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Abstract Addition and multiplication facts are retrieved from
a network-like structure, as shown by data from number-
matching tasks. Even if several evidences (e.g., cross-
operation confusion effect) suggest that these networks are
interrelated, the interdependency between addition and multi-
plication networks could be influenced by the type of task
used (e.g., verification task). The present study aimed to in-
vestigate whether the addition and multiplication networks
were interdependent or separate using a number-matching
task. Eighty participants were divided in four groups. The
Groups A (x, x, x) and B (+, +, +) performed the task in which
only one arithmetic interference effect was implemented
through three sessions (pure condition). The Groups C (x, x,
+) and D (+, +, x) performed the same task in which the same
arithmetic interference effect appeared in the first and second
sessions, while a different arithmetic problem was presented
in the last session (mixed condition). In the last session, the
interference effect in the mixed condition was higher than that
in the pure condition. The results argued more for an indepen-
dency of addition and multiplication networks than for their
interdependency.

Keywords Arithmetic fact retrieval . Interference effect .

Interdependency . Number-matching task . Associative
network

Introduction

Simple mental arithmetic (e.g., 4 × 9) is an important skill and
is required in many situations. It is widely accepted that edu-
cated adults use different strategies in mental arithmetic (e.g.,
Campbell and Xue 2001; Groen and Parkman 1972; LeFevre
et al. 1996b): they retrieve the answer directly from their long-
term memory or they calculate the answer by means of pro-
cedural strategies (e.g., decomposition of a problem into
smaller facts). Simple arithmetic problems, such as 4 + 3 or
4 × 3, are conceptualized as arithmetic facts which are stored
in long-term memory and which can be directly retrieved
without any actual computational process. Typically, this ap-
plies to simple addition and multiplication problems with op-
erands from 2 to 9 (LeFevre et al. 1996a; LeFevre et al. 1996b;
Dehaene and Cohen 1997). In classical models of mental ar-
ithmetic, arithmetic facts are stored in and retrieved from a
network of associations in declarative memory (e.g., Ashcraft
1987, 1992; Butterworth et al. 2001; Campbell 1994; Siegler
1988; Verguts and Fias 2005). A problem node stores infor-
mation regarding the operands and the appropriate solution,
and thus, the strength of associations between problems and
possible answers determines the probability of the an-
swers to be produced. When a problem is presented,
activation spreads through the network, activating mul-
tiple nodes that share features with the presented prob-
lems. In a retrieval process, these multiple representa-
tions become active and compete until one reaches a
sufficient level of activation and is finally selected and
produced as an answer. For instance, when a priming
task is performed, it has been observed that less time is re-
quired to name a numerical target which is primed by a single-
digit arithmetic problem like 14 and 6 + 8, reflecting a facil-
itation effect, in both addition and multiplication problems
(e.g., Jackson and Coney 2005).
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Proof for the reliability of the associative cognitive models
derives from performances in several tasks, such as number-
matching task (LeFevre et al. 1988). In this task the partici-
pants are shown two numerical stimuli in sequence. The first
stimulus (hereafter, the “cue”: e.g., 4 + 3) is a short-lasting pair
of single- or double-digit numbers. The second stimulus con-
sists of a single- or double-digit number (hereafter, the “tar-
get”: e.g., 5). Participants have to decide, as fast as possible,
whether the target is one of the previously presented numbers
or not, and, thus, mental arithmetic is completely irrelevant to
the task. LeFevre et al. (1988) showed that response times
(RTs) for rejecting non-matching targets were reliably higher
when the target was the sum (7) of the numbers in the cue pair
(e.g., 4 + 3) compared to when the target was neutral (or
unrelated) as far as the cue numbers were concerned (9).
The RT difference between sum and unrelated targets reflects
an arithmetic fact interference effect, given that the sum node
is automatically activated for the associated addition problem.
This interference effect has been obtained with or without an
arithmetic plus (+) symbol interposed between the numbers in
the cue (Fabbri 2011; Fabbri et al. 2008; LeFevre et al. 1988).
In a similar way, Thibodeau et al. (1996)showed that an inter-
ference effect could be obtained by presenting the product
(e.g. 12 for the cues 4 and 3) of the numbers in the cue,
interposing the multiplication symbol (“x”) between the cue
digits. The product interference effect was found even when
no multiplication symbol was presented (Galfano et al. 2009;
Rusconi et al. 2004) and this interference was extended to the
neighboring multiples in the multiplication network (Galfano
et al. 2003). It can easily be assumed that sum and product
interference effects are similar, reflecting a direct and automat-
ic retrieval strategy of arithmetic facts from long-term memo-
ry. In other words, the interference effect is interpreted as
evidence that the mere presentation of two single-digit num-
bers results in stimulus–driven activation of product or sum
nodes via associative links in the network representing arith-
metic facts.

Several models for addition (Butterworth et al. 2001) and
multiplication (Verguts and Fias 2005) are proposed, suggest-
ing that addition and multiplication facts might be stored in
different semantic memory networks (Zhou 2011). However,
those networks are not completely separate in memory. In-
deed, the arithmetic problems share common operands, and
it is likely that the mental representations of arithmetic facts
contain overlapping features. For instance, in a verification
task a cross-operation confusion effect has been found, sug-
gesting longer reaction times in determining the correctness or
incorrectness of an equation when the result is linked to an-
other operation, such as 3 + 4 = 12 (e.g., Stazyk et al. 1982;
Winkelman and Schmidt 1974; Zbrodoff and Logan 1986).
Winkelman and Schmidt (1974) found this cross-operation
confusion effect both when addition and multiplication prob-
lems were randomly presented in the same test (i.e., mixed

condition), and when either addition or multiplication prob-
lems were presented in one test (i.e., pure condition). These
results suggested that competing associations between addi-
tion and multiplication facts existed in long-term memory and
these competing associations were activated, pushing the
participants to inhibit the inappropriate responses. However,
Zbrodoff and Logan (1986) noted that in Winkelman and
Schmidt’s (1974) study a restricted set of stimuli was used
and a within-subjects comparison was performed between
mixed and pure conditions. Using all pairs of digits from 1
to 9 and considering the mixed and pure presentations as
between-subjects factor, Zbrodoff and Logan found higher
confusion effect in mixed condition than in pure condition,
and this confusion effect was higher with multiplication
problems than with addition problems. Thus, the authors ruled
out the possibility that the arithmetic operations were
interrelated each other.

However, there are several concerns which could question
the interdependency between arithmetic networks, as showed
by confusion problem effect. First, Stazyk et al. (1982) pro-
posed that the confusion effect did not appear due to a com-
petition of memory associations but it appeared due to a per-
ceptual or encoding confusions. In other words, the individ-
uals simply misperceived the arithmetic operator sign on these
confusion problems. Second, the verification task differs from
number-matching task. The first difference regards the activa-
tion of the arithmetic network which is automatic in number-
matching task (e.g., LeFevre et al. 1988) while it is partially
automatic in verification task (Zbrodoff and Logan 1986). The
second difference regards the inhibition efficiency of arithmet-
ic network. Indeed, the inhibition of arithmetic fact retrieval is
necessary in the number-matching task to achieve the best
performance, while the verification task requires at least a
partial activation of the network as useful strategy in verifica-
tion. Related to this point, the verification task assesses the
arithmetic fact retrieval in an explicit way while the number-
matching task does it in an indirect way. For instance,
Zamarian and colleagues (Zamarian et al. 2007) showed that
mild cognitive impairment patients did not differ from healthy
controls in the arithmetic fact retrieval (in verification task),
but they differed in their ability to suppress automatically
accessed information (in number-matching task). Thus, the
number-matching task could be considered as a suitable tool
to address whether the addition and multiplication networks
are or not interrelated.

The present study aimed to explore the interdependency
between both operations using a number-matching task
(LeFevre et al. 1988; Thibodeau et al. 1996). In other words,
the aim was to study whether the interdependency between
addition and multiplication problems also remained in a
number-matching task, which is a powerful task for control-
ling the concerns questioning the interdependency (as indicat-
ed by cross-operation confusion effect) between arithmetic
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operation using a verification task. Specifically, in the present
study the operation sign was not presented in the cue pair (and
the misperception of operation signs was controlled) of the
number-matching task and no calculation was requested to
perform the task. At the same time, the arithmetic interference
effect, usually found in this type of task even without any
operation sign, could be considered as index of an arithmetic
fact retrieval from arithmetic networks. To the goal of the
study, pure and mixed conditions were created, as function
of arithmetic problem embedded in the task. Moreover, the
same task was performed three times. This experimental pro-
cedure related to the three testing sessions was relevant to
study the presence of an interdependency between arithmetic
operation problems because in each session (and every time
the number-matching task was performed) only one arithmetic
operation was embedded in the task. Thus, in the pure condi-
tion, the same arithmetic problem was embedded in the task
along the three task sessions, while in the mixed condition, the
arithmetic problem presented in the last session was different
from that presented in the previous two sessions. Taking into
account that the inhibition efficiency in this task increases
when different sessions of the same task are performed
(Fabbri et al. 2008) and that inhibition may be affected by
practice (e.g., Harnishfeger 1995), it was expected that the
pure and mixed conditions would not differ in the interference
effect through sessions, if the addition and multiplication net-
works were interrelated. In other words, if the inhibition effi-
ciency would increase in practicing with the task (and thus a
decrease of arithmetic interference effect would expect) and
the same operands would activate both addition and multipli-
cation networks, when they were presented, then it did not
matter to perform the task in pure and mixed conditions. Spe-
cifically, the interdependency between operations should be
noted by similar interference effect pattern in the last session,
given that this was the crucial session which differentiated
pure from mixed conditions. The interdependency between
addition and multiplication networks claims that the same
operands (cue pair) active the retrieve of both sum and product
related to presented operands, and thus, this activation pattern
should be also expected in the present number-matching task
during all three times with the activation of both arithmetic
associative networks. This was the reason why the interdepen-
dency between addition and multiplication operations should
show similar interference effect in the last session of pure and
mixed conditions. By contrast, a significant difference be-
tween both conditions in the arithmetic interference effect of
the last session probably argued for an independency between
networks. In other words, in the pure condition only addition
or multiplication network should be activated, reflecting a
decrease of arithmetic interference effect, probably due to an
increase of inhibition efficiency (Fabbri et al. 2008;
Harnishfeger 1995). On the contrary, the mixed condition
should induce a “switch” of activation from one operation

network (in the first and second sessions) to other network
in the last session, reflecting a greater arithmetic interference
effect in the final testing session. This expectation could be in
line with the Identical Elements (IE) model. According to this
model, Rickard and colleagues (Rickard 2005; Rickard et al.
1994) suggested that problems facilitate each other with the
use of a mediation strategy if their nodes contain exactly the
same elements. Thus, facilitation effects are expected between
multiplication and division, and between addition and subtrac-
tion, given that they are conceptually related to each other.
Consequently, the interference effect found in the last session
of the mixed condition (re-) appeared because a “different”
arithmetic fact was presented respect to that of previous ses-
sions, and a “different” network was activated.

Method

Participants

Eighty university students of the Department of Psychology
participated in this study as volunteers. The students were
enrolled both in basic (3 years of graduation) and in high
(2 years of graduation) psychology course levels. The
83.75 % were females. The mean age was 25.08 years
(SD = 6.01 years). The participants were all right-handed
and had normal or corrected-to-normal vision. All participants
provided written consent and the study was conducted follow-
ing university ethical guidelines. According to the experimen-
tal design of 2 conditions × 2 arithmetic problems, the partic-
ipants were randomly divided into four groups, in which the
product and/or sum interference effect was implemented. In
the pure conditions, two different groups were created: Group
A (N = 20; mean age 24.65 ± 3.05 years; 15 females) per-
formed the task in which product targets appeared, whereas
Group B (N = 20; mean age 26.00 ± 5.50 years; 16 females)
performed the task in which sum targets appeared. In a similar
way, for the mixed conditions, two groups were created:
Group C (N = 20; mean age 23.45 ± 5.49; 19 females) per-
formed the task in which product targets appeared in the first
and second sessions but a sum target appeared in the third
ses s ion , whe reas Group D (N = 20 ; mean age
26.20 ± 8.67 years; 17 females) performed the task with the
opposite presentation of sum and product targets.

The four groups did not differ for age (F < 1.00) or gender
(χ2 < 3.50). Informed consent was obtained from all individ-
ual participants included in the study.

Materials

The materials for the number-matching task were the same as
those described by Fabbri (2011) for addition and Galfano
et al. (2003) for multiplication. Regardless of group condition,
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there was an initial cue of two digits followed by a target
number according to which a “yes-no” decision was to be
made, and one of two different keys (“q” and “p”) pressed
on the computer keyboard. Participants were required to re-
spond “NO” if the target did not match either of the numbers
in the cue (non-matching stimuli) and “YES” if the target was
one of the two numbers of the initial pair (matching stimuli).
Matching trials made up half of the stimuli, whereas the other
half formed non-matching trials. Within each group, half of
the participants responded “yes” by pressing the “p” key with
their right index finger and “no” by pressing the “q” key with
their left index finger. The other half received the opposite
instructions.

Three lists of 60 stimuli were created for each group. Each
participant performed the task three times with the presenta-
tion of only one list for each testing session (Fig. 1). The order
of the lists was counterbalanced across participants and testing
sessions.

For the multiplication problems, each trial included an ini-
tial cue of two different digits and a subsequent target. Stimuli
were in Arabic format (Fig. 1). Combinations of digit cues and
targets that might have evoked activation on the basis of some
relationship between the items other than multiplication (e.g.,
addition, cues 8 and 3; target 11) were discarded from the
stimulus set, in order to avoid generating associative confu-
sion (Winkelman and Schmidt 1974). Ties (e.g., 2 and 2) were
excluded, primarily because they appear to provoke access to
the memory store more easily than other problems do (tie
effect; Blankenberger 2001). Digit cues and targets composed
of 0 and 1 were also excluded because they seem to elicit the
retrieval of rules (e.g., Nx0 or Nx1; e.g., Baroody 1983; Sokol
et al. 1991), instead of the retrieval of results (e.g., 9 × 4 = 36;
Baroody 1983; Sokol et al. 1991). Each list contained six
types of stimuli: three belonging to the non-matching category

and three belonging to the matching category. In the non-
matching category, the problem types were defined on the
basis of the relationship between cues and target. Therefore,
product, unrelated, and non-matching filler problems were de-
fined. In product problems, the cues were two single-digit op-
erands (e.g., 9 and 4) and the correct product was presented as
target (e.g., 36) as shown by Fig. 1. In the unrelated problems,
the cues were the same presented in the previous condition
(e.g., 9 and 4), but the target was unrelated to either of the digits
in the cue and it did not correspond to any neighboring multi-
ples in the multiplication table (e.g., 38; Galfano et al. 2003).
Finally, non-matching filler problems had a double-digit num-
ber in the cue (and the other cue was a single-digit number; e.g.,
39 and 4) and a double-digit number in the target (e.g., 67),
even if non-matching was present. Within the matching cate-
gory, the problem types were target-balancing, cue-balancing,
and matching filler stimuli. In target-balancing problems the
correct product used in product problems was one of two digit
cues (e.g., 36 and 7) and the following target (e.g., 36). In the
cue-balancing problems, the same cues used in product trials
were presented (e.g., 9 and 4), and one of the numbers in the
pair was the target (e.g., 9). Finally, in matching filler problems,
the cue pair was formed by a double- and a single-digit num-
bers, and the target always matched the double-digit number in
the digit pair (e.g., cues 18 and 7; target 18). The three lists
contained 10 stimuli for each problem type.

Also, for addition problems, cues and subsequent targets in
Arabic format were presented (Fig. 1). Trials that could elicit
activation based on multiplication (e.g., cues 2 and 4; target 8)
were excluded, as well as ties and numbers 0 and 1 (e.g., N + 0
or N + 1; e.g., Baroody 1983; Pesenti et al. 2000) in the cue
pair or in the target. The characteristics of stimuli for non-
matching and matching categories were similar to those ex-
plained above. Thus, in the sum problems, the cues were two

Fig. 1 The left side of the
Figure displays the experimental
procedure of four Groups (and
their relative operation embedded
in the task for each session)
during the three testing sessions.
On the right side, the trial order of
the number-matching task for a)
product and b) sum interference
effects
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single-digit numbers (e.g., 5 and 7) and the subsequent target
corresponded to their correct sum (e.g., 12), as shown by
Fig. 1. In the unrelated problems, the same cue pair was pre-
sented (e.g., 5 and 7), but the target was unrelated to either of
the digits in the cue and it did not correspond to any multipli-
cation table (e.g., 22; Fabbri 2011). Finally, the non-matching
filler problems were constructed using the same rules ex-
plained above (e.g., 5 and 32 as cues and 68 as target). Within
the matching categories, in the target-balancing problems the
correct sum used in sum problems and a single-digit number
were presented as cue pair (e.g., 5 and 12), while the target
matched with the correct sum (e.g., 12). In the cue-balancing
problems, the same cues used in sum trials were presented
(e.g., 5 and 7), and one of the numbers in the pair was the
target (e.g., 5). As before, the matching filler problems
contained double- and single-digit cues (e.g., 89 and 7) and
the target matched with the double-digit number (e.g., 89).
The three lists contained 10 stimuli for each problem type (6
types of problems × 10 stimuli for each problem type =60
stimuli for each list). For the three lists in which product or
sum interference effect was embedded, the 60 (cue-target
pairs) stimuli were different, according to the criteria of prob-
lem type. Presentation order was randomized for each subject,
with the constraints that no more than three matching or non-
matching stimuli appeared consecutively..

In each session, all digit cues were presented horizontally
in white forecolor 40 Courier New bold font (5.73° × 2.87° of
visual angle for each number) on a black background. All
stimuli were presented in the center of the display. The num-
bers in each pair were not divided by any multiplication or
addition sign, and they were separated by three spaces. The
stimulus onset asynchrony (SOA) was fixed at 120 ms in both
group conditions. This choice was grounded on the fact that
Thibodeau et al. (1996) and LeFevre et al. (1988) found a
product and sum interference effect, respectively, within the
brief delays between cue and target presentation.

Design and Procedure

The experimental design foresaw 2 conditions (pure and
mixed) and 2 different types of arithmetic interference effect
(product and sum) presented in the number-matching task, de-
termining 4 different groups (Fig. 1). Specifically, Group A (x,
x, x) was presented with a product interference effect, and
Group B (+, +, +) was presented with a sum interference effect
in all three testing sessions. In Group C (x, x, +) a product
interference effect was presented in the first and second ses-
sions while a sum interference effect was presented in the last
session. The reverse situation was encountered by Group D (+,
+, x). The three testing sessions were scheduled for the same
day with an interval of two hours between each other.

For each group, subjects were positioned 50 cm from the
computer screen. The participants were instructed to respond

accurately, but as quickly as possible. The order of trials in the
task was displayed in Fig. 1, reporting examples of product and
sum interference effect. At the center of the black screen awhite
hash symbol (#) appeared as a fixation point. The hash symbol
was chosen in order to avoid generating any mathematical cal-
culation. After 400 ms the digit cues appeared on the screen for
80 ms, and then they were masked for 20 ms by seven hash
marks (#######). After this masking, an inter stimulus interval
(ISI) of 20 ms was presented by way of a black screen. Finally,
a target number appeared at the center of the screen. The digit
target remained on the screen until the subjects responded “yes”
or “no” or until 2500 ms had elapsed. In each testing session,
participants underwent 18 training trials, with each problem
type presented three times, before the test..

Data Analysis

The mean response time (RT) for correct responses and the
percentage of errors were calculated for each group (Table 1).

In order to compare product and sum interference effects
(i.e., longer RTs and more errors for product/sum than for cor-
responding unrelated problems), data analysis was focused on-
ly on non-matching product/sum and corresponding unrelated
problems. Consequently, the arithmetic interference effect was
defined as the difference between the mean RT for product/sum
problems minus the mean RT for corresponding unrelated
problems (dRT = RT product problems – RT unrelated prob-
lems or dRT = RT sum problems – RT unrelated problems). A
positive difference indicated the presence of an arithmetic in-
terference effect on RTs. The same difference was calculated
for the percentage of errors (dPE = PE product problems – PE
unrelated problems of dPE = PE sum problems – PE unrelated
problems). This difference was calculated only after arcsine
transformation of percentage of errors (Howell 1997). Howev-
er, in the text the original percentages were reported. A positive
difference indicated an arithmetic interference effect.

A two-way mixed ANOVAwith Group (4 levels: A, B, C,
and D), as between-subjects factor, and Session (three testing
sessions) as a within-subject factor was performed on dRTand
dPE, separately. Given that the third session was crucial for
the hypothesis of the study, a further two-way ANOVA with
Condition (pure vs. mixed) and Operation (multiplication vs.
addition) as between-subject factors was performed on dRT
and dPE separately. The Bonferroni post-hoc test was run
when significant results were found. In all analyses, the p
value was set at 0.05.

Results

When the analysis of RTs was performed, only correct re-
sponses were taken into consideration. Within these re-
sponses, RTs lower or higher than 3 SD were discarded from
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analysis (about 2.17 %). According to these criteria for detect-
ing outliers, eight participants (two participants in each group)
were discarded from the analysis. The four groups did not
differ for the overall RTs (p = 0.40): A = 758 ms (SD = 133 ms),
B = 809 ms (SD = 135 ms), C = 769 ms (SD = 111 ms) and
D = 812 ms (SD = 87 ms).

The Group x Session ANOVA on dRT showed significant
Session effect (F(2136) = 25.87, p < 0.0001, η2p = 0.28), but
not a Group effect (p >. 10). For the Session effect, the post-
hoc test showed that the dRT value was higher in the first
session (dRT = +74.48 ms; SD = 39.65 ms) than the other
two sessions (p < 0.0001 for both comparisons), as well as
the comparison between second (dRT = +23.11 ms;
SD = 55.61 ms) and third (dRT = +40.48 ms; SD = 31.39 ms)
sessions (p < 0.0001). Crucially, a significant interaction be-
tween Group and Session factors was found (F(6136) = 3.56,
p < 0.005, η2p = 0.14), as shown in Fig. 2a. The post-hoc test
showed that only in the third session, the four groups differed

from each other. Specifically, the Group C (dRT = +55.25 ms;
SD = 24.69 ms) and the Group D (dRT = +78.91 ms;
SD = 11.00 ms) showed higher interference effect than that of
Group A (dRT = +14.08 ms; SD = 32.41 ms) and Group B
(dRT = +13.68 ms; SD = 57.44 ms), with p < 0.05 for all
comparisons. No other significant comparisons were found.

The four groups did not differ for overall percentage of
errors (p = 0.75): A = 4.69 % (SD = 5.23 %), B = 4.60 %
(SD = 4.66 %), C = 3.46 % (SD = 3.88 %), and D = 4.97 %
(SD = 3.89 %).

The same Group x Session ANOVA on dPE failed to show
any main effect (ps > 0.06). In addition the Group x Session
interaction was not significant (p > 0.10), as shown in Fig. 2b.

In order to deeply assess the arithmetic interference effect
in the third session, the Condition x Operation ANOVA on
dRT showed a significant Condition (F(1,68) = 40.10,
p < 0.0001, η2p = 0.37) effect, while Operation effect and
Condition x Operation interaction did not reach statistical

Table 1 The mean RTs (and their SD) as well as mean percentage of errors (PE; and their SD) were reported for all problems in all groups

Number-matching Task Session 1 Session 2 Session 3

RTs in ms PEs in % RTs in ms PEs in % RTs in ms PEs in %

Group A (x, x, x) Cue-balancing 827 (178) 4.44 (7.05) 707 (151) 2.78 (7.52) 673 (139) 3.89 (6.98)

Probe-balancing 859 (158) 5.00 (7.86) 744 (150) 2.78 (5.74) 734 (144) 3.89 (8.50)

Matching Filler 864 (164) 6.11 (12.90) 755 (169) 3.33 (6.86) 714 (130) 5.00 (10.43)

Product 913 (177) 5.55 (8.55) 723 (140) 2.78 (6.69) 691 (146) 6.67 (11.88)

Unrelated 841 (159) 1.67 (5.14) 697 (147) 2.78 (5.74) 677 (140) 8.89 (19.37)

Nonmatching Filler 838 (181) 6.11 (11.95) 700 (150) 4.44 (6.16) 678 (163) 8.33 (17.57)

Total 857 (155) 4.81 (7.04) 723 (139) 3.15 (4.31) 694 (133) 6.11 (10.85)

Group B (+, +, +) Cue-balancing 852 (163) 6.11 (7.77) 752 (137) 5.00 (9.23) 723 (129) 1.67 (5.14)

Probe-balancing 887 (195) 3.89 (6.08) 789 (171) 5.55 (8.55) 743 (133) 2.78 (4.61)

Matching Filler 924 (183) 5.55 (11.49) 815 (141) 6.11 (11.95) 731 (151) 6.67 (10.29)

Sum 942 (193) 4.44 (8.55) 816 (167) 2.22 (5.48) 750 (140) 1.67 (5.14)

Unrelated 867 (202) 5.00 (8.57) 792 (175) 3.33 (5.94) 733 (161) 6.11 (11.45)

Nonmatching Filler 904 (177) 6.11 (8.50) 813 (175) 5.55 (10.42) 733 (138) 5.00 (8.57)

Total 896 (175) 5.18 (5.17) 796 (151) 4.63 (6.46) 735 (130) 3.98 (5.46)

Group C (x, x, +) Cue-balancing 816 (152) 3.89 (6.08) 734 (142) 2.22 (4.28) 680 (130) 3.89 (8.50)

Probe-balancing 858 (150) 4.44 (9.22) 826 (176) 2.22 (7.32) 708 (118) 2.78 (7.52)

Matching Filler 834 (139) 3.89 (6.08) 776 (149) 3.33 (5.94) 725 (137) 3.89 (6.98)

Product/Sum 867 (117) 3.33 (5.94) 756 (121) 3.89 (6.98) 739 (123) 3.33 (5.94)

Unrelated 792 (132) 5.55 (10.97) 730 (154) 5.00 (8.57) 684 (129) 0.55 (2.36)

Nonmatching Filler 850 (150) 3.89 (8.50) 774 (165) 5.00 (8.57) 692 (103) 1.11 (3.23)

Total 836 (127) 4.17 (6.08) 768 (129) 3.61 (4.76) 705 (105) 2.59 (4.29)

Group D (+, +, x) Cue-balancing 859 (164) 13.33 (14.14) 787 (117) 2.78 (6.69) 735 (126) 1.67 (5.14)

Probe-balancing 893 (121) 6.11 (10.37) 824 (136) 2.78 (4.61) 745 (94) 3.33 (5.94)

Matching Filler 941 (155) 9.44 (16.26) 780 (113) 7.78 (9.43) 736 (87) 5.00 (8.57)

Sum/Product 969 (129) 7.22 (10.18) 801 (116) 2.78 (5.74) 770 (91) 3.89 (6.08)

Unrelated 894 (143) 8.33 (9.23) 784 (116) 0.55 (2.36) 691 (85) 0.00 (0.00)

Nonmatching Filler 932 (133) 5.00 (7.07) 775 (135) 5.55 (10.42) 705 (100) 3.89 (8.50)

Total 915 (128) 8.24 (8.53) 791 (104) 3.70 (4.22) 730 (77) 2.96 (2.89)

154 Curr Psychol (2016) 35:149–158



significance (ps > 0.15). The post-hoc revealed that in the last
session the mixed condition induced an higher interference
effect (dRT = +67.08 ms; SD = 22.33 ms) than that in the pure
condition (dRT = +13.88 ms; SD = 45.97 ms).

The Condition x Operation ANOVA on dPE of the last
session confirmed the Condition (F(1,68) = 11.00, p < 0.001,
η2p = 0.14) effect and the lack of significant Operation effect as
well as its interaction with Condition factor (ps > 0.40). As
before, the mixed condition of the last session had higher inter-
ference effect (dPE = +3.33 %; SD = 6.32 %) than that of the
pure condition (dPE = −3.33 %; SD = 10.14 %)..

Discussion

In the present study, the interdependency of associative net-
works for addition and multiplication problems was tested in a

number-matching task performed three times. In pure and
mixed conditions, the changes in the arithmetic interference
effect were observed through three sessions.

The results of analyses clearly indicated a specific pattern:
there was a significant difference in the arithmetic interference
effect in the last session. Specifically, the groups in the mixed
condition (i.e., when a different operation from that of the previ-
ous sessions was embedded in the task) showed an higher inter-
ference effect than that found in the groups in the pure condition
(i.e., when the same operation was embedded in the task through
all sessions). Even when the last session was only considered,
there was a difference between two conditions, with higher in-
terference effect in the mixed condition than that in the pure
condition.

According to an interdependency account between arith-
metic networks, the interference effect pattern, found here,
reflects that the addition and multiplication networks are

10

30

50

70

90

110

130

Group A (x, x, x) Group B (+, +, +) Group C (x, x, +) Group D (+, +, x)

dR
T 

in
 m

s

session1 session2 session3

A

B
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pattern of product and sum
interference effect for all groups
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interrelated, in a similar way to the confusion problem effect
(Stazyk et al. 1982; Winkelman and Schmidt 1974; Zbrodoff
and Logan 1986). According to the concept of the interdepen-
dency, the presentation of the cue pair (e.g., 3 and 4) should
activate the corresponding nodes in both addition and multi-
plication networks. This activation should determine the acti-
vation of the related sum (e.g., 7) and product (e.g., 12) nodes,
and this should be expected in all testing sessions. For in-
stance, the associative network for multiplication problems
has been “trained” in Sessions 1 and 2 and, thus, the addition
network is (already) activated to retrieve the (correct) sum of
addition problems presented in the third session (e.g., Group
D) due to the interdependency between operations. Thus, dur-
ing the first two sessions, the stimuli, such as 3 and 4, activat-
ed both addition and multiplication networks, but only one
was active due to the type of operation (e.g., +) embedded in
the task, implicitly. This network training could induce the
activation of the other network, as soon as an operation (e.g.,
x) was involved in the task, allowing the automatic retrieval of
related arithmetic fact.

Nevertheless, the findings of the present study seem to state
more for an independency than interdependency between ar-
ithmetic networks. In fact, the interpretation of data according
an interdependency account is less likely considering the sig-
nificant session effect found. In pure condition, the interfer-
ence effect decreased quite linearly through the sessions. In
the mixed condition, this decrease was observed from the first
to the second session, while in the last session the interference
effect reached values similar to those found in the first session.
Considering that inhibition functions normally suppress inter-
ference from distracting information (e.g., Bjorklund and
Harnishfeger 1995), the interference effect not only reflects
the automatic access to arithmetic facts stored in the networks,
but also the efficiency of inhibition processes. Even if the
interference effect was found in all sessions (e.g., posi-
tive dRT values), in the pure condition the participants
“learned” to inhibit the (automatic) arithmetic fact re-
trieval through the sessions (Fabbri et al. 2008), sug-
gesting that the inhibition could be affected by practice
(Harnishfeger 1995). If the participants increased their
efficiency in inhibiting the automatic retrieval, as shown
in the pure condition (and in the first two sessions of
mixed condition), then it was expected to also observe
this efficiency for the last session of the mixed condi-
tion. In other words, if the idea of a network training
reflected an instance of interdependency between net-
works, then this training effect should induce higher
inhibition processes. The reappearing of the interference
effect in the last session, when a “new” arithmetic prob-
lem was presented, could challenge the account of in-
terdependency (i.e., network training) between networks,
but indicate that the networks were separate or indepen-
dent. This independency between networks could reflect

the differences between number-matching and verifica-
tion tasks, in terms of automatic activation of the arith-
metic networks and of the involvement of inhibition
processes (Fabbri 2011; Fabbri et al. 2008; LeFevre
et al. 1988; Thibodeau et al. 1996; Zamarian et al.
2007). The proof of the interdependency of addition
and multiplication as shown by the cross-operation con-
fusion effect could be induced by the type of task used
and, thus, by the type of processes involved in the task.

The pattern of the interference effect seems to be in line
with the IE model (Rickard 2005; Rickard et al. 1994), and, as
expected, the arithmetic interference effect of the last session
in the mixed condition (re-) appeared because a “different”
arithmetic fact was presented respect to that of previous ses-
sions, and a “different” network was activated. This consider-
ation could be also based on the fact that no operation signwas
presented on the screen (no misperception of sign operations;
Stazyk et al. 1982), and a number-matching task (i.e., no ex-
plicit calculation was required) was used, with the involve-
ment of automatic (implicit) retrieval from semantic memory
of arithmetic facts (Fabbri 2011; Fabbri et al. 2008; Galfano
et al. 2003, 2009; LeFevre et al. 1988; Thibodeau et al. 1996).

Finally, the pattern of the interference effect was similar
between multiplication and addition (i.e., no operation effect
was found), confirming that simple arithmetic facts generated
with numbers from 2 to 9 are stored in and retrieved from an
associative network, with a similar retrieval strength for addi-
tion and multiplication problems (Ashcraft 1987, 1992;
Butterworth et al. 2001; Campbell 1994; Siegler 1988;
Verguts and Fias 2005). This aspect could add more evidence
to the fact that these arithmetic operations are stored in differ-
ent semantic networks (Zhou 2011).

However, the present data could be limited by the fact that
the distribution of males and females was skewed toward fe-
males, probably reducing the generalizability of the results. In
addition, the sample was composed by Psychology students,
while the present study could be replicated, for example, in a
sample of Mathematical students, with an high associative
networks of arithmetic facts due to their expertise with arith-
metic problems. Future studies should take into account these
limits to address in a deep way the interdependency/
independency between arithmetic fact networks, considering
that, in many real situations, different operations are required
to be performed in rapid succession in order to solve arithmet-
ic problems (complex arithmetic problems often require mul-
tiple operations).

Using a verification task, a cross-operation confusion effect
is general found, suggesting that addition and multiplication
networks are interrelated. However, the experimental proce-
dure used here with a number-matching task argues for an
independency between arithmetic fact networks, even if this
is an exploratory study. Thus, understanding the interaction
between different arithmetic operations could be helpful to
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give a more detailed picture of current cognitive models of
mental arithmetic and to propose therapeutic treatment, con-
sidering that, for instance, people with dyscalculia face persis-
tent difficulties in retrieving arithmetic facts (e.g., De Visscher
and Noël 2013).
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