F) Low α M O M S N V -0.363
High α M O M S N V -0.388
β M O M S N V 0.382

Pi, Zhang, Yu, 
et al., 2023

23 23.39(1.78) M (20 F) θ M O M S N V 0.221
θ M O M S N V 0.348

Pi, Zhang, Liu, 
et al., 2023

26 22.54(2.18) 
[19–28]

M (21 F) α F O M S N V -0.490
α P O M S N V -0.553

Pope et al., 
1995

6 35.5 [25–50] - β / (α + θ) C O M M I V -0.568

Rietschel et 
al., 2012

11 27.1(3.7) 
[22–33]

M (5 F) Low α M M M S N P -0.634
High α M M M S N P -0.703

Sammer et al., 
2007

20 25.4 M (10 F) θ F O M S N P 0.495

Shaw et al., 
2018

12 [21–35] M (1 F) Low α M M M M I P -0.724
High α M M M M I P -0.853
θ / α M M M M I P 0.856
θ / α M M M M I P 0.806

Table 1  Characteristics of studies included in the Meta-Analysis
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resulting in the fact that some findings are more likely to be 
published, while others may be ignored or reported selec-
tively (Vevea & Woods, 2005). First, we used egger regres-
sion for our analysis (Egger et al., 1997). Secondly, we use 
the Classic Fail-safe N to indicate how many studies before 
a study loses statistical significance. When this value is 
greater than 5k + 10 (k is the number of effect sizes), there is 
no significant publication bias (Viechtbauer, 2007). Finally, 
the trim-and-fill method allows the estimation of artificial 
effect sizes, symmetry of the funnel plot, and calculation of 
corrected effect sizes.

Results

Overall heterogeneity analysis

A total of 653 participants were involved in the studies, with 
a mean age of 24.09 ± 3.69, and 61% of the participants were 
female. A total of 58 effect sizes were calculated, including 
19 from the θ band, 20 from the α band, and 10 from the β 
band, as well as several combined indicators. Heterogene-
ity analysis was performed, and the results showed an I2 of 
47.02% with a Q-value of 107.58. This suggests heteroge-
neity in the overall analysis, which is expected, and there-
fore a random effects model was used in this study. Overall, 
EEG spectral power was generally valid in measuring learn-
ers’ cognitive load in a multimedia learning environment, 
r = 0.469 [0.401, 0.531], p < 0.001.

than or equal to 75% represents high heterogeneity, 50% 
represents moderate heterogeneity, and 25% represents low 
heterogeneity. A chi-square test (Cochran’s Q statistic) was 
also employed for statistical evaluation. Given the nega-
tive values of the effect size (r) in this study (e.g., Α power 
decreases with increasing cognitive load), all effect sizes 
were transformed to absolute values when conducting over-
all heterogeneity testing.

Considering the expected diversity among the included 
studies and the study’s relatively small sample size for 
each frequency, using random effects values for calculat-
ing results for each index was deemed irresponsible due 
to the potential risk of overestimating effect size (Cooper 
et al., 2019). Therefore, when I2 > 50% during the assess-
ment of each index, a sensitivity analysis was conducted. 
This involved using the leave-one-out method to exclude 
studies with excessive heterogeneity to determine the final 
results. However, when examining other moderating vari-
ables related to experimental treatments, we re-included 
previously excluded studies for moderating variable anal-
yses because we wanted the analyses of other moderating 
variables to be used to guide the overall experimental design 
and data collection. Moderator variable analysis assesses 
whether a variable moderates the relationship between two 
other variables.

Publication bias analysis

Publication bias refers to the impact on the result of meta-
analysis due to the tendency of studies to be published, 

Study Sam-
ple 
size

Age mean 
(SD) [range]

Gender Frequency 
band

Region Electros 
position

Number of 
electrodes

Number 
of tasks

Interactivity Learning 
resource

r

Wei and Zhou, 
2020

25 20.68(1.91) M (15 F) θ F M S M N P 0.228
α P M S M N P -0.399

Zakrzewska 
and Brzezicka, 
2014

69 23(3.46) M (40 F) θ F O M S N P 0.334

Zhang et al., 
2016

16 23.88(2.7) 
[19–29]

- θ F O M S N P 0.770

Zhao et al., 
2022

17 21 M θ F O S S N P 0.190
θ F O S S N P 0.559
θ F O S S N P 0.527
θ F O S S N P 0.586
α P O S S N P -0.559
α P O S S N P -0.532
(β + γ) / 2 F O S S N P 0.362
(β + γ) / 2 T O S S N P 0.326

Note. Gender: M = Male, F = Female, M = Mixed; Region: M = Multiple regions, F = Frontal, P = Parietal, C = Central, T = Temporal; Taks: 
S = Single task, M = Multiple tasks; Electros position: M = Midline, O = Other position; Number of electrodes: S = Single electrode, M = Mul-
tiple electros; Interactivity: I = Interactive, N = Non-interactive; Learning resource: P = Picture, V = Video, A = Audio. r = Pearson correlation 
coefficient (Effect size)

Table 1  (continued) 
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p < 0.05, k = 19), suggesting that θ power in learners’ EEG 
is higher under high cognitive load conditions compared 
to low cognitive load conditions. However, there was sig-
nificant and high heterogeneity (I2 = 61.2% > 50%), as pre-
sented in Fig. 2. Sensitivity analysis using the leave-one-out 
method identified one study as an outlier (Gevins, 1997). 
After excluding this study (k = 18), the overall effect size 
became moderate and stable, with no significant heteroge-
neity (r = 0.40, CI [0.31–0.48], p < 0.01, I2 = 5.0%).

In the moderator analysis for θ electrode region, the 
effect size for multiregional electrodes was greater (r = 0.46, 
CI [0.32,0.58], p < 0.001, k = 6) than for frontal region elec-
trodes (r = 0.36, CI [0.25,0.46], p < 0.001, k = 12). However, 
the difference was insignificant (p = 0.364 > 0.05).

Alpha

For the α band, the study measuring showed a significant 
random-effects model effect size (r = -0.54,CI [-0.64,-0.41], 

Publication bias test

The Egger’s linear regression analysis produced a signifi-
cant result (B = 1.907, CI [1.58–3.67], t = 5.071, p = 0.001). 
However, the Classic Fail-safe N suggests an additional 
effect size of 4196 would be required to have a significant 
impact on the existing meta-analytic results, which is con-
siderably higher than 300. In addition, the overall effect 
size adjusted by the construction procedure remained sig-
nificantly above 0 (r = 0.354, CI [0.306–0.401], p < 0.05). 
Overall, we do not consider publication bias a serious prob-
lem in this meta-analysis.

Subgroup analysis of frequencies

Theta

The study measuring the θ band showed a significant ran-
dom-effects model effect size (r = 0.47, CI [0.33–0.59], 

Fig. 2  Forest Plot of the Effect Sizes of θ
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Beta

For the β band, the studies were small in number (k = 10) 
and showed very low heterogeneity. The effect size for the 
β band (r = 0.335, CI [0.22,0.44], p < 0.001, I2 = 0%) sug-
gested that β power in learners’ EEG are higher under high 
cognitive load conditions compared to low cognitive load 
conditions. Subgroup analysis were not conducted for β1 
and β2 because of the paucity of studies on them(k < 3), 
and broadband β showed a medium effect size (r = 0.36 CI 
[0.22,0.49], p < 0.01).

Frontal theta / parietal alpha

For the combined analysis of studies using θ in the frontal 
region and α in the parietal region, with lower heterogene-
ity in the data, the effect size was r = 0.61 (CI [0.44,0.74], 
p < 0.001, Q = 6.8, df = 3, p = 0.079, I2 = 55.9%). One study 
was excluded during sensitivity analysis (Negi & Mitra, 
2022), and after exclusion, the analysis resulted in an effect 
size of r = 0.78 (CI [0.59,0.89], p < 0.001, Q = 4.8, df = 3, 
p = 0.502, I2 = 0%). This suggests that θ/α power in the high 

p < 0.001, k = 20), suggesting that α power in learners’ EEG 
is lower under high cognitive load conditions compared 
to low cognitive load conditions. However, there was sig-
nificant and high heterogeneity (I2 = 52.9% > 50%), as 
presented in Fig. 3. Sensitivity analysis using the leave-
one-out method identified two studies as outliers (Dasari et 
al., 2017; Gevins, 1997). After excluding the two studies 
(k = 18), the effect size and heterogeneity reduced to accept-
able (r = -0.50, CI [-0.58,-0.41], p > 0.05, I2 = 7.2%).Sub-
group analysis for the α band did not reveal any significant 
differences between the broadband subgroup, high α (10–12 
Hz) subgroup, and low α (8–10 Hz) subgroup.

In the moderator analysis of effect sizes for α electrode 
region, the effect size for multiregional electrodes (contain-
ing parietal and other regions) was greater (r = -0.55, CI 
[-0.68,-0.38], p < 0.001, k = 8) than for parietal regional 
electrodes (r = 0.48, CI [-0.59,-0.35], p < 0.001, k = 9). How-
ever, the difference was not significant (p = 0.47 > 0.05), 
excluding one frontal lobe study of α (Pi, Zhang, Liu, et al., 
2023).

Fig. 3  Forest Plot of the Effect Sizes of α
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Moderating variable analysis revealed that the midline 
electrode group (k = 18) had a larger effect size (r = 0.52, 
CI [0.43, 0.61], p < 0.001) than the other electrode group 
(k = 40) with an effect size of (r = 0.41 CI [0.35, 0.46], 
p < 0.001). The difference between the two groups was of 
borderline significance (Q = 3.89, p = 0.049), as presented in 
Table 2. This suggests that collecting data from the midline 
electrode may be more effective for measuring cognitive 
load.

As shown in Table 2, moderating variable analysis of the 
grouping of working electrodes as single versus multiple 
electrodes showed that the single electrode group (k = 18) 
had a smaller effect size (r = 0.39, CI [0.30, 0.48]) compared 
to the multiple electrodes group (k = 40) with an effect size 
(r = 0.51, CI [0.42, 0.59]). The between-group effect was 
of borderline significance (Q = 3.58, p = 0.059), indicating 
that collecting data from multiple electrodes might be more 
effective for measuring cognitive load.

cognitive load task was significantly greater than in the low 
cognitive load condition.

To summarize the validated indicators for θ, α, β, and 
their subbands, as well as the effect values for θ / α, with-
out discussing other indicators that have not been studied in 
sufficient numbers (k < 3), as presented in Fig. 4. Valid data 
were not derived from subgroup calculations of effect sizes 
at electrode sites for β band studies, primarily due to the 
limited number of studies available.

Analysis of other moderating variables

In this section, the analysis of moderating variables provides 
insights into how specific experimental factors influence the 
assessment of cognitive load in multimedia learning. All 
studies, including those excluded from frequency subgroup 
analyses, were considered in these analyses, which were 
performed using a random-effects model.

Fig. 4  Forest Plot of Valid Measurement Indexes
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in Table 2, indicating that the form of learning resource 
impacts measures of cognitive load in multimedia learning.

No significant differences were found in the results of 
analyzing gender (p = 0.462 > 0.05) based on male (r = 0.44, 
CI [0.32,0.55], k = 14), female (r = 0.40, CI [0.25,0.52], 
k = 6), and mixed groups (r = 0.49, CI [0.40,0.58], k = 36). 
Two studies that did not specify gender were removed from 
the analysis.

Meta-regression analysis using mean age as a covari-
ate excluded two effect sizes from one study due to lack of 
explicit data (Lee, 2014), and found that the effect of mean 
age on EEG measures of cognitive load was either not sig-
nificant or could not be explained by a simple linear model 
(B = 0.057, p < 0.01, R2 = 0.23), as presented in Table 3.

Meta-regression analysis of sample size as a covariate 
revealed that a smaller sample size was associated with a 
higher effect size (B = -0.01, p < 0.01, R2 = 0.31). This indi-
cated that the effect sizes in the study may be negatively 
correlated with sample size, but the correlation is relatively 
weak, as presented in Table 3.

Moderating variable analysis of single-task and multi-task 
revealed that the multi-tasking group (k = 16) had a signifi-
cantly larger effect size (r = 0.69, CI [0.48, 0.89], p < 0.001) 
compared to the single-tasking group (k = 42) with an effect 
size (r = 0.41, CI [0.35, 0.46], p < 0.001). The between-
group effect was significant (Q = 6.45, p = 0.011 < 0.05), as 
indicated in Table 2, suggesting that multitasking measures 
cognitive load more effectively in multimedia learning.

Moderating variable analysis of the interaction and non-
interactive groups found that the interaction group (k = 17) 
had a significantly larger effect size (r = 0.61, CI [0.36, 
0.78]) than the non-interactive group (k = 41) with an effect 
size of r = 0.40 (CI [0.35, 0.46]). The between-group effect 
was significant (Q = 7.7, p = 0.006 < 0.01), as indicated in 
Table 2, suggesting that task systems with interactivity mea-
sure cognitive load more effectively in multimedia learning.

A significant between-group effect was found in the 
grouping of picture versus video. Picture group (k = 35) had 
a significantly larger effect size (r = 0.52, CI [0.43, 0.60]) 
compared to video (k = 22) with an effect size (r = 0.36, CI 
[0.28, 0.45]). Excluding the one study in which the learn-
ing resource was audio (Hsu et al., 2017). The between-
group effect was significant (Q = 6.6, p = 0.01), as presented 

Table 2  Moderator analyses for variables coded
Moderator k r 95% CI Q Z p
Electros position 58 3.891 0.049
Midline electrode 18 0.524 [0.426,0.609] 9.033 0.000
Other electrode 40 0.406 [0.350,0.458] 12.652 0.000
Number of electrodes 58 3.577 0.059
Multiple 40 0.512 [0.424,0.592] 9.724 0.000
Single electrode 18 0.392 [0.297,0.480] 7.517 0.000
Number of tasks 58 0.011
Multi-tasking 16 0.692 [0.480,0.890] 6.446 5.284 0.000
Single-tasking 42 0.409 [0.354,0.461] 13.271 0.000
Interactivity 58 0.006
Interactive 17 0.683 [0.504,0.806] 7.691 5.840 0.000
Non-interactive 41 0.403 [0.347,0.457] 12.725 0.000
Learning resource 57 0.010
Video 22 0.364 [0.276,0.446] 6.555 6.798 0.000
Picture 35 0.522 [0.434,0.600] 8.278 0.000
Gender 56 0.462
Male 14 0.444 [0.321,0.552] 1.546 6.493 0.000
Female 6 0.391 [0.247,0.518] 5.036 0.000
Mixed 36 0.488 [0.396,0.577] 8.798 0.000

Table 3  Moderation analysis of continuously coded variables by Meta-Regression
Moderator variable Covariate Coefficient Standard Error 95%CI Z p
Age intercept -0.810 0.369 [-1.533,-0.875] -2.20 0.028

Average age 0.057 0.016 [0.026,0.088] 3.60 0.000
R2 = 0.23 Q = 12.98 k = 56

Sample size intercept 0.781 0.085 [0.615,0.948] 9.17 0.000
Sample size -0.010 0.003 [-0.016,-0.005] -3.73 0.000
R2 = 0.31 Q = 13.91 k = 58
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Alpha

α power tends to decrease with increasing cognitive load, 
although not universally. Many studies have found that a 
decrease in α power is related to an increase in cognitive 
load (Pergher et al., 2019; Grissmann et al., 2017; Rietschel 
et al., 2012). Nevertheless, the findings were inconsistent, 
showing substantial heterogeneity before sensitivity analy-
sis. An explanation proposed by van Ede (2018) suggests 
that α power increases when encoding verbal material, even 
if the stimulus is visual, and decreases when encoding visual 
material. Consequently, this unique result cannot be solely 
attributed to the nature of visual or verbal stimuli. Hence, 
while α has the highest calculated effect size, its applica-
tion in general multimedia learning environments may be 
subject to instability due to as-yet-undiscovered factors. As 
a conservative approach, it is advisable to prioritize the use 
of α after considering θ.

Subsequent analysis of α subbands indicated that broad-
band α did not significantly differ from high α or low α. 
Nevertheless, the analysis revealed that the subband fre-
quencies of α offered a more robust explanation of cognitive 
load compared to broadband α. Moreover, Klimesch (1999) 
and Lobier et al. (2018) also thought it made sense to divide 
the α band into high α and low α subbands. Therefore, the 
appropriate α frequency for measuring cognitive load may 
vary across different learning tasks. This study recommends 
following the precedent set by previous studies by measur-
ing and analyzing both α frequencies in subband analyses.

Similar to the findings regarding θ waves, the analysis 
of moderating effects of electrodes in multiregional and 
parietal regions within the α band revealed a slightly larger 
effect for the multiregional regions compared to the parietal 
region. Consequently, it is also advisable to consider elec-
trode placement in multiregional regions when measuring 
cognitive load in the α band.

Beta

The findings regarding the β frequency range suggest that 
β power increases with cognitive load, and this relation-
ship has a medium-sized effect. Although β frequency has 
been associated with various cognitive processes in previ-
ous studies, it is underutilized in measuring cognitive load. 
Additionally, it is worth noting that β1 and β2 sub bands 
have different functional roles (Plechawska-Wójcik et al., 
2019; Pereira & Wang, 2015). However, this study couldn’t 
definitively determine their specific roles due to the insuf-
ficient sample size.

Discussion

Frequencies

In this study, we quantitatively analyzed articles that used 
EEG spectral power to assess learners’ cognitive load in 
multimedia learning. To start, we conducted a subgroup 
analysis, with particular attention to the three frequently 
employed EEG bands: α, β, and θ. We also explored both 
broadband and subband features and considered regional 
characteristics. Furthermore, it’s worth noting that “frontal 
θ/parietal α” deserves using due to its substantial effect size. 
Our investigation unveiled several moderators and con-
tinuous moderators that have a significant impact on effect 
sizes. Notably, indexes lacking sufficient support for sample 
size are excluded from our discussion.

Theta

θ frequency is associated with working memory and execu-
tive function processes, typically showing a positive cor-
relation with the volume of messages to be remembered 
(Jensen & Tesche, 2002). In the current study, it was found 
that θ demonstrates the highest sensitivity to increasing cog-
nitive load, supported by moderate effect sizes. The consis-
tent findings in the included studies strongly indicate that 
θ is the most influential indicator of cognitive load in EEG 
frequency domain analysis for learners.

Numerous studies have emphasized the significance of θ 
waves, particularly those measured by electrodes in regions 
near the frontal lobe, in responding to variations in cogni-
tive load (Nigbur et al., 2011). However, our study has not 
found significant differences in the analysis of moderating 
variables between electrodes in multiple regions and those 
near the frontal lobe. Instead, the results showed a slight 
advantage for multiple regions over frontal lobe regions. 
This suggests that electrode data from multiple regions pro-
vide a more comprehensive characterization of cognitive 
load. For instance, frontal and central θ power increases 
with heightened cognitive demands (Castro-Meneses et 
al., 2020; Wang et al., 2020), while parietal and temporal 
lobe θ power increases during active maintenance of work-
ing memory representations (Sauseng et al., 2010). Regions 
near the frontal lobe alone may not fully capture the intri-
cacies of cognitive load. Therefore, when feasible under 
experimental conditions, electrodes should be strategically 
placed across multiple regions to monitor activities in vari-
ous brain regions, and interactions between electrodes from 
different regions can be examined through spatial filtering 
and other techniques to investigate changes in cognitive 
load (Babiloni et al., 2002; Gevins & Smith, 2000).
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obtained from multiple electrodes provide a more robust 
explanation of variations in cognitive load.

The study’s moderated effects analyze showed that multi-
tasking, as opposed to single-tasking, resulted in signifi-
cantly larger effect sizes. This suggests that multi-tasking 
imposes a higher demand on cognitive resources, leading to 
increased cognitive load. Changes in cognitive load within 
the primary task can be indirectly observed by monitor-
ing performance in a multiple task. When cognitive load 
in the primary task intensifies, it may have an impact on 
performance in the multiple tasks. This combined approach 
allows for increased sensitivity to variations in cognitive 
load and provides insights into the dynamics of cognitive 
load. In multimedia learning contexts, individuals often 
need to manage multiple tasks simultaneously, making 
multi-tasking a more realistic simulation of the cognitive 
load experienced in such environments. This aligns with the 
idea that studying cognitive load in multi-tasking situations 
can better mirror the real-world cognitive demands people 
face when engaging with multimedia content (Brunken et 
al., 2003; Pashler, 1993; Schumacher et al., 2001).

The study’s moderated effects analyze indicated that 
studies using task systems with interactive feedback fea-
tures had significantly larger effect sizes compared to 
those without interaction. This finding aligns with exist-
ing research that suggests increased learner interaction 
with the learning system can be an effective way to man-
age cognitive load, contingent on the task’s nature and the 
relevance of the interaction elements to the subject matter. 
In the included studies, the distinction between interaction 
and non-interaction was based on whether the task system 
provided learners with timely, real-time feedback on their 
responses and guided them in their next steps. The results 
suggest that when designing or selecting task systems for 
multimedia learning, providing learners with timely feed-
back is crucial to prevent “cognitive idleness” or attentional 
drift, which could otherwise compromise the accuracy of 
experimental results. Furthermore, presenting pre-problems 
before starting a task can enhance learners’ engagement, 
especially among highly motivated individuals, as it pro-
vides them with a cognitive framework to approach the task. 
This aligns with the idea that providing context or prepa-
ratory activities can help learners focus and better manage 
their cognitive load (Yang et al., 2021).

The effect size for dynamic video learning resource was 
found to be smaller compared to static picture-based learning 
resource. Static pictures typically adhere to well-established 
psychological research paradigms (e.g., N-back, oddball). In 
contrast, video often presents continuous and uncontrollable 
stimuli for learners’ cognition, leading to more noise during 
research. Consequently, the group working with static pic-
tures is more likely to produce valid results. However, it’s 

Frontal theta / parietal alpha

The results of our analyses suggest that frontal θ/parietal 
α has the highest effect size. The index is based on the 
assumption that an increase in mental load is associated with 
a decrease in α power and an increase in θ power. As men-
tioned above, the Frontal θ wave reflects executive function 
load, while the parietal α wave reflects visuospatial attention 
load. By calculating their ratios, more comprehensive infor-
mation on cognitive load can be obtained, combining two 
key aspects of executive function and visuospatial attention, 
enabling complementary analyses. Related research has 
demonstrated that EEG measures using frontal θ/parietal 
α radio serve as a reliable cognitive load index (Fernandez 
Rojas et al., 2020; Fritz et al., 2014; Qin & Bulbul, 2022). In 
addition, Chik (2013) linked cross-frequency synchroniza-
tion of θ and α to cognitive load, indicating changes in cog-
nitive load, with significant measurement results. Therefore, 
frontal θ / parietal α should be used more often to measure 
multimedia learning cognitive load.

Other moderating variables

The analysis in this study revealed that EEG data from mid-
line electrode placements tend to yield larger effect sizes 
compared to data from other electrode placements. This 
finding aligns with previous research indicating that EEG 
activity in the midline position of the brain is distinct and 
often associated with focused attention and autonomic 
activity (Aftanas & Golocheikine, 2001). In practical stud-
ies, electrode placement can be a resource-intensive process. 
Given this, when there are limitations in electrode place-
ment or when seeking a practical approach, prioritizing 
midline electrode placement, particularly at positions such 
as Fz, FCz, Cz, CPz, and Pz, is recommended (Eschmann 
et al., 2018). These midline positions are associated with 
important neural activities related to frontal θ and parietal α, 
making them valuable for measuring cognitive load.

The study’s analysis also indicated that many previous 
studies used data from a single electrode in their measure-
ments, sometimes with the aim of investigating that spe-
cific electrode’s function (Lee, 2014; Plechawska-Wójcik 
et al., 2019). However, the results showed that experiments 
with multiple electrodes tended to yield higher effect sizes. 
This difference may be due to the additional processing 
steps involved in multi-electrode data acquisition. In multi-
electrode setups, data from all acquired electrodes within 
the valid experimental time period are processed through 
spatial filtering or source analysis (Sazgar & Young, 2019). 
This comprehensive processing allows for a more thor-
ough extraction of the EEG signal and enhances the ability 
to interpret changes in cognitive load. Consequently, data 
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non-English literature was not included. Additionally, our 
publication bias test indicated a small risk of publication 
bias in this study, suggesting that our results should be inter-
preted cautiously.

Secondly, many researchers, although conducting stud-
ies measuring multiple EEG indicators, tend to report only 
statistically significant indicators. This leads to unreliable 
effect size estimates for indicators like the β sub-band due 
to lack of data support. Therefore, we hope that authors of 
relevant studies can supplement complete indicator results, 
regardless of their statistical significance.

Thirdly, in our analysis of the electrode position adjust-
ment effect, we only distinguished between “midline posi-
tions” and “other positions”. This is because the electrode 
placements used in the studies included in our analysis typi-
cally span multiple brain regions, making it difficult to cat-
egorize the electrodes in each brain region individually. In 
the future, there is a need to include more studies and sys-
tematically compare the sensitivity to changes in cognitive 
load using differently positioned electrodes.

Finally, as mentioned earlier, the age range or educa-
tional stage included in our meta-analysis was too narrow. 
Directly treating age as a continuous moderator variable in 
the meta-regression analysis may introduce bias. Therefore, 
future meta-analyses should ideally include broader age 
ranges or educational stages to elucidate their effects on 
cognitive load measurement.

Given these considerations, it’s crucial to design cogni-
tive load-inducing tests for future studies and utilize them 
to develop eye-movement metrics or even multimodal mea-
sures that effectively characterize learners’ cognitive load.

Conclusion

In this study, we conducted a meta-analysis to examine the 
sensitivity of learners’ EEG frequencies to cognitive load in 
multimedia learning environments, as well as other mod-
erating variables that may affect the measurements. How-
ever, we cannot completely rule out the risk of publication 
bias, so the results should be treated with caution. In most 
cases, θ is most sensitive to increases in cognitive load, 
whereas α is most responsive to decreases in load. In con-
trast, β increases with increasing cognitive load. In addition, 
it is recommended that cognitive load be measured using 
subband frequencies in the α range. In addition, for both 
θ and α, combining data from multiple brain regions may 
be more beneficial for measurement. The combination of 
metrics such as frontal θ and parietal α has great potential 
for measuring cognitive load. During data collection, mul-
tiple electrode channels are preferred to collect signals. If 
experimental conditions limit the placement of electrodes, 

essential to acknowledge that multimedia learning neces-
sitates video. To address this challenge, researchers should 
consider adopting established psychological paradigms or 
developing new ones specific to video learning to enhance 
the reliability of experimental results.

The moderation analysis on gender indicates that there 
isn’t a significant difference in cognitive load performance 
on EEG between males and females. Despite previous stud-
ies showing waveform differences in certain frequencies 
between genders (Güntekin & Başar, 2007), the differences 
in average power are not substantial. Therefore, using aver-
age power as a measure of cognitive load is not affected by 
gender-related moderation effects.

Because the age span of the subjects included in the anal-
ysis was too small (all spread across the college academic 
spectrum) to be grouped, we attempted to construct a meta-
regression model using age as a continuous variable, and 
found that age had little or no simple linear relationship with 
cognitive load as measured by the EEG. Brain waves of dif-
ferent frequencies may exhibit different patterns as a result 
of increasing or decreasing age, e.g., some studies have 
shown that the frequency and amplitude of slow waves (δ) 
may increase with age, while the frequency and amplitude 
of fast waves (α, β, etc.) may decrease (Cellier et al., 2021; 
Christov & Dushanova, 2016). Therefore, the relationship 
between age and cognitive load in EEG spectral power can-
not be explained through simple linear analysis.

In the meta-regression analysis, we find that sample size 
as a covariate appears to be negatively correlated with effect 
size, and the strength of the relationship is weak. This corre-
lation may be due to the “small sample effect.” " The “small 
sample effect” may be due to the fact that random variables 
are more likely to cause larger fluctuations in small samples, 
thus making the effect sizes appear more significant, as in 
Dasari et al. (2017) and Gevins et al. (1998)’s experiment 
that recruited fewer than 10 subjects but achieved high lev-
els of effect sizes. Although the examination of outcome 
moderating effects found no significant impact, we still rec-
ommend that researchers try to recruit as many subjects as 
possible when conducting experiments in which EEG mea-
sures cognitive load.

Limitations and future directions

At the methodological level, several factors limit the results 
of this quantitative review.

Firstly, our meta-analysis did not exhaust all studies rel-
evant to the topic. Not all studies quantified their results 
with sufficient data and presented them. Additionally, some 
studies meeting the inclusion criteria were not included 
due to lack of response from authors. Furthermore, some 
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Du, R., & Rush, G. (1998). Monitoring Working Memory 
load during computer-based tasks with EEG pattern recog-
nition methods. Human Factors, 40(1), 79–91. https://doi.
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it is recommended that the midline position be prioritized. 
The use of multitasking and interactive task systems is ben-
eficial. The use of static images as learning resources is also 
recommended.

Supplementary Information  The online version contains 
supplementary material available at https://doi.org/10.1007/s12144-
024-06577-2.

Data availability  The datasets used and/or analyzed during the cur-
rent study are available from the corresponding author on reasonable 
request.
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