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Abstract As a generalization of the standardized mean dif-
ference between two independent populations, two different
effect size measures have been proposed to represent the de-
gree of disparity among several treatment groups. One index
relies on the standard deviation of the standardized means and
the second formula is the range of the standardized means.
Despite the obvious usage of the two measures, the associated
test procedures for detecting a minimal important difference
among standardized means have not been well explicated.
This article reviews and compares the two approaches to test-
ing the hypothesis that treatments have negligible effects rath-
er than that of no difference. The primary emphasis is to reveal
the underlying properties of the two methods with regard to
power behavior and sample size requirement across a variety
of design configurations. To enhance the practical usefulness,
a complete set of computer algorithms for calculating the crit-
ical values, p-values, power levels, and sample sizes is also
developed.

Keywords Effect size . Power . Sample size . Standardized
mean difference

The editorial guidelines and methodological recommenda-
tions of several prominent educational and psychological
journals have extensively recommended effect size reporting

and interpreting practices for all primary outcomes of empir-
ical studies. Accordingly, numerous practical suggestions for
selecting, calculating, and interpreting effect size indices for
various types of statistical analyses have been provided in the
literature (see Alhija and Levy 2009; Breaugh 2003; Durlak
2009; Ferguson 2009; Fern and Monroe 1996; Grissom and
Kim 2012; Huberty 2002; Kirk 1996; Kline 2004; Olejnik and
Algina 2000; Richardson 1996; Rosenthal et al. 2000;
Rosnow and Rosenthal 2003; Vacha-Haase and Thompson
2004). Overall, group difference and strength of association
are two of the major classes of effect sizes in practical appli-
cations. It is essential to note that the standardized mean dif-
ference is a widely adopted effect size measure when compar-
ing treatment means of two independent groups. On the other
hand, in univariate research that compares more than two
treatment effects, the correlation ratio, eta squared, measures
the proportion of total variance accounted for by any of the
treatment effects.

Eta squared is an appropriate generalization of the coeffi-
cient of determination and reflects the extent to which knowl-
edge of group membership improves prediction of outcomes,
two different extensions of standardized mean difference have
also been proposed to represent the degree of difference
among several treatment groups (Cohen 1969, 1988,
Chapter 8). One index relies on the standard deviation of the
standardized means and the second index is the range of the
standardized means. To test the null hypothesis of no differ-
ence or zero effect, the analysis of variance (ANOVA) F test
and the studentized range test are the two prominent proce-
dures associated with the effect measures of the standard de-
viation of the standardized means and the range of the stan-
dardizedmeans, respectively. Although there are more sophis-
ticated statistical methods, ANOVA F test remains one of the
most frequently used approaches to detecting group differ-
ences in the behavioral, educational and social sciences
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(Skidmore and Thompson 2010; Warne et al. 2012). To facil-
itate the application of F test for power and sample size
calculations in planning research designs, Cohen (1988) pro-
vided comprehensive illustrations and extensive tables for the
standard deviation of the standardized means.

The studentized range is an intuitively appealing extension
of the standardized mean difference under a multiple treat-
ments scenario. However, there are no corresponding demon-
strations and explications for the studentized range test in
Cohen (1988). It is conceivable that the distributional property
of the studentized range statistic is more involved than that of
the sample standardized mean difference. The quantiles of the
studentized range statistic are commonly available in most
statistical textbooks for conducting multiple comparisons be-
tween group means. Due to computational demands, the pow-
er behavior of a studentized range test is not as widely ad-
dressed as the F test for the alternative measure of the standard
deviation of the standardized means. Specifically, David et al.
(1972) and Hayter and Hurn (1992) conducted various power
assessments of the studentized range test and the F test for the
equality of several normal means. Hayter and Hurn (1992)
found that in most situations the power performance of the F
test and the studentized range test is very close to that of an
optimal test procedure considered in Hayter and Liu (1992).
However, the optimal test procedure is substantially more
complicated to use than the F test and the studentized range
test. More importantly, the empirical comparisons of David
et al. (1972) showed that the studentized range test provides
higher power than the F test at some configurations of the
treatment means.

It is noteworthy that the prescribed appraisals of the F
method and the studentized range procedure were confined
to a test of the traditional null hypothesis of no difference in
treatment means. However, researchers are often more con-
cerned about whether the treatment effects are large enough to
have a practical importance. Essentially, it is more appropriate
to test the null hypothesis that the effects of treatments are
trivial or negligible as advocated in Cohen (1994), Murphy
(1990), and Serlin and Lapsley (1993). The tests of minimal
effect null hypotheses require an operational definition of the
target minimal reasonable value that corresponds to the
threshold for identifying substantial research findings.
Moreover, unlike the conventional approaches that test a sim-
ple null hypothesis of zero effect, the test statistics of
minimum-effect are employed to conclude whether the ob-
served effect sizes would be likely to occur for a range of
population values in a composite null hypothesis. Therefore,
the notion of least favorable configurations of treatment
means is vital to determine the critical values for conducting
tests of minimal effect. Such information is generally not
available to applied researchers and it is impossible to
implement the test procedures without an extensive set of
tables or an efficient software package.

More general discussions of the fundamental concept and
rationale of the F tests of minimal effect can be found in
Murphy and Myors (1999) and Steiger (2004). Alternatively,
Bau et al. (1993) and Chen et al. (2011) described the techni-
cal development and property for the studentized range test of
minimum-effect hypotheses. Although these results justify the
execution of the F test and the studentized range test of min-
imum effect, their formulations are markedly different and
demand varying computational efforts. No investigation has
systematically compared their distinct characteristics in terms
of theoretical principles, power performance, and sample size
requirement. Thus it is prudent to examine their unique fea-
tures and fundamental discrepancies in order to better under-
stand the selection of an appropriate procedure. Equivalence
testing is recommended as a better alternative to the traditional
difference-basedmethods for demonstrating the comparability
of two or more treatment effects. The related features of both
the ANOVA F and the studentized range tests for evaluating
the comparability of several standardized effects can be found
inWellek (2010, Chapter 7), Giani and Finner (1991), Cribbie
et al. (2010), Chen et al. (2009), and the references therein.

This article seeks to contribute to the literature on detecting
a minimal important difference among standardized mean ef-
fects in three ways. First, the fundamental distinctions of the
standard F test and the studentized range test are reviewed
here to provide a clear and concise exposition of their inherent
formulations and properties. This report adds to the general
understanding of the utilities of effect size measures and en-
hances the practical importance of the tests of minimal effect
hypotheses. Second, comprehensive empirical investigations
are conducted to demonstrate the power performance and
sample size requirements between the standard F test and
the studentized range test under a wide variety of mean struc-
tures. The assessments discern not only which method is most
suitable under what circumstances but also the actual differ-
ences between the contending test procedures. Third, to facil-
itate the application of the presented procedures, the corre-
sponding computer codes are provided to compute the critical
values, observed significance levels, attained power levels,
and required sample sizes. Note that the computations
of these procedures involve specialized programs not
currently available in prevailing statistical packages.
This article and the supplemental files present a unified
set of algorithms for design planning and data analysis
of the two tests of minimum-effect.

Effect Measures and Test Procedures

Consider the one-way fixed-effects ANOVA model

Y ij ¼ μi þ εij ð1Þ
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where Yij is the value of the response variable in the jth trial for
the ith factor level, μi are treatment means, εij are independent
N(0, σ2) errors with i = 1, ..., G (≥ 2) and j = 1, …, N. To
characterize the degree of departure from no treatment effect,
two distinctive measures were proposed in Cohen (1969,
1988). The first index is the standard deviation of the stan-
dardized means

f ¼ σμ
σ

; ð2Þ

where σ ¼ σ2ð Þ1=2;σμ ¼ σ2
μ

� �1=2
;σ2

μ ¼ ∑
G

i¼1
μi−�μð Þ2=G i s

the average dispersion between the treatment means, and μ

¼ ∑
G

i¼1
μi=G is the mean of the treatment effects.

It is useful to note that ∑
G

i¼1
∑
G

l¼1
μi−μlð Þ2 ¼ 2G ∑

G

i¼1
μi−�μð Þ2

or σ2
μ ¼ ∑

G

i¼1
∑
G

l¼1
μi−μlð Þ2= 2G2

� �
. Hence, f ¼ ∑

G

i¼1
∑
G

l¼1
δ2il

�
=

2G2
� �g1=2 is also a function of the sum of all G(G − 1) square
standardized mean differences δil = (μi − μl)/σ , i and l = 1,…,
G. The second index is based on the range of the standardized
means

δR ¼ μmax−μmin

σ
; ð3Þ

where μmax and μmin are the maximum and the minimum of
the G treatment means, respectively. When G = 2, it can be
shown that f = δR/2 = |δ|/2, where δ = (μ1 − μ2)/σ is the well-
known standardized mean difference. In general, the two ef-
fect sizes f and δR have no direct functional relationship except
for some special cases of the treatment means.
Accordingly, the corresponding inferential procedures
are also substantially different.

The common F* is the most widely used test statistic for
the null hypothesis that all treatment means are equal:

F* ¼ SSR= G−1ð Þ
SSE= NT−Gð Þ ; ð4Þ

where SSR ¼ N ∑
G

i¼1

�Y i−�Yð Þ2 is the treatment sum of squares,

SSE ¼ ∑
G

i¼1
∑
N

j¼1
Y ij−Y i
� �

2 is the error sum of squares,

NT ¼ GN ; �Y i ¼ ∑
N

j¼1
Y i j=N , and Y ¼ ∑

G

i¼1
∑
N

j¼1
Y ij=NT . Here,

the focus is on the minimal effect test of

H0 : f ≤ f 0 versus H1 : f > f 0 ð5Þ

where f0 (> 0) is a specified value and denotes a minimal

significant difference among the treatment means. It follows
from the model formulation in Eq. 1 that

F*∼F G−1;NT−G;Λð Þ; ð6Þ
where F(G − 1,NT −G,Λ) is the noncentral F distribution
with (G – 1) and (NT – G) degrees of freedom, and

noncentrality parameter Λ =NTf
2 and f 2 ¼ σ2

μ=σ
2 is the sig-

nal to noise ratio (Fleishman 1980). Another useful effect size
measure in ANOVA is the strength of association η2 that re-
flects the proportion of total variance that is attributable to
treatment effects. Essentially, the index η2 is a function of f 2

and can be expressed as η2 = f2/(1 + f2). In addition, the root-
mean-square standardized effectΨ described in Steiger (2004)

is a scaled counterpart of f : Ψ ¼ ∑
G

i¼1
μi−�μð Þ2=σ2

� �
= G−1ð Þ

� 	1=2

¼ G= G−1ð Þ
 �1=2
f . Under the null hypothesis H0: f ≤ f0, the

statistic F* has the distribution

F*∼F G−1;NT−G;Λ0ð Þ; ð7Þ

where Λ0 ¼ NT f 20. It follows from the monotone property of
a noncentral F distribution thatP{F(G − 1,NT −G,Λ0) > c} >
P{F(G − 1,NT −G,Λ) > c} for Λ0 > Λ ≥ 0 and a positive
constant c (Ghosh 1973). Thus, the least favorable configura-
tion ofμ = (μ1,…,μG) isμ0 = (μ10,…,μG0) with the standard
deviation of the standardized means f = f0. Hence, H0 is
rejected at the significance level α if F * > Fα(G − 1,NT −
G,Λ0), where Fα(G − 1,NT −G,Λ0) is the upper (100⋅α)th
percentile of the noncentral F distribution F(G − 1, NT −
G,Λ0). Then the corresponding power function of the F* test
is of the form

πF* Λð Þ ¼ P F G−1;NT−G;Λð Þ > Fα G−1;NT−G;Λ0ð Þ
 �
: ð8Þ

Alternatively, a minimum effect of the standardized means
may be assessed with the studentized range test in terms of the
range of the standardized means:

H0 : δR≤δR0 versus H1 : δR > δR0 ð9Þ
where δR0 (> 0) is a designated constant and indicates a min-
imal significant difference among the treatment means. The
studentized range is defined as

Q* ¼ N1=2 �Ymax−�Yminð Þ
S

; ð10Þ

where Ymax and Ymin are the maximum and minimum of theG
sample means, respectively, S = (S2)1/2, and S2 = SSE/(NT −G)
is the sample variance. The distribution of the studentized
range statistic Q* depends on all pairwise mean differences
μi – μl, not just a function of the maximum mean difference
μmax – μmin. Following the model formulation in Eq. 1, the
distribution ofQ* does not have a closed-form expression and
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a convenient unified notation. For ease of illustration, it is
denoted here by

Q*∼Q G;N ;τð Þ; ð11Þ

where τ = (μ1, …, μG)/σ. However, the cumulative
distribution function Θ(q) of Q* can be expressed as
follows:

Θ qð Þ ¼ P Q*≤qf g ¼ EK Σ
G

i¼1
EZi

G
Π

l ¼ 1
l≠1

Φ Zi þ N1=2δil

 �

−Φ Zi þ N 1=2δil−q
h
K= NT−Gð Þ

i1=2� 	� 2
664

3
775

8>><
>>:

9>>=
>>;
;

ð12Þ

where K ∼ χ2(NT −G) is a chi-square random variable with
degrees of freedom NT – G, Φ(·) is the cumulative distribution
function of a standard normal distribution, Zi ~ N(0, 1) are
independent standard normal random variables, and EK{·}
and EZi{·} are taken with respect to the distribution of K and
Zi, respectively. Under the assumption that all treatment means
are equal, the property of Q* has been discussed in many
statistics textbooks, and the cumulative probability and
quantile can be readily computed with popular software sys-
tems. However, the general distribution of Q* is relatively
more complex and a special purpose algorithm is required to
perform the associated calculations.

Unlike the prescribed F* test, the hypothesis testing of H0:
δR ≤ δR0 with theQ* statistic is more involved. As noted earlier,
the distribution of Q* is not a simple function of δR alone and
thus, the critical value cannot be determined for arbitrary treat-
ment means satisfying δR = δR0. It follows from Bau et al.
(1993) that the least favorable configuration of μ = (μ1, …,
μG) with δR = δR0 is μ0 = (μ10, …, μG0) where μi0 = −σδR0/
2, for i = 1,…, [G/2], and μi0 = σδR0/2, for i = [G/2] + 1,…,G,
and [G/2] is the greatest integer being less than or equal toG/2.
In other words, P{Q(G, N, τ0) > c} > P{Q(G, N, τ) > c} for
τ0 = μ0/σ, any τ has the range of the standardized means
δR0, and a positive constant c. Hence, the null hypothesis H0:
δR ≤ δR0 is rejected at the significance level α if Q * >Qα(G,
N, τ0), where Qα(G,N, τ0) is the upper (100⋅α)th percentile of
the distribution of Q* when the treatment means have the least
favorable configuration μ = μ0 and τ0 = μ0/σ. Also, the power
function of the Q* test is obtained as

πQ* τð Þ ¼ P Q G;N ;τð Þ > Qα G;N ;τ0ð Þf g ð13Þ

for all sets of standardized treatment means τ satisfying
δR > δR0.

To illustrate the application of the suggested procedures,
the numerical demonstration of Olejnik and Algina (2000) is
reexamined here for the detection of the minimal effect in
terms of f and δR. Their focus was on the computations and

interpretations of standardized linear contrast of mean differ-
ences and the corresponding proportion of variance effect size.
The data was obtained from a randomized groups pretest–
posttest study reported in Baumann et al. (1992) and theywere
interested in comparing the relative effectiveness of three
types of interventions (Talk-Aloud, Directed Reading-
Thinking Activity, and Directed Reading Activity) designed
to affect reading comprehension skills of fourth-grade stu-
dents. Using the 66 outcomes of the posttest error detection
task with the number of groups G = 3 and group sample size
N = 22, the ANOVA F and the studentized range statistics are
F* = 5.3119 and Q* = 4.5443, respectively. At the signifi-
cance level α = 0.05 and the magnitude f0 = 0.10, the critical
value of the minimal effect F test is F0.05 = 4.1011 and the
corresponding p-value is 0.0209. For the studentized range
test with a specific effect size δR0 = 0.2 and the least favorable
configuration τ0 = {−0.1, 0.1, 0.1}, the computed critical val-
ue and p-value are 3.8307 and 0.0154, respectively. As sug-
gested in Cohen (1969, 1988), the particular minimum
effect sizes f0 = 0.10 and δR0 = 0.2 represent a small
magnitude of the standard deviation of the standardized
means f and the difference of the standardized means δ,
respectively. Accordingly, the two minimum effect tests
of H0: f ≤ 0.10 and H0: δR ≤ 0.2 are rejected and there
exist some essential differences between the three types
of intervention programs. The SAS/IML (SAS Institute
2014) and R (R Development Core Team 2014) pro-
grams employed to perform the exact critical value
and p-value calculations of both tests are presented in
supplementary files.

Power Calculations and Sample Size Determinations

The theoretical implications and computational feasibility are
important aspects of a test procedure for making statistical
inferences. In practice, a research study requires adequate

Curr Psychol (2018) 37:640–647 643



statistical power and sufficient sample size to detect scientifi-
cally credible effects. It is sensible that the corresponding
power calculations and sample size determinations must also
be considered for a viable procedure to extend the applicabil-
ity in planning research designs. Consequently, the presented
power functions for the F* and Q* tests can be useful in
conducting power analysis and sample size computation for
detecting the differences among standardized mean effects.
The following numerical assessment exemplifies a typical re-
search scenario most frequently encountered in the planning
stage of a study.

Due to the prospective nature of advance research plan-
ning, the general guidelines suggest that typical sources like
published findings or expert opinions can offer plausible and
reasonable planning values for the model characteristics of
mean effects and variance components. To explicate the es-
sential features, the abovementioned posttest error detection
task data of the three interventions is employed to provide
planning values of the model parameters and effect sizes for
a future intervention study. Specifically, the mean effects and
variance component are designated as μ = {7.77, 9.77, 6.68}
and σ2 = 10.17, respectively. With the additional specifica-
tions of G = 3, N = 22, f0 = 0.1, and δR0 = 0.2, the resulting
powers for the two tests are πF* = 0.7109 and πQ* = 0.7216,
respectively, when the significance level is α = 0.05. The
achieved power is slightly less than the fairly common and
somehow minimal level of 0.80. Therefore, the power calcu-
lation suggests that the designated configurations may not
warrant a decent chance of detecting the minimal difference
between intervention effects.

With the power formulas and associated algorithms, the
sample size N needed to attain the nominal power (1 – β)
can be found by a simple iterative search for the chosen sig-
nificance level α and parameter values. Further computations
show that a target power of 0.80 necessitates a balanced group
size of 28 and 27 for the F* and Q* tests, respectively. Due to
the underlying metric of integer sample sizes, the correspond-
ing actual powers are 0.8127 and 0.8088, and they are mar-
ginally greater than the nominal power level 0.80. Hence, the
required sample size is nearly 25%more than is needed for the
original design. These configurations are incorporated in the
user specifications of the SAS/IML and R programs
presented in the supplemental files. Ultimately, users
can easily identify the statements containing the key
values in the computer code and then modify the pro-
gram to accommodate their own model specifications.

Although the power performance and sample size require-
ment between the two procedures are almost identical, the
particular results are confined to the specified minimal effect
sizes f0 = 0.1 and δR0 = 0.2. It is of theoretical importance and
practical interest to evaluate the relative performance between
the F* and Q* test procedures across a variety of comparable
design configurations. However, the distinct formulation of

statistical hypotheses and the distributional complexity of test
statistics do not permit a complete analytic examination and
technical justification. Instead, a comprehensive empirical ap-
praisal is conducted to assess and compare the power and
sample size behavior of the two methods.

Numerical Study

In order to provide a systematic investigation for the power
behavior of the F* and Q* test procedures, the effect sizes f0
and f1 under the null and alternative hypotheses are chosen a
priori to facilitate meaningful comparisons. Although δR is not
a function of f, there exists an intrinsic property for the lower
and upper bounds of the range of the standardized means δR
when the standard deviation of the standardized means f is
fixed (Pearson and Hartley 1951). It can be easily shown that,
for all sets of standardized treatment means τ with a fixed
value f, the maximum range is δRmax = (2G)1/2f for τ = τmax
where τmax = {−(G/2)1/2f, 0, ... , 0, (G/2)1/2f}. In contrast,
when G is even, the minimum range is δRmin = 2f for
τ = τEmin where τEmin = {τ1, …, τG}, τi = −f, i = 1, …, G/
2; and τi = f, i = G/2 + 1,…, G. On the other hand, when G is
odd, the minimum range is δRmin = 2Gf/(G2 − 1)1/2 for
τ = τOmin where τOmin = {τ1, …, τG}, τi = −Gf/(G2 − 1)1/2,
i = 1, …, (G – 1)/2; and τi =Gf/(G2 − 1)1/2, i = (G – 1)/2 + 1,
…, G. Although similar results were given in David et al.
(1972), their formulation of τOmin differs from the presented
expression of the standardized mean structure with a simple
location shift. Note that the definition of τOmin conforms to the
least favorable configuration τ0 for determining the critical
value of the Q* test of minimal effect null hypothesis.
Essentially, such standardized mean configurations need to
be identified and incorporated in the power evaluation of the
Q* test.

To delineate the underlying features of the two test proce-
dures crossing different model characteristics, the numerical
assessments are performed for (G,N) = (3, 16), (4, 12), and (6,
8). Accordingly, the total sample size is fixed as NT = 48 for
ease of comparison. Throughout this empirical study, the sig-
nificance level and the minimum effect size are set asα = 0.05
and f0 = 0.1, respectively. Thus, the associated critical values
are F0.05 = 3.9308, 3.2494, and 2.6663 for G = 3, 4, and 6,
respectively. The corresponding least favorable standardized
mean configurations of the Q* test are τmin = {−0.1061,
0.1061, 0.1061}, {−0.1, −0.1, 0.1, 0.1}, and {−0.1, −0.1,
−0.1, 0.1, 0.1, 0.1}. Moreover, the actual minimum effect
sizes and critical values of the Q* test are δR0 = 0.2121, 0.2,
and 0.2, and Q0.05 = 3.7964, 4.0524, and 4.4125 for G = 3, 4,
and 6, respectively. Under the designated null hypothesis H0:
f ≤ 0.10 with the significance level α = 0.05, the power πF* of
the F* test of the alternative hypothesis H1: f > 0.10 are com-
puted for the alternative effect size f = f1 with f1 = 0.1 to 0.9
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with an increment of 0.1. For each f1, the power πQ* of theQ*
test of H0: δR ≤ δR0 versus H1: δR > δR0 are calculated for the
two standardized mean extremes {τmax, τQmin} and {τmax,
τEmin} when G is odd and even, respectively. For ease of
illustration, the attained powers πQ* of the Q* test evaluated
at the two extremes are denoted by πQ*min and πQ*max, respec-
tively. Accordingly, the designated effect sizes (f1, δRmin,
δRmax) and resulting powers (πF*, πQ*min, πQ*max) are summa-
rized in Table 1 for the three model settings (G, N) = (3, 16),
(4, 12), and (6, 8).

It can be seen from the extensive numerical results that the
achieved powers have a clear pattern πQ*max > πF* > πQ*min

for all f1 > 0.1. The only exceptions occurred with the two
cases of f1 = 0.2 and 0.3 when G = 3. Specifically, the order
between the three power levels is πF* > πQ*max > πQ*min. On
the other hand, the achieved powers of πF*, πQ*min, and
πQ*max are decreasing in the number of groups G when all
other factors remain constant including the total sample size.
Thus, it requires a larger total sample size to achieve the des-
ignated power for the two tests when all other configurations

Table 1 Computed power of the F* and Q* tests for f0 = 0.1 and α = 0.05

G = 3 f1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

πF* 0.0500 0.1382 0.3180 0.5639 0.7893 0.9267 0.9823 0.9971 0.9997

δRmin 0.2121 0.4243 0.6364 0.8485 1.0607 1.2728 1.4849 1.6971 1.9092

πQ*min 0.0500 0.1369 0.3125 0.5525 0.7762 0.9178 0.9786 0.9961 0.9995

δRmax 0.2449 0.4899 0.7348 0.9798 1.2247 1.4697 1.7146 1.9596 2.2045

πQ*max 0.0500 0.1377 0.3177 0.5653 0.7921 0.9290 0.9833 0.9973 0.9997

G = 4 f1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

πF* 0.0500 0.1235 0.2786 0.5061 0.7368 0.8963 0.9709 0.9943 0.9992

δRmin 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

πQ*min 0.0500 0.1177 0.2540 0.4542 0.6714 0.8440 0.9436 0.9849 0.9970

δRmax 0.2828 0.5657 0.8485 1.1314 1.4142 1.6971 1.9799 2.2627 2.5456

πQ*max 0.0504 0.1239 0.2812 0.5139 0.7477 0.9049 0.9749 0.9955 0.9995

G = 6 f1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

πF* 0.0500 0.1059 0.2271 0.4210 0.6464 0.8330 0.9414 0.9851 0.9973

δRmin 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

πQ*min 0.0500 0.0991 0.1977 0.3509 0.5399 0.7237 0.8635 0.9459 0.9831

δRmax 0.3464 0.6928 1.0392 1.3856 1.7321 2.0785 2.4249 2.7713 3.1177

πQ*max 0.0505 0.1068 0.2340 0.4412 0.6773 0.8610 0.9572 0.9908 0.9987

Table 2 Computed sample size
of the F* andQ* tests for f0 = 0.1,
α = 0.05, and 1 – β = 0.90

G = 3 f1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

NF* 297 78 37 22 15 11 9 7

δRmin 0.4243 0.6364 0.8485 1.0607 1.2728 1.4849 1.6971 1.9092

NQ*min 326 83 39 23 16 12 9 7

δRmax 0.4899 0.7348 0.9798 1.2247 1.4697 1.7146 1.9596 2.2045

NQ*max 268 76 36 22 15 11 9 7

G = 4 f1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

NF* 229 62 30 18 13 9 8 6

δRmin 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

NQ*min 299 77 36 21 14 11 9 7

δRmax 0.5657 0.8485 1.1314 1.4142 1.6971 1.9799 2.2627 2.5456

NQ*max 180 58 29 18 12 9 7 6

G = 6 f1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

NF* 160 45 23 14 10 8 6 5

δRmin 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

NQ*min 247 64 30 18 12 9 7 6

δRmax 0.6928 1.0392 1.3856 1.7321 2.0785 2.4249 2.7713 3.1177

NQ*max 115 40 21 13 9 7 6 5
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are fixed. Instead of fixing the total sample size, the sample
sizes required to achieve the nominal power 0.90 are also
calculated for the selected group structures and effect settings.
The computed sample sizes are presented in Table 2 and they
are denoted by NF*, NQ*min, and NQ*max for the power func-
tions πF*, πQ*min, and πQ*max, respectively. As expected, the
necessary sample sizes decrease with increasing difference
between f1 and f0 for all three scenarios. More importantly,
the estimated sample sizes demonstrate a general phenomenon
thatNQ*min ≥NF* ≥NQ*max. Also, the discrepancy between the
three sample sizes (NQ*min,NF*,NQ*max) substantially reduced
as f1 becomes larger than f0. These findings extend those re-
ported in David et al. (1972) for the traditional tests of zero
effect. Hence, although the F test is a well-recognizedmethod,
the studentized range test may outperform the F test when the
standardized mean structures are close to the extreme pattern
of τmax. Therefore it is advisable that researchers need to con-
duct appropriate power analysis and employ suitable tech-
niques based on the best knowledge of the vital model char-
acteristics, especially the plausible and reasonable planning
values for the mean effect configurations.

Conclusion

The two effect size measures of the standard deviation of the
standardized means and the range of the standardized means
among several treatments are direct extensions of the
standardized mean difference between two groups. The
existing literature on statistical hypothesis testing for
comparisons among treatment means often assumes a null
hypothesis of no difference. Consequently, the associated
procedures and algorithms for data analysis and design
planning are confined to the rejection of zero effect instead
of the detection of treatment differences that are larger enough
to have a practical impact. This study explicates and evaluates
the features of the ANOVA F and the studentized range
procedures for testing the null hypothesis that the treatment
effects have a minimal important difference based on the
standard deviation of the standardized means and the range
of the standardized means, respectively. The notion of
minimal important difference is vital to determine the critical
values and power behavior of the ANOVA F and the
studentized range procedures. The general guidance of
Cohen (1969, 1988) suggests that the small, medium, and
large effects in terms of f and δ could be defined as f = 0.10,
0.25, and 0.40, and δ = 0.2, 0.5, and 0.8, respectively. It is
prudent to emphasize that the particular research question
within a concentrated research field determines whether a spe-
cific effect size is practically or scientifically important. But in
general, it should be based on substantive or empirical
grounds, such as results from a prior effect size appraisal.
Results in the current report showed that the relative power

performance of the two approaches depends on the variability
patterns of the mean effects. The studentized range method
can be more or less powerful than the ANOVA F test if the
mean structure has a maximum range orminimum range when
the standard deviation of the standardized means remains con-
stant. Numerical examples and computer algorithms were pre-
sented to illustrate the uses of the suggested methods for data
analysis and design planning. The formulation and assessment
described in this article gave a unified and rigorous explication
of the two major procedures for detecting a minimal important
difference among standardized means. The findings update
and extend previous studies on the analysis of treatment ef-
fects among several groups.
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