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Abstract I present and discuss two logical results. The first shows that a non-trivial
counterfactual analysis exists for any contingent proposition that is false in at least
two possible worlds. The second result identifies a set of conditions that are individu-
ally necessary and jointly sufficient for the success of a counterfactual analysis. I use
these results to shed light on the question whether disposition ascribing propositions
can be analyzed as Stalnaker-Lewis conditional propositions. The answer is that they
can, but, in order for a counterfactual analysis to work, the antecedent and consequent
must be related in a particular way, and David Lewis’s Time’s Arrow constraints on
comparative world similarity must be relaxed. The upshot is that counterfactual anal-
yses are easy to come by, in principle, even if not in practice. In that sense, it’s easy
to be iffy.

Keywords Counterfactuals · Dispositions · Propositions · Time’s arrow ·
Conditional analysis

1 Introduction

Counterfactual analyses, whether of causation, dispositions, belief, desire, or any-
thing else, seem promising at first, yet they always seem to fail in the face of
compelling counterexamples. Are counterfactual analyses just a bad idea? If not,
what would suffice to make a counterfactual analysis successful? In this essay, I
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will answer these questions in the context of two logical results about counterfac-
tual propositions. It turns out that a non-trivial counterfactual analysis exists for any
robustly contingent proposition.

2 A Test Case: Dispositions

The difficulty of giving a conditional analysis of dispositions has received a great
deal of attention. For example, David Lewis writes as follows:

All of us used to think, and many of us still think, that statements about how
a thing is disposed to respond to stimuli can be analysed straightforwardly in
terms of counterfactual conditionals. A fragile thing is one that would break if
struck; an irascible man is one who would become angry if provoked; and so
on. In general, we can state the simple conditional analysis thus:

Something x is disposed at time t to give response r to stimulus s iff, if x

were to undergo stimulus s at time t , x would give response r .

Simple indeed—but false. (Lewis 1997, p. 143)

Several categories of counterexamples to the simple conditional analysis of disposi-
tions are on record, including finks and reverse-cycle finks (Martin 1994) as well as
mimicks and masks (Johnston 1992).

Consider the disposition to transmit electricity when touched by a conductor,
which can also be referred to as the property of being live. A simple conditional
analysis of a proposition ascribing this disposition would go as follows:

(LIVE) The wire is live iff it would transmit electricity if it were touched by a
conductor.

Martin (1994, pp. 2–3) notes the possibility of a dead (i.e., non-live) wire connected
to an electro-fink, which is a device that would reliably detect that the wire is about
to touch a conductor and would cause the wire to transmit electricity whenever it
did touch a conductor. In such a case, (LIVE) fails from right to left: the wire is
not disposed to transmit electricity, but, because of the action of the electro-fink, it
would transmit electricity if were to touch a conductor. In short, a dead wire that
is connected to an electro-fink is not live but would become live if touched by a
conductor. Martin (1994, p. 3) also notes the possibility of a live wire connected to a
reverse cycle electro-fink, which would reliably detect that the wire is about to touch
a conductor and would prevent the wire from transmitting electricity if it were to
touch a conductor. In short, a live wire that is connected to a reverse-cycle electro-
fink is not dead but would be dead if it were touched by a conductor. In reverse-cycle
electro-fink cases, the simple conditional analysis fails from left to right: the wire
is disposed to transmit electricity, but the reverse-cycle electro-fink would prevent it
from doing so if it were to touch a conductor.

Where finks and reverse finks involve externally caused counterfactual changes
to a thing’s dispositional properties that thwart the simple conditional analysis, cases
of mimicking (alternatively, masking) involve external factors that produce (prevent)
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the outcomes that count as manifestations of dispositions.1 Consider a counterfactual
analysis of a proposition ascribing fragility to a certain gold chalice:

(FRAGILE1) The gold chalice is fragile iff it would shatter if it were dropped.

Johnston describes a case of mimicking that provides a counterexample to the right-
to-left part of (FRAGILE1):

A gold chalice is not fragile but an angel has taken a dislike to it because its gar-
ishness borders on sacrilege and so has decided to shatter it when it is dropped.
Even though the gold chalice would shatter when dropped, this does not make
it fragile because while this dispositional conditional is not bare, i.e., the break-
ing when struck has a causal explanation, something extrinsic to the chalice is
the cause of the breaking. (Johnston 1992, p. 232)

The chalice breaks when dropped, but, in disanalogy with the electro-fink case, it
does not become fragile when dropped; the angel breaks it without making it fragile.

Consider, next, a counterfactual analysis of fragility for a certain glass cup:

(FRAGILE2) The glass cup is fragile iff it would shatter if it were dropped.

Johnston (1992) describes the following case of masking,2 a counterexample to the
left-to-right part of (FRAGILE2):

Consider a fragile glass cup with internal packing to stabilize it against hard
knocks. Packing companies know that the breaking of fragile glass cups
involves three stages: first a few bonds break, then the cup deforms and then
many bonds break, thereby shattering the cup. They find a support which when
placed inside the glass cup prevents deformation so that the glass would not
break when struck. Even though the cup would not break if struck the cup is
still fragile. (Johnston 1992, p. 233)

The glass cup would not break if dropped, but, in disanalogy with the reverse-cycle
electro-fink case, it would not cease being fragile when dropped; the packing material
would prevent breakage without making the glass non-fragile.

These and many other counterexamples add up to such a compelling body of evi-
dence against the viability of various conditional analyses of dispositions that many
have decided to give up on the possibility of a conditional analysis. Shope (1978) is
an early advocate of this position. More recent advocates include Lewis (1997), as
we have seen, but also Fara, who writes:

The lesson that should be drawn from the preceding discussion is that con-
ditionals are simply not suited to the task of stating the truth conditions of
disposition ascriptions. (Fara 2005, p. 61)

1Some authors describe finks as a species of mimick and reverse finks as a species of mask, but it will
facilitate my later discussion to follow Johnston (1992) in restricting the labels ‘mask’ and ‘mimick’ to
cases that do not involve actual or hypothetical alterations in a thing’s dispositional properties.
2Bird (2007) refers to masks as ‘antidotes’, which is the more natural term in the context of examples like
the disposition of a poison to cause death when ingested.
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Bonevac et al. (2006; 2011) have criticized this diagnosis and suggested (Bonevac
et al. 2006, p. 314) that controversial rules of inference for the conditional (specifi-
cally, those associated with the semantic condition of Strong Centering) play a role
in counterexamples to conditional analyses of dispositions. They write:

[F]ar from serving as a general recipe for the refutation of conditional analyses,
“finking” cases can serve to expose presuppositions of some of our conditional
modal thought. The relevant examples can be used as a tool for conditional
archaeology: intuitive responses to the finking examples support investigation
of the possibility of a new sort of conditional, a “neighborhood” conditional
that does not satisfy some of the traditional presuppositions about conditionals.
(Bonevac et al. 2006, p. 315)

Though Bonevac et al. and Fara disagree about some things, the former seem willing
to concede to Fara and other critics of conditional analyses of dispositions at least that
the standard sort of Stalnaker-Lewis conditional is not suited to “the task of stating
the truth conditions of disposition ascriptions.”

There is no need to concede even that much.
In what follows, I will show that one need not give up Strong Centering in order

to maintain simple conditional analyses of disposition ascribing propositions. Any
proposition can be given a conditional analysis using a strongly centered Stalnaker-
Lewis counterfactual conditional. And if the analysandum proposition is robustly
contingent, in the sense of being true in at least one possible world and false in
at least two possible worlds, then a non-trivial counterfactual can be chosen as the
analysans.

3 How to Make any Proposition a Counterfactual

Define a Lewis frame to be a triple 〈W, R, ≤〉 such that W is a nonempty set and
R is a binary relation on W (the accessibility relation) and ≤ is a function mapping
each i ∈ W to a binary comparative similarity relation ≤i such that R and ≤i satisfy
Lewis’s conditions:3

(1) ≤i is transitive;
(2) ≤i is strongly connected: for each j, k ∈ W , either j ≤i k or k ≤i j ;
(3) R is reflexive;
(4) ≤i is strongly centered, i.e., i is strictly minimal in ≤i : for any j ∈ W , if j ≤i i,

then j = i;
(5) inaccessible worlds are ≤i maximal: if j, k ∈ W and 〈i, k〉 �∈ R, then j ≤i k;

and
(6) accessible worlds are more similar to i than inaccessible worlds: if j, k ∈ W

and 〈i, j 〉 ∈ R and 〈i, k〉 �∈ R, then j <i k.

3Here I follow (Lewis 1973, p. 48) rather than the selection function account in (Lewis 1971).
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Define a proposition4 to be any subset of W , and for any proposition A and i ∈ W ,
define i to be an A-world iff i ∈ A. For any propositions A, B, define AB to be
A∩B and define A to be W ∼ A (the complement of A in W ).5 Since ≤i is strongly
connected, we can define a strict subrelation <i of ≤i as follows: j <i k iff j ≤i k

and k �≤i j . A is defined to be a contingent proposition iff A ⊆ W and W �= A �= ∅.
Propositions A1, . . . , An are said to be compossible iff A1 ∩ A2 ∩ . . . ∩ An �= ∅.
PropositionsA and B are independent iffA∩B �= ∅ �= B∩A.A entails B iffA ⊆ B.
We let iR stand for the set of worlds accessible to i, i.e., {j ∈ W : 〈i, j〉 ∈ R}.

Next, define the counterfactual operator to be the binary function > mapping any
pair A, B of propositions to the counterfactual proposition A > B as follows:

A > B = {i ∈ W : iR ∩ A = ∅} ∪ {i ∈ W : ∃j ∈ AB ∩ iR, ∀k ∈ AB, j <i k}
That is, A > B is true at world i iff either no world is accessible to i at which
A is true, or else at least one AB-world accessible to i is more similar to i than
any AB-world. A > B is thus defined via the Lewis (1973) truth conditions for
counterfactuals. Given these definitions, we prove the following:

First Conditional Analysis Theorem: For any nonempty set W and any X ⊆ W ,
there exist R and ≤ such that 〈W, R, ≤〉 is a Lewis frame and for some propositions
A and B, X = (A > B). If X is a contingent proposition and there are at least two
possible worlds at which X is false, then A and B can be chosen so that A �= W and
B �⊆ X.

Proof Let W be a nonempty set, and let X ⊆ W . Let R = W × W (so that every
world is accessible to every world). There are three cases: either X = W or X = ∅
or W �= X �= ∅.

Case 1 Suppose X = W . Let A = ∅ and B = W , and, for each i ∈ W , let ≤i be
any comparative world similarity relation on W satisfying Lewis’s conditions (1)–(6)
relative to W and R. It follows that 〈W, R, ≤〉 is a Lewis frame and X = (A > B).

Case 2 Suppose X = ∅. Let A = W and B = ∅, and, for each i ∈ W , let ≤i be
any comparative world similarity relation on W satisfying Lewis’s conditions (1)–(6)
relative to W and R. It follows that 〈W, R, ≤〉 is a Lewis frame and X = (A > B).

Case 3 Suppose W �= X �= ∅. It follows that for some j, k ∈ W , j ∈ X, and k �∈ X.
Let A be a proposition containing both j and k, and let B be a proposition such that
∅ �= AB ⊆ X and AX ⊆ B. If there is a k′ ∈ W such that k �= k′ �∈ X, then we can

4There are, of course, a number of more finegrained ways of identifying and individuating proposi-
tions. Even under a more finegrained conception of propositions, the result proved below will show that
every proposition is necessarily equivalent to a counterfactual. Such a necessary equivalence suffices to
constitute a counterfactual analysis in any case.
5In Section 7, below, for consistency with another author’s notation, I will write ¬A in place of A and
A ∧ B in place of AB.
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Fig. 1 Choice of A and B

relative to X, j , k, and k′

choose A and B so that j, k ∈ A and k′ �∈ A and j, k′ ∈ B and k �∈ B, in which case
A �= W and B �⊆ X, as in Fig. 1.

It will always suffice to choose A = {j, k}, and, if k′ exists, it will suffice to
choose B = {j, k′}; otherwise, it suffices to choose B = {j}.

Next, we show that ≤ can be chosen so that X = (A > B). The diagrams will
include k′, but the same choice procedure works even if k′ does not exist and B is
chosen so that j ∈ B ⊆ X.

First, consider any world i belonging to X. Since AX ⊆ B, i �∈ AB. Hence, either
i ∈ AB or i ∈ AB or i ∈ AB, as in Fig. 2. If i ∈ AB, choose ≤i arbitrarily, subject
to Lewis’s constraints (1)–(6). Since i an AB-world, and since i is strictly minimal
in ≤i , there is an AB-world (namely i) that is more similar to i than any AB-world.
Accordingly, i ∈ A > B.

If i ∈ A B or i ∈ AB, choose ≤i so that Lewis’s conditions (1)–(6) are satisfied
and so that j is the most similar world to i other than i itself. Then, once again, there
is an AB-world (namely j ) that is more similar to i than any AB-world, since neither
i nor j is an AB-world. Hence, i ∈ A > B.

Having constructed ≤i so that i ∈ A > B if i ∈ X, consider now any world i not
belonging to X. Since AB ⊆ X, we have i �∈ AB, hence either i ∈ AB or i ∈ AB

or i ∈ AB, as in Fig. 3. If i is an AB-world, then choose any ≤i such that Lewis’s
conditions (1)–(6) are satisfied. Since i is an AB-world and i is minimal in ≤i , no
AB-world is more similar to i than every AB-world; hence, i �∈ A > B.

If i ∈ AB or i ∈ AB, then choose ≤i so that Lewis’s conditions (1)–(6) are
satisfied and so that k is the most similar world to i different from i. Since k is an

Fig. 2 Cases in which i belongs
to X
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Fig. 3 Cases in which i does
not belong to X

AB-world and i is not an AB-world, no AB-world is more similar to i than every
AB-world. Accordingly, i �∈ A > B.

Generalizing on i, we have in Case 3 that X = (A > B), and, if k′ exists, A �= W

and B �⊆ X. Since for each i, ≤i was chosen as satisfying Lewis’s (1)–(6), it follows
in Case 3 as in Cases 1 and 2 that 〈W, R, ≤〉 is a Lewis frame. �

What the First Conditional Analysis Theorem shows is that for any proposition X,
there are propositions A and B such that X is the proposition A > B for a suitably
chosen comparative similarity measure ≤ and accessibility relation R. Now, given
Strong Centering, every proposition is trivially a counterfactual, since X = (W >

X) always holds, but the theorem goes beyond this trivial point. If X is a robustly
contingent proposition (in that X is true in at least one possible world and false in
at least two possible worlds), then A and B can be chosen so that A �= W and
B �= X and so that A and B are independent and A, B, and X are compossible. So,
every proposition is a counterfactual, and every robustly contingent proposition is a
non-trivial counterfactual.

4 Remarks on the First Conditional Analysis Theorem

The First Conditional Analysis Theorem sheds new light on the project of giving
counterfactual analyses. For various properties and propositions, it is a matter of
great controversy whether the property or proposition is “iffy” or whether it has some
other status, such as the status of being “categorical”. The First Conditional Analysis
Theorem shows that any attempt to make a distinction between those propositions
that are “iffy”, and those that are not, simply fails, since any proposition can be
described as a counterfactual proposition. “Iffy-ness” is easy to come by.

4.1 By Analyzing one Proposition one Analyzes all

One might object that the First Conditional Analysis Theorem does not really show
that all propositions are iffy, since it operates by finding a counterfactual opera-
tor that is designed to yield a counterfactual analysis for a single target proposition
rather than by finding a single counterfactual operator that yields iffy analyses of
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all propositions at once.6 This objection misses the mark, however. The counterfac-
tual operator constructed by a single application of the First Conditional Analysis
Theorem does always generate counterfactual analyses of all propositions, since the
entire space of propositions is spanned by each counterfactual operator. That is, the
set of propositions resulting from applying any single counterfactual operator to all
pairs of propositions just is the set of all propositions.7 What the First Conditional
Analysis Theorem does not do is guarantee a non-trivial analysis of all proposi-
tions at once. Instead, it allows us to guarantee a non-trivial analysis for a robustly
contingent target proposition that we find of interest. But once the target proposi-
tion is analyzed, we will also have non-trivial counterfactual analyses of many other
propositions, including some that have important logical relationships to the target
proposition.

Consider the case of a disposition-ascribing target proposition and the counter-
factual into which it is analyzed. Many of the propositions to which the disposition
ascription is logically related will turn up as non-trivial counterfactuals having the
same antecedent as the disposition ascription’s counterfactual analysis, and these
other propositions will be of great interest in the context of the given disposition
ascription. If we have analyzed a disposition ascription as saying that a certain man-
ifestation condition would be true if a certain test condition were true, we will
naturally be interested in what else would be the case if the test condition were true.
Indeed, given a counterfactual analysis X = (A > B), the greatest interest will gen-
erally attach to propositions A > Y , for propositions Y that are logically or causally
related to B.

But if counterfactual analyses are so easy to come by and if every counterfactual
operator spans the whole space of propositions anyway, then what is there to learn
from the First Conditional Analysis Theorem? Counterfactual analyses are notori-
ously unsuccessful. The First Conditional Analysis Theorem provides a recipe for
devising counterfactual analyses that actually work. Time for an example.

4.2 An Example

The First Conditional Analysis Theorem seems to cast doubt on the lesson drawn
by Lewis, Fara, and others that a simple conditional analysis of dispositions cannot
work. Let us begin with a proposition that has nothing to do with dispositions and see
how the First Conditional Analysis Theorem applies to it. We will return at a later
point to the topic of dispositions.

6In this respect, the First Conditional Analysis Theorem contrasts with Holton’s (1999) construction of a
four-world model in which four contingent propositions are defined in terms of one another as counter-
factuals with respect to a single measure of comparative world similarity. Holton’s express aim there is to
argue for the logical coherence of the thesis that all truths are dispositional, but in order for every proposi-
tion to be defined as a counterfactual, his setup, unlike ours, requires that not every set of possible worlds
count as a proposition.
7Note that the generated propositions are not “new”. Each is a set of possible worlds that exists regardless
of any counterfactual operator.
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Let W be the set of all possible worlds and consider the following robustly
contingent proposition:

H : Harvard has fewer than 20,000 students.
The First Conditional Analysis Theorem shows that there is a way of measuring
comparative world similarity, and there are propositionsAH �= W and BH �⊆ H such
that AH > BH is the propositionH that Harvard has fewer than 20,000 students. Can
we go further and identify suitable choices of AH and BH ? The proof uses a highly
abstract and non-constructive procedure for finding A and B, but, even overlooking
that obstacle, it would be fair to say that there is no reason to expect that English will
happen to provide sentences that express suitable propositions A and B. In this case,
however, we are in luck. English does provide suitable sentences.

First, recall that we must choose an antecedent that is compossible with H and
also compossible with H . The following choice of antecedent will work:

AH : Harvard has exactly 100 nonstudent employees.
A consequent BH must now be chosen so that AH BH entails H and so that H is
not compossible with AH BH , i.e., AH BH entails H . It will work to choose BH as
follows:

BH : The total number of Harvard’s students and nonstudent employ-
ees is less than 20,100.

Clearly, AH �= W and BH �⊆ H . Also, AH BH entails H , since given that Harvard
has exactly 100 nonstudent employees but fewer than 20,100 students and nonstu-
dent employees, it follows that Harvard has fewer than 20,000 students. In addition,
AH BH is not compossible with H . Given that Harvard has exactly 100 nonstudent
employees but at least 20,100 students and nonstudent employees, it cannot be true
that Harvard has fewer than 20,000 students. The proof of our Theorem tells us that
a comparative world similarity relation can be chosen so that H and AH > BH are
identical.

AH > BH : If Harvard had exactly 100 nonstudent employees, the total
number of Harvard students and nonstudent employees would
be less than 20,100.

The idea that “H” and “AH > BH ” could refer to the same proposition may seem
surprising, but notice that AH > BH already counts as a (slightly annoying) way to
answer a question that would be most straightforwardly answered by H . Consider
this exchange:

Watson: Tell me this, Holmes. How many students are there at Harvard? Is it as
many as 20,000?

Holmes: Let’s put it this way: if there were exactly 100 non-student employees at
Harvard, the total number of students and non-student employees would be less
than 20,100.

Watson: For pity’s sake, Holmes, why don’t you just say, “Harvard has fewer than
20,000 students”?

The First Conditional Analysis Theorem confirms Watson’s judgment that Holmes
could have given the same answer to Watson’s question by asserting H as it is
standardly worded.
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Of course, the counterfactual operator can be interpreted in such a way that “H”
and “AH > BH ” do not pick out the same proposition. Consider a world w0 in
which Harvard has 6000 students but adopts a policy according to which whenever
its non-student employee count drops below 125, a massive cohort of 100,000 previ-
ously unofficial online students become officially enrolled. Given whatever standard
of comparative world similarity is implicit in our everyday judgments about counter-
factuals, w0 will not be a world in which “AH > BH ” expresses a proposition that is
true. The proposition expressed by the following sentence will be true at w0 instead:

If Harvard had exactly 100 non-student employees, the total number of
Harvard’s students and non-student employees would be at least 100,100.

Thus, w0 is a counterexample to the identity H = (AH > BH ) under what Lewis
called “a standard resolution of the vagueness of counterfactuals.” Nonetheless, by
the First Conditional Analysis Theorem, there is an (evidently non-standard) reso-
lution of the vagueness of counterfactuals on which “H” and “AH > BH ” do pick
out the same proposition, and on that standard of comparative world similarity the
following counterfactual is true at w0:

If Harvard had exactly 100 non-student employees, it would not observe a pol-
icy according to which whenever its non-student employee count drops below
125, a massive cohort of 100,000 students become officially enrolled.

Switching to a non-standard resolution of vagueness on which “H” and “AH > BH ”
pick out the same proposition does not mean that there has been any change in which
propositions are true at w0. Since w0 belongs to the same sets of worlds it always
did, the same propositions are true at w0 as always were. What is different is the way
in which certain of those propositions can be specified.

But is the non-standard resolution of vagueness that allows “H” and “AH > BH ”
to refer to the same proposition legitimate? It is important to distinguish a non-
standard resolution of vagueness from an illegitimate comparative world similarity
relation. Any comparative world similarity relation that satisfies the six conditions
of (Lewis 1973, p. 48) is formally legitimate, even if it does not satisfy the non-
formal conditions on comparative world similarity developed in (Lewis 1979). We
will return to this issue later.

4.3 Choosing the Antecedent and Consequent

In general, if B is chosen first in the counterfactual analysis of X described in Case 3
of the proof of the First Conditional Analysis Theorem, there is considerable latitude
in the choice of A. As noted in the proof, one can always choose A to be the very
specific proposition {j, k}. Another option is the very weak proposition X ≡ B,8

which turns out to be the weakest proposition that can serve as A. X ≡ B is the
union of XB and X B; i.e., the set of all worlds in which X and B are (like j in the
proof) both true or (like k) both false. The range of propositions eligible to serve as

8I thank Branden Fitelson for pointing out to me that this proposition is always an option.
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A consists of every proposition “between” {j, k} and X ≡ B, i.e., {j, k} ⊆ A ⊆
(X ≡ B). Equivalently, once j and k are chosen, A is the union of any subset of XB

containing j with any subset of X B containing k.
Applying the above to the Harvard example, suppose Harvard has exactly 100

non-student employees. Then either Harvard has at least 20,000 students and the
total of its students and non-student employees is at least 20,100, or else Har-
vard has fewer than 20,000 students and the total of its students and non-student
employees is fewer than 20,100. So, in the Harvard example, as expected, AH ⊆
(H ≡ BH ). The converse inclusion does not hold, however. In particular, there
are worlds at which Harvard has at least 20,000 students and at least 20,100
students and non-student employees but without having exactly 100 non-student
employees (say, because there are 125 non-student employees). Similarly, there are
worlds at which Harvard has fewer than 20,000 students and fewer than 20,100
students and non-student employees but (again) without having exactly 100 non-
student employees (say, because there are only 30 non-student employees). So, in
the Harvard case, we have not chosen the weakest possible antecedent to go with
consequent BH .

5 Counterexamples Diagnosed

Now, what happens when we attempt to choose antecedents and consequents for a
counterfactual analysis of a disposition-ascribing proposition? The usual approach,
exemplified by (LIVE), (FRAGILE1), and (FRAGILE2), is to let the antecedent
be an intuitively plausible test condition for the disposition and let the consequent
be a description of the standard manifestation of the disposition. But, as we saw
in Section 2, this approach leads to counterexamples involving finks, reverse finks,
masks, and mimicks. We are now in a position to identify, for each kind of coun-
terexample, which specific defect in a counterfactual analysis gives rise to that kind
of counterexample.

Recall Martin’s example of a fink, in which a dead wire is connected to a
device that detects whether the wire is touching a conductor. The device would
cause the wire to transmit electricity if it were touching a conductor, hence this
is a case in which (LIVE) fails because the disposition is absent, yet the cor-
responding counterfactual is true. In Martin’s example of a reverse fink, a live
wire is connected to a device that detects whether the wire is touching a con-
ductor. The device would prevent the wire from transmitting electricity if it were
touching a conductor, hence we have a case in which (LIVE) fails because the
disposition is present, but the corresponding counterfactual is false. Both fink
and reverse fink cases involve counterfactual changes to a thing’s dispositional
properties.

Now, recall Johnston’s mimicking example, in which an angel has taken a dislike
to a garish gold chalice. The chalice is not fragile, but the angel has decided to shatter
it if it should be dropped. In this example, (FRAGILE1) fails from right to left as
(LIVE) does in the finkish case, but in disanalogy with the finkish case, the chalice
does not become fragile when dropped. Instead, the angel breaks it without making
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it fragile. In Johnston’s masking example, a fragile glass cup is fitted with internal
packing that would prevent the cup from breaking if it were dropped or struck. In this
case, (FRAGILE2) fails from left to right as (LIVE) does in the reverse fink case, but
in disanalogy with the reverse fink case, the cup does not cease being fragile at any
point. The packing prevents breakage, yet the cup remains fragile.

What the masking and mimicking cases show about (FRAGILE1) and (FRAG-
ILE2) is that the antecedent-consequent pairs and the disposition ascriptions that
these pairs are used to analyze do not stand in the right entailment relations.
In the counterfactual analysis, X = (A > B) found by the First Condi-
tional Analysis Theorem, A and B are chosen so that AX entails B and AB

entails X. The problem in mimicking cases is that AB does not entail X: the
gold chalice’s being dropped and shattering does not entail its being fragile. In
masking cases, the problem is that AX does not entail B: the glass cup’s being
dropped while fragile does not entail its shattering. Analogous entailment failures
hold in the fink and reverse fink cases, but in those cases the entailment fail-
ures are not the whole story. In fink and reverse fink cases something more is
going on.

What finks and reverse finks show (that masking and mimicking cases do not) is
that one must choose a comparative similarity relation such that X = (A > X).9

A comparative world similarity relation that does not make X and A > X the
same proposition simply cannot make X and A > B the same proposition.10 In
finking cases, X and A > X are distinct because A > X does not entail X: the
wire is not live, but if a conductor were touching it, it would be live. In the proof
of the First Conditional Analysis Theorem, we blocked this sort of case when, for
i �∈ X but where either i ∈ A B or i ∈ AB, we chose k to be the most similar
world to i different from i itself. In reverse finking cases, X and A > X are dis-
tinct because X does not entail A > X: the wire is live, but it’s not true that if it
were touching a conductor, it would still be live. In the proof of the First Condi-
tional Analysis Theorem, we blocked this sort of case when, for i ∈ X but where
either i ∈ A B or i ∈ AB, we chose j to be most similar world to i different from
i itself.

One might object as follows: isn’t it just false that X ever entails A > X and
false that A > X ever entails X? Isn’t that precisely what the fink and reverse
fink examples show? No, what those examples show is that X and A > X are
distinct propositions under a standard resolution of the vagueness of counterfactu-
als. The right conclusion is that no standard resolution of vagueness is suited for a
counterfactual analysis of a disposition ascribing proposition.11

9Note that choosingA andB so thatAX entailsB andAB entailsX does not guarantee thatX = (A > X).
10This is because, in Stalnaker-Lewis counterfactual logic, the propositions A > B and A > (A > B) are
identical, so if X = (A > B), then X = (A > B) = (A > (A > B)) = (A > X). The importance of the
equivalence of A > B and A > (A > B) for the tenability of counterfactual analyses of dispositions is
emphasized by Bonevac et al. (2006).
11For a discussion of a different sort of case in which the counterfactual operator needs a non-standard
resolution of vagueness, see (Cross forthcoming).
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6 A Recipe for Success: the Second Conditional Analysis Theorem

In light of the preceding, we have precise diagnoses of what is wrong with coun-
terfactual analyses in mask, mimick, fink, and reverse-fink examples. We have seen
that a counterfactual analysis X = (A > B) will avoid masks and mimicks if
A and B are chosen so that AX entails B and AB entails X. Given that A and
B are so chosen, the analysis will avoid finks and reverse finks if the compara-
tive world similarity measure for the counterfactual operator is chosen such that
X = (A > X). But we can say even more than this. AX’s entailing B, AB’s entailing
X, and X’s being identical to (A > X) do more than merely rule out specific classes
of counterexamples to a counterfactual analysis. They are individually necessary
and jointly sufficient for a successful counterfactual analysis. That is, we have the
following:

Left to right: Where > is the counterfactual operator on this frame, suppose that
X = (A > B).

First, we show that AX entails B. Let i ∈ AX; then i ∈ A and i ∈ (A > B). By
the reflexivity of accessibility (Lewis 1973, p 48, (3)), at least one A-world, namely
i, is accessible to i; so there is an AB-world j that is accessible to i and more similar
to i than any AB-world. Since i is an A-world, it follows by Strong Centering (Lewis
1973, p. 48, (4)) that j = i, so i is a B-world. Generalizing on i, we have that
AX ⊆ B, i.e., AX entails B.

Next, we show that AB entails X. Let i ∈ AB; by the reflexivity of accessibility
(Lewis 1973, p. 48, (3)), i is accessible to i; let j be any AB-world. Then j �= i,
so by Strong Centering j �≤i i. By Strong Connectedness (Lewis 1973, p. 48, (2)),
i ≤i j . So, i is more similar to i than j is. Generalizing on j , we have that i is an
AB-world that is accessible to i and more similar to i than any AB world. Hence,
i ∈ (A > B), i.e., i ∈ X. Generalizing on i, we have that AB ⊆ X, i.e., AB

entails X.
Finally, we show that X = (A > X). Let i ∈ X, i.e., i ∈ (A > B). If no A-world

is accessible to i, then i ∈ (A > X), so suppose without loss of generality that at
least one A-world is accessible to i. Then there is an AB-world j that is accessible
to i and more similar to i than any AB-world. Since AB ⊆ X = (A > B), j is an
A > B-world and therefore an A(A > B)-world. Let k be any A(A > B)-world.
Since AB ⊆ (A > B), k must be an AB-world. Hence, j is more similar to i than
k is. Generalizing on k, we have that j is an A(A > B)-world accessible to i and
more similar to i than any A(A > B)-world. So, i ∈ (A > (A > B)), i.e., i is an
A > X-world. Generalizing on i, we have that X ⊆ (A > X). Conversely, suppose
i ∈ (A > X); i.e., i ∈ (A > (A > B)). If no A-world is accessible to i, then
i ∈ (A > B) = X, so suppose without loss of generality that at least one A-world
is accessible to i. Then at least one A(A > B)-world j is accessible to i and more

Second Conditional Analysis Theorem For any Lewis frame and any propositions
A, B, and X defined thereon, X = (A > B) if and only if AX entails B, and AB

entails X, and X = (A > X).

Proof Let 〈W, R, ≤〉 be a Lewis frame, and suppose X, A, B ⊆ W .
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similar to i than any A(A > B)-world. Since AX ⊆ B, j is an AB-world. Let k be
any AB-world; then, since AX ⊆ B, k must be an A(A > B)-world, so j is more
similar to i than k is. Generalizing on k, we have that j is an AB-world accessible to
i and more similar to i than any AB-world. Hence, i ∈ (A > B) = X. Generalizing
on i, we have (A > X) ⊆ X, and thus X = (A > X).

Right to left: Suppose that AX ⊆ B and AB ⊆ X, and X = (A > X).
First, we show X ⊆ (A > B). Suppose i ∈ X; if no A-world is accessible to i,

then i ∈ A > B by definition, so assume without loss of generality that at least one
A-world is accessible to i. Since X = (A > X), at least one accessible AX-world m

is more similar to i than any AX-world. Since AX entails B, m is an AB-world. Let
n be any AB-world. Since AX entails B, n is an AX-world, so m is more similar to
i than n is. Generalizing on n, it follows that m is an AB-world accessible to i that
is more similar to i than any AB-world. Accordingly, i ∈ A > B. Generalizing on i,
we have that X ⊆ (A > B).

We show (A > B) ⊆ X by contraposition. Suppose i �∈ X; then i �∈ A > X,
so at least one A-world is accessible to i, and for every AX-world accessible to i,
at least one AX world is at least as similar to i as the given AX-world is. Let m be
an AB-world accessible to i. Since AB entails X, m is an AX-world. Hence, there
is an AX-world nm such that nm is at least as similar to i as m is. Since AB entails
X, nm is an AB-world. So, given an AB-world m accessible to i, there is an AB-
world nm such that nm is at least as similar to i as m is. Generalizing on m, we
have that i �∈ A > B. Generalizing on i, it follows that (A > B) ⊆ X, and thus
X = (A > B).

The Second Conditional Analysis Theorem specifies conditions necessary and
sufficient for a counterfactual analysis to succeed. The significance of the First Con-
ditional Analysis Theorem is that it establishes that these conditions can indeed be
satisfied. And if the comparative world similarity relation constructed in the First
Conditional Analysis Theorem seems artificial, the Second Conditional Analysis
Theorem tells us what it is about the constructed comparative similarity relation
that matters, namely the fact that it results in X = (A > X). The success
of a counterfactual analysis does not require precisely the comparative similar-
ity relation constructed in the First Conditional Analysis Theorem; any relation
that supports X = (A > X) will do, provided that AX entails B and AB

entails X.

7 The Conditional Fallacy Arguments

One matter that I alluded to earlier that deserves additional attention is the relation-
ship between the Conditional Analysis Theorems and the discussion of Conditional
Fallacy Arguments in (Bonevac et al. 2006). If the First and Second Conditional
Analysis Theorems provide conditional analyses that are successful, then how do
these results avoid the Conditional Fallacy Arguments?

Bonevac et al. (2006) describe the general form of one kind of Conditional Fallacy
Argument as follows:
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Suppose there is some set � of claims such that the following two condi-
tions are met [where COND is the thesis that every disposition ascription d is
necessarily equivalent to some conditional c > m]:

1. � in conjunction with COND entails some conclusion φ that makes some
assertion about the disposition-possessing object (so, for us, paradigmati-
cally φ is either d or ¬d). This is the inferential condition.

2. � together with ¬φ form an independently plausible scenario. This is the
possibility condition.

If both the inferential and the possibility conditions are met, we have reason
to reject COND—the compossibility of � and ¬φ is incompatible with the
argument �, COND � φ. Bonevac et al. (2006, p. 279)

Consider, again, the case of a fragile glass cup. Let C be the proposition that the
cup is fragile, and suppose that test condition AC and manifestation condition BC

are as described in the hypothesis of the Second Conditional Analysis Theorem. We
can suppose that BC is the proposition that the cup breaks, but I offer no linguistic
formulation of AC and do not assume that one exists. By the Second Conditional
Analysis Theorem, it follows that C = (AC > BC). Now, let’s gather the ingredients
of the Conditional Fallacy Argument as it applies to this analysis:

�C : (1) If AC were true, the cup’s internal packing would prevent it from breaking;
(2) the truth of AC is possible.

φC : ¬C (The cup is not fragile.)
CONDC : Necessarily, the cup is fragile iff it would break if AC were true, i.e.,

C = (AC > BC).

In Lewis’s (1973) and Stalnaker’s (1968) preferred systems of conditional logic, �C

and CONDC jointly entail φC , i.e., ¬C. Assume �C and CONDC and suppose for
reductio that the cup is fragile, i.e., C (equivalently, ¬φC). Then by CONDC , the cup
would break if AC were true, and by Stalnaker-Lewis conditional logic, it follows
that if AC were true, it would still be the case that the cup would break if AC were
true, i.e., (AC > (AC > BC)). So, by CONDC , the cup would still be fragile if AC

were true, i.e., (AC > C). But by �C(1), if AC were true, the cup would fail to
break despite the truth of AC , i.e., (AC > (AC ∧ ¬BC)). Applying strong centering
inside the consequent of the latter, it follows that if AC were true, the cup would
fail to break if AC were true, i.e., (AC > (AC > ¬BC)). But necessity is alethic
in Stalnaker-Lewis conditional logic,12 so, by Stalnaker-Lewis conditional logic, AC

would be possible if AC were true, i.e., (AC > ♦AC). Hence, applying the principle
of conditional non-contradiction inside the consequent of (AC > (AC > ¬BC)),13 it
follows that if AC were true, it would not be the case that the cup would break if AC

were true, i.e., (AC > ¬(AC > BC)). Applying CONDC to the negated consequent
of this conditional, it follows that if AC were true, the cup would not be fragile,

12This is guaranteed by Lewis’s (1973, p. 48) condition (3).
13Stalnaker’s and Lewis’s preferred systems both validate the principle of conditional non-contradiction:
♦p, p > ¬q � ¬(p > q).
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i.e., (AC > ¬C). Applying conditional non-contradiction to �C(2) and the latter, it
follows that it is not the case that if the cup were dropped, it would be fragile, i.e.,
¬(AC > C), which contradicts (AC > C). By reductio we have φC : the cup is not
fragile.14

So, Bonevac et al.’s inferential condition is satisfied in our example. What fails in
our example is the possibility condition. �C and ¬φC may appear at first to form an
independently plausible scenario, but, upon closer scrutiny, this appearance dissolves.

Let’s examine the intuition that �C and ¬φC do form an independently plausi-
ble scenario. Depending on how we imagine the rest of the details of the scenario,
this intuition trades on either a confusion or an equivocation. Since the scenario is
supposed to be one in which the cup is fragile but in which (AC > BC) is false,
either the cup’s fragility is being masked, in which case ACC does not entail BC ,
or its fragility is being reverse finked, in which case C does not entail (AC > C).
If we make the intuition more specific by imagining that ACC does not entail BC ,
then we imagine, confusedly, that AC is like the antecedent of the counterfactual in
FRAGILE2. It isn’t. Unlike its counterpart in FRAGILE2, AC is assumed to have
been chosen to that ACC does entail BC . Alternatively, if we make the intuition of an
independently plausible scenario more specific by imagining that C does not entail
(AC > C), then we equivocate on the identity of the counterfactual operator by
assuming for the counterfactual in �C a different comparative world similarity rela-
tion than the one at work in CONDC , on which C does entail (AC > C). That is,
since we started by assuming that the conditions of the Second Conditional Analysis
Theorem were satisfied, we equivocate if we then also imagine that C does not entail
(AC > C). So, neither way of further specifying the intuition that �C and ¬φC form
an independently plausible scenario pans out.

8 Lessons

We have seen that the problems faced by counterfactual analyses of disposition
ascriptions can be traced to two sources. Masks and mimicks derive from a failure
to identify antecedents and consequents that satisfy the entailment requirements of
the Second Conditional Analysis Theorem, namely that AX entail B and that AB

entail X. Finks and reverse finks can be traced to a failure to measure compara-
tive world similarity so that X = (A > X). We can derive two main lessons about
counterfactuals and counterfactual analyses from our discussion.

First, although we now know that AX must entail B and AB must entail X in
order for the counterfactual analysis X = (A > B) to succeed, I know of no pro-
posed counterfactual analysis (other than our Harvard example) that satisfies either
entailment condition. Are suitable antecedent-consequent pairs really so difficult to

14This argument incorporates the reasoning represented in (Bonevac et al. 2006, Fig. 1, p. 285), except that
Bonevac et al. omit (2) as a member of �C . I include (2) in order to apply conditional non-contradiction
from Stalnaker-Lewis conditional logic. Bonevac et al. instead apply a stronger principle, which they call
“Exclusion”, at step 10 of their Fig. 1.
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come by? In the case of disposition ascriptions, a suitable consequent B is not usu-
ally difficult to find. For example, it seems uncontroversial that an object’s fragility
is manifested by its breaking; the difficulty is finding the right fragility “test condi-
tion” to serve as the antecedent in the counterfactual analysis. As we saw above, once
a suitable consequent B is chosen, we know that there is at least one antecedent that
will yield a successful counterfactual analysis of X, namely the weakest antecedent
option X ≡ B. From the point of view of giving an informative analysis, of course,
X ≡ B will not do, since it refers explicitly to the analysandum X. But any propo-
sition that is both compossible with XB and compossible with X B and that entails
X ≡ B will suffice as an antecedent. Natural language may or may not provide
an informative way of expressing such an antecedent in any particular case, and its
not doing so may explain why successful counterfactual analyses are so difficult to
formulate. But at least we know where in the space of propositions to search for a
suitable antecedent.

The second lesson is this: it is time to acknowledge that there are limits to the
applicability of the standard resolution of the vagueness of counterfactuals. As we
saw above, the avoidance of finks and reverse finks in a counterfactual analysis
X = (A > B) requires adopting a comparative world similarity relation on which
X = (A > X), and we should expect this relation to be a non-standard resolution of
vagueness. What is such a relation like? It is a measure of comparative world sim-
ilarity on which the closest A-worlds are free of any “funny business”, even funny
business that may be actually present, such as Johnston’s internal packing. Choos-
ing a measure of this sort is always possible if we assume that any comparative
world similarity relation that satisfies Lewis’s conditions (1)–(6) is a possible basis
for the counterfactual conditional in some context or other. Are we entitled to that
assumption? We turn to this next.

Early critics of Lewis’s semantics, such as Fine (1975), are thought to have shown
that some comparative world similarity relations that are admissible according to
the formal model theory of Lewis (1973) must be rejected. Lewis (1979) agreed
and provided a detailed account of comparative world similarity that excludes cer-
tain comparative world similarity relations that otherwise satisfy formal requirements
(1)–(6). There is not sufficient space to discuss the issue fully here, but the crucial
question to ask is this:What was Lewis (1979) trying to get right, in response to Fine?
The answer is that Lewis was seeking an account of comparative world similarity for
a certain range of ordinary contexts, like the context of a discussion among journal-
ists and historians about would have happened if, instead of visiting China, Nixon
had launched a nuclear strike against China in 1972.15 When people reason about

15It might be objected that Lewis was trying to capture not only a range of ordinary contexts but also
something about the metaphysical structure of reality, namely the temporal asymmetries of counterfactual
dependence. This objection misses the mark, however, because, for Lewis, the temporal asymmetries of
counterfactual dependence are not part of the metaphysical structure of reality. They are not even excep-
tionless: “I do not claim that the asymmetry holds in all possible, or even all actual, cases. It holds for the
sorts of familiar cases that arise in everyday life. But it well might break down in the different conditions
that might obtain in a time machine, or at the edge of a black hole, or before the Big Bang, or after the
Heat Death, or at a possible world consisting of one solitary atom in the void. It may also break down with
respect to the immediate past. (Lewis 1979, p. 458)”
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dispositions, what is called for is a context that suits the discussion of dispositions
and of testing for the presence of dispositions. Suppose that we are talking about the
dispositions of Johnston’s glass cup. The cup might be sitting safely in the cupboard,
but it might instead be being watched over by a disapproving angel. What the First
Conditional Analysis Theorem shows is that we can choose for this context of discus-
sion a measure of comparative world similarity that supports a conditional analysis
of the fragility of the goblet while compensating for the funny business in worlds
like the world of Johnston’s disapproving angel. It is clear that circumstances like the
disapproving angel, and even more mundane circumstances like being protected by
internal packing, make no difference to whether the glass cup is fragile. This indif-
ference to external circumstances is a feature of contexts in which dispositions are
under discussion, and we should expect this indifference to be built into measures
of comparative world similarity that apply when dispositions are under discussion.
Historically, in discussions of conditional analyses of dispositions, authors assumed
the existence of a comparative world similarity relation that applied regardless of the
topic of discussion—a comparative world similarity relation (or a class of them) that
applies whether we are talking about Nixon pushing the button or the fragility of a
glass cup. Having made this assumption, philosophers who thought about conditional
analyses of disposition ascriptions searched in vain for the right sort of antecendent.
The search was doomed because everyone assumed that a context for discussing dis-
positions would measure comparative world similarity in the same way as a context
for discussing what would have happened if Nixon had pushed the button. The differ-
ence, or at least part of it, is that in a context for discussing the fragility of a particular
cup we want a comparative world similarity relation that holds fixed the actual inter-
nal structure of the cup, while holding at bay any actual or counterfactual external
circumstances that would contaminate a counterfactual test of the cup’s fragility. For
example, for a world where our fragile cup is wrapped in styrofoam and a context in
which fragility is under discussion, comparative world similarity must be measured
so that if the cup’s fragility test condition were true, the cup would have its same
molecular structure, but the styrofoam would no longer be protecting it. If asked in
that context why my glass cup is wrapped in styrofoam I might say, “It’s wrapped in
styrofoam because it would break if it were dropped.”16 Structure is held fixed, but
stryofoam, anti-gravity fields, and disapproving angels are held at bay. This holding-
fixed and holding-at-bay are accomplished via the choice of the comparative world
similarity relation for the context, but Lewis’s Time’s Arrow criteria will not explain
this choice, since, among matters of “particular fact” Lewis’s criteria cannot distin-
guish the internal structure of the cup from external circumstances like the styrofoam,
the anti-gravity field, and Johnston’s disapproving angel.

The upshot of what I am suggesting is that there are legitimate contexts in which
Lewis’s Time’s Arrow requirements on comparative world similarity do not apply.
The account in (Lewis 1979) was designed as a theory of the standard resolution of
vagueness, i.e., it was designed to yield intuitively correct truth values in the con-
text of determinism for counterfactuals that come up in a certain range of examples.

16I owe this example to Don Nute.
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Whether it does so successfully has been widely discussed, but, in any case, Lewis’s
Time’s Arrow account allows for contexts in which the vagueness of counterfactuals
is non-standardly resolved, and I have argued that disposition ascribing propositions
give rise to just that sort of context.

9 A new Conditional Operator or a Familiar one Liberated?

Bonevac et al. (2006, p. 315) recommend using masking and mimicking cases as
data for investigating new conditional connectives, especially connectives that relax
Lewis’s (1973, p. 48, (4)) requirement of Strong Centering, which ensures that i is
the uniquely closest world to i, and which guarantees both modus ponens (MP) for
the counterfactual and a converse of modus ponens:

(MP) A, A > B |= B.
(CMP) A, B |= A > B.

Far from rejecting (MP) and (CMP), our construction in Case 3 of the proof of the
First Conditional Analysis Theorem relies on (MP) and (CMP) to ensure that the
counterfactual found in Case 3 works as an analysis of X even in worlds where A

and B are both true, and even in worlds where A is true and B is false. That is, since
AB entails X, it had better turn out that AB entails A > B, too, as in (CMP), since a
world in which AB is true and A > B is false would falsify X = (A > B). Similarly,
since AB is not compossible with X, i.e., AB entails X, it had better turn out that
AB entails A > B, too, which follows from (MP), since a world in which AB and
A > B are both true would falsify X = (A > B). Strong Centering is thus central to
the First Conditional Analysis Theorem, and to the Second one, too.

Still, one might argue that the conditional of the two Conditional Analysis The-
orems ought to count as a new connective, albeit a connective of a different sort
than that envisioned by Bonevac et al. The conditional of the Conditional Analy-
sis Theorems seems new not because it has a different logic than a Stalnaker-Lewis
conditional but because the range of its interpretation includes comparative world
similarity relations that do not conform to the standard resolution of vagueness. I dis-
agree. Since all we are doing is widening the class of admissible comparative world
similarity relations and not revising the logic of the counterfactual conditional, it is
fair to say that the identity of the conditional connective has not changed. Instead of
introducing a new connective, we are liberating a familiar connective from semantic
constraints that, as it happens, make no logical difference. That is, the counterfactual
logic of Lewis (1973) is in fact the same with or without the constraints on compar-
ative world similarity developed in Lewis (1979).17 The payoff of liberating Lewis’s
semantics in this way is that doing so provides a strategy for using counterfactuals to
analyze propositions about which we are concerned.

17That is, Lewis’s Time’s Arrow constraints make no logical difference in the context of determinism. In
the context of indeterminism, much can be said about how past and future differences differently affect
comparative world similarity, and in the context of indeterminism, these different effects on comparative
world similarity do make a logical difference, as Thomason and Gupta (1980) and Nute (1991) show.
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10 Conclusion

What do the Conditional Analysis Theorems mean for the project of giving coun-
terfactual analyses? If a proposition’s having a counterfactual analysis is nothing
special, then what is the value of the analysis?

On the negative side, it seems clear that since every proposition has a counter-
factual analysis, having a counterfactual analysis has no reductive or explanatory
significance, indeed no metaphysical significance at all. Counterfactual analyses
do, however, have epistemological significance. A successful counterfactual analy-
sis provides a formulation of the truth conditions of a proposition in terms of other
propositions (the antecedent and consequent of the analysans) in a way that might
facilitate an inquiry into the truth value of the analyzed proposition. If the proposition
C, that my glass cup is fragile, is analyzed as the proposition that the cup would break
(BC) if test condition AC were true, and if I then actually bring about the truth of AC ,
the question whether the cup was fragile will be definitively answered once we know
whether the cup broke, since, if C = (AC > BC), then ACBC entails C, and ACB

entails C.18 Note that these entailments are not affected by the non-standardness of
the resolution of vagueness at work in C = (AC > BC). If there is even one compar-
ative world similarity relation on which C = (AC > BC), then, once the truth of AC

is brought about, the truth value of BC equals the truth value of C. One could put it
by saying that once AC is true, Strong Centering takes over and the other details of
the comparative world similarity relation don’t matter.

The expressive limitations of natural languages will, of course, limit the epistemo-
logical value of the Conditional Analysis Theorems. These theorems show that every
proposition has a counterfactual analysis, but this does not mean that one will be able
to find an informative counterfactual analysis in any given case. We were success-
ful in the Harvard enrollment example, but the expressive limitations of particular
languages may make it impossible to find antecedents that make the counterfactual
analyses of certain propositions informative. This limitation seems to be a prob-
lem for disposition ascriptions, in particular. We have always known that finding
counterfactual analyses of disposition ascriptions was difficult; now, I suggest, we
know why.
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