
The Cathedral and the Bazaar

Eric Raymond

I anatomize a successful open-source project, fetchmail, that was run as a de-
liberate test of some theories about software engineering suggested by the his-
tory of Linux. I discuss these theories in terms of two fundamentally different
development styles, the"cathedral"model, representing most of the commer-
cial world, versus the "bazaar" model of the Linux world. I show that these
models derive from opposing assumptions about the nature of the software-
debugging task_ t then make a sustained argument from the Lir~ux expe~ence
for the proposit,on that"Given enough eyeballs, all bugs are shallow,'suggest
productive analogies with other self-correcting systems of selfish agents, and
conclude with some exploration of the implications of this insight for the fu-
ture of software.

The Cathedral and the Bazaar

Linux is subversive. Who would have t hough t even five years ago that a
world-class operat ing system could coalesce as if by magic out of pa r t - t ime
hacking by several t housand developers scattered all over the planet , con-
nected only by the tenuous strands of the Internet?

Certainly not I. By the t ime Linux s h i m m e r e d on to my radar screen in early
1993, ! had already been involved in Unix and open- source d e v e l o p m e n t for
ten years. I was one of the first G N U contr ibutors in the mid-1980s. I had
released a good deal of open-source software onto the net, deve lop ing or co-
developing several programs (nethack, EmacsVC and GUD modes , xlife, and
others) that are still in wide use today. I t h o u g h t I k n e w h o w it was done .

Linux overturned much of what 1 thought I knew. I had been preaching the
Unix gospel of small tools, rapid prototyping, and evolutionary programming for
years. But I also believed there was a certain critical complexi ty above which

Eric Raymond is the co founder of the Chester County InterLink (CCIL), which provides free [nternet
access to the residents of Chester County, PennsyJvania.]]e is the editor of The New Hacker~ D~etionary
(MIT, 1991, 1993) and the author of a book of essays The Cathedral and the Bazaar. He is a member of tile
Merrill Lynch Technology Advisory Board and has hacked much widely used open source software.] Je
has pursued undergraduate studies in philosophy and mathematics at the University of Pennsylvania but
has never had a course in computer stuff. His home page is at: <http://www.mxedo.org/~esr/>.

Knowledge, Technoh;~l, & Policy, Fall 1999, Vol. 12, No. 3, pp 23-49.

24 Knowledge, Technology, & Policy ! Fall 1999

a more centralized, a priori approach was required. I believed that the most
important software (operating systems and really large tools like Emacs) needed
to be built like cathedrals, carefully crafted by individual wizards or small bands
of mages working in splendid isolation, with no beta to be released before its
time.

Linus Torvalds's style of development--release early and often, delegate
everything you can, be open to the point of promiscuity--came as a surprise.
No quiet, reverent cathedral-building here--rather , the Linux community
seemed to resemble a great babbling bazaar of differing agendas and ap-
proaches (aptly symbolized by the Linux archive sites, who would take sub-
missions from anyone) out of which a coherent and stable system could
seemingly emerge only by a succession of miracles.

The fact that this bazaar style seemed to work, and work well, came as a
distinct shock. As I learned my way around, I worked hard not just at indi-
vidual projects, but also at trying to understand why the Linux world not only
did not fly apart in confusion but seemed to go from strength to strength at a
speed barely imaginable to cathedral-builders.

By mid-1996 1 thought I was beginning to understand. Chance handed me
a perfect way to test my theory, in the form of an open-source project that I
could consciously try to run in the bazaar style. So I d id - -and it was a signifi-
cant success.

In the rest of this article, I will tell the story of that project and use it to moot
some aphorisms about effective open-source development. Not all of these
are things I first learned in the Linux world but we will see how the Linux
world gives them particular point. If I am correct, they will help you under-
stand exactly what it is that makes the Linux community such a fountain of
good software--and help you become more productive yourself.

The Mail Must Get Through

Since 1993 1 had been running the technical side of a small free-access ISP
called Chester County InterLink (CCIL) in West Chester, Pennsylvania (I co-
founded CCIL and wrote our unique multi-user bulletin-board software--
you can check it out by telnetting to locke.ccil.org <telnet://locke.ccil.org>. Today
it supports almost 3,000 users on thirty lines.) The job allowed me 24-hour-a-
day access to the net through CCIUs 56K line--in fact, it practically demanded
it.

Accordingly, I had gotten quite used to instant Internet email. For compli-
cated reasons, it was hard to get SLIP to work between my home machine
(snark.thyrsus.com) and CCIL. When I finally succeeded, I found having to pe-
riodically telnet over to locke to check my mail annoying. What I wanted was
for my mail to be delivered on snark so that I would be notified when it arrived
and could handle it using all my local tools.

Simple sendmail forwarding would not work, because my personal ma-
chine is not always on the net and does not have a static IP address. What I
needed was a program that would reach out over my SLIP connection and
pull across my mail to be delivered locally. I knew such things existed, and that

Raymond 25

most of them used a simple application protocol called POP (Post Office
Protocol). And sure enough, there was already a POP3 server included
with locke's BSD/OS operating system.

! needed a POP3 client. So I went out on the net and found one. Actually, I
found three or four. I used pop-perl for a while, but it was missing what seemed
an obvious feature, the ability to hack the addresses on fetched mail so replies
would work properly.

The problem was this: suppose someone named"joe"on locke sent me mail.
If I fetched the mail to snark and then tried to reply to it, my mailer would
cheerfully try to ship it to a nonexistent "joe" on snark. Hand-edit ing reply
addresses to tack on "@ccil.org"quickly got to be a serious pain.

This was clearly something the computer ought to be doing for me. But
none of the existing POP clients knew how. And this brings us to the first
lesson:

1. Every good work of software starts by scratching a developer's personal itch.

Perhaps this should have been obvious (it has long been proverbial that
"necessity is the mother of invention") but too often software developers spend
their days grinding away for pay at programs they neither need nor love. But
not in the Linux world--which may explain why the average quality of soft-
ware originated in the Linux community is so high.

So, did I immediately launch into a furious whirl of coding up a brand-new
POP3 client to compete with the existing ones? Not on your life. I looked
carefully at the POP utilities I had in hand, asking myself"which one is closest
to what I want?" Because...

2. Good programmers know what to write. Great ones know what to rewrite (and
reuse).

While I do not claim to be a great programmer, I try to imitate one. An
important trait of the great ones is constructive laziness. They know that you
get an "A" not for effort but for results, and that it is almost always easier to
start from a good partial solution than from nothing at all.

Linus Torvalds <http://www.tuxedo.org/-esr/faqs/linus>, for example, did not
actually try to write Linux from scratch. Instead, he started by reusing code
and ideas from Minix, a tiny Unixqike OS for PC clones. Eventually all the
Minix code went away or was completely rewri t ten--but while it was there, it
provided scaffolding for the infant that would eventually become Linux. In the
same spirit, I went looking for an existing POP utility that was reasonably well
coded, to use as a development base.

The source-sharing tradition of the Unix world has always been friendly to
code reuse (this is why the GNU project chose Unix as a base OS, in spite of
serious reservations about the OS itself). The Linux world has taken this tradi-
tion nearly to its technological limit; it has terabytes of open sources generally
available. So spending time looking for some else's a lmost-good-enough is
more likely to give you good results in the Linux world than anywhere else.

26 Knowledge, Technology, & Policy ! Fall 1999

And it did for me. With those I had found earlier, my second search
made up a total of nine candidates--fetchpop, PopTart, get-mail, gwpop,
pimp, pop-perl, popc, popmail, and upop. The one I first settled on was
"fetchpop" by Seung-Hong Oh. I put my header-rewrite feature in it, and made
various other improvements that the author accepted into his 1.9 release.

A few weeks later, though, I stumbled across the code for "popclient"
by Carl Harris, and found I had a problem. Though fetchpop had some good
original ideas in it (such as its daemon mode), it could only handle POP3 and was
rather amateurishly coded (Seung-Hong was at that time a bright but inexperi-
enced programmer, and both traits showed). Carl's code was better, quite profes-
sional and solid, but his program lacked several important and rather
tricky-to-implement fetchpop features (including those I had coded myself).

Stay or switch? If I switched, I would be throwing away the coding I had
already clone in exchange for a better development base. A practical motive to
switch was the presence of multiple-protocol support. POP3 is the most com-
monly used of the post-office server protocols, but not the only one. Fetchpop
and the other competition did not do POP2, RPOP, or APOP, and I was al-
ready having vague thoughts of perhaps adding IMAP <http://www. imap.org>
(Internet Message Access Protocol, the most recently designed and most pow-
erful post-office protocol) just for fun.

But I had a more theoretical reason to think switching might be as good an
idea as well, something I learned long before Linux.

3. "Plan to throw one away; you will, anyhow." (Fred Brooks, The Mythical Man-
Month, Chapter 11).

Or, to put it another way, you often do not really understand the problem
until after the first time you implement a solution. The second time, maybe
you know enough to do it right. So if you want to get it right, be ready to start
over at least once.

Well (I told myself), the changes to fetchpop had been my first try. So I
switched.

After I sent my first set of popclient patches to Carl Harris on 25 June 1996,
I found out that he had basically lost interest in popclient some time before.
The code was a bit dusty, with minor bugs hanging out. I had many changes to
make, and we quickly agreed that the logical thing for me to do was take over
the program.

Without my actually noticing, the project had escalated. No longer was I
just contemplating minor patches to an existing POP client. I took on main-
taining an entire one, and there were ideas bubbling in my head that I knew
would probably lead to major changes.

In a software culture that encourages code-sharing, this is a natural way for
a project to evolve, i was acting out this:

4. If you have the right attitude, interesting problems wiU find you.

But Carl Harris's attitude was even more important. He understood that...

Raymond 27

5. When you lose interest in a program, your last duty to it is to hand it off to a
competent successor.

Without ever having to discuss it, Carl and I knew we had a common goal of
having the best solution out there. The only question for either of us was
whether I could establish that I was a safe pair of hands. Once I did that, he
acted with grace and dispatch. I hope I will do as well when it comes my turn.

The Importance of Having Users

And so I inherited popclient. Just as importantly, I inherited popclient's
user base. Users are wonderful things to have, not just because they dem-
onstrate that you are serving a need, but to prove that you have done some-
thing right. Properly cultivated, they can become co-developers.

Another strength of the Unix tradition, one that Linux pushes to a happy
extreme, is that a lot of users are hackers too. Because source code is available,
they can be effective hackers. This can be tremendously useful for shortening
debugging time. Given a bit of encouragement, your users will diagnose prob-
lems, suggest fixes, and help improve the code far more quickly than you could
unaided.

6. Treating your users as co-developers is your least-hassle route to rapid code
improvement and effective debugging.

The power of this effect is easy to underestimate. In fact, pretty well all of us
in the open-source world drastically underestimated how well it would scale
up with number of users and against system complexity, until Linus Torvalds
showed us differently.

In fact, I think Linus's cleverest and most consequential hack was not the
construction of the Linux kemel itself, but rather his invention of the Linux
development model. When I expressed this opinion in his presence once, he
smiled and quietly repeated something he has often s~iid:"I'm basically a very
lazy person who likes to get credit for things other people actually do." Lazy
like a fox. Or, as Robert Heinlein famously wrote of one of his characters, too
lazy to fail.

In retrospect, one precedent for the methods and success of Linux can be
seen in the development of the GNU Emacs Lisp library and Lisp code ar-
chives. In contrast to the cathedral-building style of the Emacs C core and
most other FSF tools, the evolution of the Lisp code pool was fluid and very
user-driven. Ideas and prototype modes were often rewritten three or four
times before reaching a stable final form. And loosely-coupled collaborations
enabled by the Internet, ~ la Linux, were frequent.

Indeed, my own most successful single hack previous to fetchmail was
probably Emacs VC mode, a Linux-like collaboration by email with three
other people, only one of whom (Richard Stallman, the author of Emacs and
founder of the FSF <http://www.fsf.org>) I have actually met (per 8/99). It was a
front-end for SCCS, RCS and later CVS from within Emacs that offered "one-

28 Knowledge, Technology, & Policy / Fall 1999

touch" version control operations. It evolved from a tiny, crude sccs.el mode
somebody else had written. And the development of VC succeeded be-
cause, unlike Emacs itself, Emacs Lisp code could go through release/test/
improve generations very quickly.

8. Release early, release often.

Early and frequent releases are a critical part of the Linux development model.
Most developers (including me) used to believe this was bad policy for larger
than trivial projects, because early versions are almost by definition buggy ver-
sions and you don't want to wear out the patience of your users.

This belief reinforced the general commitment to a cathedral-building style
of development. If the overriding objective was for users to see as few bugs as
possible, then you would only release one every six months (or less often), and
work like a dog on debugging between releases. The Emacs C core was devel-
oped this way. The Lisp library, in effect, was not--because there were active
Lisp archives outside the FSF's control, where you could go to find new and
development code versions independently of Emacs's release cycle.

The most important of these, the Ohio State elisp archive, anticipated the
spirit and many of the features of today's big Linux archives. But few of us
really thought very hard about what we were doing, or about what the very
existence of that archive suggested about problems in FSF's cathedral-build-
ing development model. I made one serious attempt around 1992 to get a lot
of the Ohio code formally merged into the official Emacs Lisp library. I ran
into political trouble and was largely unsuccessful.

But by a year later, as Linux became widely visible, it was clear that some-
thing different and much healthier was going on there. Linus's open develop-
ment policy was the very opposite of cathedral-building. The Sunsite (now
Metalab <http://metalab. unc.edu>) and tsx-l l archives were burgeoning, mul-
tiple distributions were being floated. And all of this was driven by an un-
heard-of frequency of core system releases.

Linus was treating his users as co-developers in the most effective possible
way:

8. Release early. Release often. And listen to your customers.

Linus's innovation was not so much in doing this (something like it had
been Unix-world tradition for a long time), but in scaling it up to a level of
intensity that matched the complexity of what he was developing. In those
early times (around 1991) it was not unknown for him to release a new kernel
more than once a day! Because he cultivated his base of co-developers and
leveraged the Internet for collaboration harder than anyone else, this worked.

But how did it work? And was it something I could duplicate, or did it rely
on some unique genius of Linus Torvalds?

I did not think so. Granted, Linus is a damn fine hacker (how many of us
could engineer an entire production-quality operating system kernel?). But
Linux did not represent any awesome conceptual leap forward. Linus is not

Raymond 29

(or at least, not yet) an innovative genius of design in the way that, say,
Richard Stallman or James Gosling (of NeWS and Java) are. Rather, Linus
seems to me to be a genius of engineering, with a sixth sense for avoiding
bugs and development dead-ends and a true knack for finding the mini-
mum-effort path from point A to point B. Indeed, the whole design of Linux
breathes this quality and mirrors Linus's essentially conservative and sim-
plifying design approach.

So, if rapid releases and leveraging the Internet medium to the hilt were not
accidents but integral parts of Linus's engineering-genius insight into the mini-
mum-effort path, what was he maximizing? What was he cranking out of the
machinery?

Put that way, the question answers itself. Linus was keeping his hacker/
users constantly stimulated and rewarded--stimulated by the prospect of hav-
ing an ego-satisfying piece of the action, rewarded by the sight of constant
(even daily) improvement in their work.

Linus was directly aiming to maximize the number of person-hours thrown
at debugging and development, even at the possible cost of instability in the
code and user-base burnout if any serious bug proved intractable. Linus was
behaving as though he believed something like this:

9. Given a large enough beta-tester and co-developer base, almost every problem
will be characterized quickly and the fix obvious to someone.

Or, less formally,"Given enough eyeballs, all bugs are shallow." I dub this:
"Linus's Law."

My original formulation was that every problem"will be transparent to some-
body." Linus demurred that the person who understands and fixes the prob-
lem is not necessarily or even usually the person who first characterizes it.
"Somebody finds the problem," he says, "and somebody else understands it.
And I'll go on record as saying that finding it is the bigger challenge."But the
point is that both things tend to happen rapidly.

Here, I think, is the core difference underlying the cathedral-builder and
bazaar styles. In the cathedral-builder view of programming, bugs and devel-
opment problems are tricky, insidious, deep phenomena. It takes months of
scrutiny by a dedicated few to develop confidence that you have winkled them
all out. Thus, the long release intervals, and the inevitable disappointment
when long-awaited releases are not perfect.

In the bazaar view, on the other hand, you assume that bugs are generally
shallow phenomena--or , at least, that they turn shallow pretty quickly when
exposed to a thousand eager co-developers pounding on every single new
release. Accordingly, you release often in order to get more corrections, and as
a beneficial side effect you have less to lose if an occasional botch gets out the
door.

And that is it. That is enough. If "Linus's Law" is false, then any system
as complex as the Linux kernel, being hacked over by as many hands as
the Linux kernel, should at some point have collapsed under the weight of
unforeseen bad interactions and undiscovered "deep" bugs. If it is true, on

30 Knowledge, Technology, & Policy / Fall 1999

the other hand, it is sufficient to explain Linux's relative lack of bugginess
and its continuous uptimes spanning months or even years.

And maybe it shouldn't have been such a surprise, at that. Sociologists years
ago discovered that the averaged opinion of a mass of equally expert (or equally
ignorant) observers is quite a bit more reliable a predictor than that of a single
randomly-chosen one of the observers. They called this the"Delphi effect." It
appears that what Linus has shown is that this applies even to debugging an
operating system--that the Delphi effect can tame development complexity
even at the complexity level of an OS kernel.

One special feature of the Linux situation that clearly helps along the Delphi
effect a lot is the fact that the contributors for any given project are self-se-
lected. An early respondent pointed out that contributions are received not
from a random sample, but from people who are interested enough to use the
software, learn about how it works, attempt to find solutions to problems they
encounter, and actually produce an apparently reasonable fix. Anyone who
passes all these filters is highly likely to have something useful to contribute.

I am indebted to my friend Jeff Dutky <dutky@wam.umd.edu> for pointing
out that Linus's Law can be rephrased as "Debugging is parallelizable."Jeff
observes that although debugging requires debuggers to communicate with
some coordinating developer, it doesn't require significant coordination be-
tween debuggers. Thus, it doesn't fall prey to the same quadratic complexity
and management costs that make adding developers problematic.

In practice, the theoretical loss of efficiency due to duplication of work by
debuggers almost never seems to be an issue in the Linux world. One effect of
a"release early and often policy"is to minimize such duplication by propagat-
ing fed-back fixes quickly.

Brooks even made an off-hand observation related to Jeff's: "The total cost
of maintaining a widely used program is typically 40 percent or more of the
cost of developing it. Surprisingly this cost is strongly affected by the number
of users. More users find more bugs" (my emphasis).

More users find more bugs because adding more users adds more different
ways of stressing the program. This effect is amplified when the users are co-
developers. Each one approaches the task of bug characterization with a slightly
different perceptual set and analytical toolkit, a different angle on the prob-
lem. The "Delphi effect" seems to work precisely because of this variation. In
the specific context of debugging, the variation also tends to reduce duplica-
tion of effort.

So adding more beta-testers may not reduce the complexity of the current
"deepest"bug from the developer's point of view, but it increases the probabil-
ity that someone's toolkit will be matched to the problem in such a way that
the bug is shallow to that person.

Linus coppers his bets, too. In case there are serious bugs, Linux kernel
version are numbered in such a way that potential users can make a choice
either to run the last version designated"stable"or to ride the cutting edge and
risk bugs in order to get new features.This tactic is not yet formally imitated by
most Linux hackers, but perhaps it should be; the fact that either choice is
available makes both more attractive.

Raymond 31

10. When is s rose not a rose?

Having studied Linus's behavior and formed a theory about why it was suc-
cessful, ! made a conscious decision to test this theory on my new (admittedly
much less complex and ambitious) project.

But the first thing I did was reorganize and simplify popclient a lot. Carl
Harris's implementation was very sound, but exhibited a kind of unnecessary
complexity common to many C programmers. He treated the code as central
and the data structures as support for the code. As a result, the code was beau-
tiful but the data structure design ad-hoc and rather ugly (at least by the high
standards of this old LISP hacker).

I had another purpose for rewriting besides improving the code and the
data structure design, however. That was to evolve it into something I under-
stood completely. It is no fun to be responsible for fixing bugs in a program
you do not understand.

For the first month or so, then, I was simply following out the implications
of Carl's basic design. The first serious change I made was to add IMAP sup-
port. I did this by reorganizing the protocol machines into a generic driver and
three method tables (for POP2, POP3, and IMAP). This and the previous
changes illustrate a general principle that is good for programmers to keep in
mind, especially in languages like C that do not naturally do dynamic typing:

11. Smart data structures and dumb code works a lot better than the other way
around.

Brooks, Chapter 9: "Show me your [code] and conceal your [data struc-
tures], and I shall continue to be mystified. Show me your [data structures],
and I won't usually need your [code]; it'll be obvious."

Actually, he said "flowcharts" and "tables." But allowing for thirty years of
semantic/cultural shift, it's almost the same point.

At this point (early September 1996, about six weeks from zero) I started
thinking that a name change might be in order--after all, it was not just a
POP client any more. But I hesitated, because there was as yet nothing genu-
inely new in the design. My version of popclient had yet to develop an identity
of its own.

That changed, radically, when fetchmail learned how to forward fetched
mail to the SMTP port. I will get to that in a moment. But first: I said above that
I had decided to use this project to test my theory about what Linus Torvalds
had done right. How (you may well ask) did I do that? In these ways:

1. I released early and often (almost never less often than every ten days; during
periods of intense development, once a day).

2. I grew my beta list by adding to it everyone who contacted me about fetchmail.
3. I sent chatty announcements to the beta list whenever I released, encouraging

people to participate.
4. I listened to my beta testers, polling them about design decisions and stroking

them whenever they sent in patches and feedback.

32 Knowledge, Technology, & Policy / Fall 1999

The payoff from these simple measures was immediate. From the begin-
ning of the project, I got bug reports of a quality most developers would kill
for, often with good fixes attached. I got thoughtful criticism, I got fan mail, I
got intelligent feature suggestions. Which leads to:

12. If you treat your beta-testers as if they are your most valuable resource, they will
respond by becoming your most valuable resource.

One interesting measure of fetchmail's success is the sheer size of the project
beta list, fetchmail-friends. At time of writing it has 249 members and is add-
ing two to three a week.

Actually, as I revise in late May 1997 the list is beginning to lose members
from its high of close to 300 for an interesting reason. Several people have
asked me to unsubscribe them because fetchmail is working so well for them
that they no longer need to see the list traffic! Perhaps this is part of the nor-
mal life-cycle of a mature bazaar-style project.

Popclient Becomes Fetchmail

The real turning point in the project was when Harry Hochheiser sent me
his scratch code for forwarding mail to the client machine's SMTP port. I real-
ized almost immediately that a reliable implementation of this feature would
make all the other delivery modes next to obsolete.

For many weeks I had been tweaking fetchmail rather incrementally while
feeling like the interface design was serviceable but grubby--inelegant and
with too many exiguous options hanging out all over. The options to dump
fetched mail to a mailbox file or standard output particularly bothered me, but
I could not figure out why.

What I saw when I thought about SMTP forwarding was that popclient had
been trying to do too many things. It had been designed to be both a mail
transport agent (MTA) and a local delivery agent (MDA). With SMTP forward-
ing, it could get out of the MDA business and be a pure MTA, handing off mail
to other programs for local delivery just as sendmail does.

Why mess with all the complexity of configuring a mail delivery agent or
setting up lock-and-append on a mailbox when port 25 is almost guaranteed
to be there on any platform with TCP/IP support in the first place? Especially
when this means retrieved mail is guaranteed to look like normal sender-ini-
tiated SMTP mail, which is really what we want anyway.

There are several lessons here. First, this SMTP-forwarding idea was the big-
gest single payoff I got from consciously tgcing to emulate Linus's methods. A user
gave me this terrific idea--all I had to do was understand the implications.

13. The next best thing to having good ideas is recognizing good ideas from your
users. Sometimes the latter is better

Interestingly enough, you will quickly find that if you are completely and
self-deprecatingly truthful about how much you owe other people, the world

Raymond 33

at large will treat you like you did every bit of the invention yourself and
are just being becomingly modest about your innate genius. We can all see
how well this worked for Linus!

(When I gave this paper at the Perl conference in August 1997, Larry Wall
was in the front row. As I got to the last line above he called out, religious-
revival style,"Tell it, tell it, brother! 'q~e whole audience laughed, because they
knew it had worked for the inventor of Perl too.)

After a very few weeks of running the project in the same spirit, I began to
get similar praise not just from my users but from other people to whom the
word leaked out. I stashed away some of that email; I will look at it again
sometime if I ever start wondering whether my life has been worthwhile.

But there are two more fundamental, non-political lessons here that are
general to all kinds of design.

14. Often, the most striking and innovative solutions come from realizing that your
concept of the problem was wrong.

I had been trying to solve the wrong problem by continuing to develop
popdient as a combined MTA/MDA with all kinds of funky local delivery modes.
Fetchmail's design needed to be rethought from the ground up as a pure MTA,
a part of the normal SMTP-speaking Internet mail path.

When you hit a wall in deve lopment - -when you find yourself hard put to
think past the next patch--it is often time to ask not whether you have got the
right answer, but whether you are asking the right question. Perhaps the prob-
lem needs to be reframed.

Well, I had refrained my problem. Clearly, the right thing to do was (1) hack
SMTP forwarding support into the generic driver, (2) make it the default mode,
and (3) eventually throw out all the other delivery modes, especially the de-
liver-to-file and deliver-to-standard-_output options.

I hesitated over step 3 for some time, fearing to upset long-time popclient
users dependent on the alternate delivery mechanisms. In theory, they could
immediately switch to forward files or their non-sendmail equivalents to get
the same effects. In practice the transition might have been messy.

But when I did it, the benefits proved huge. The cruftiest parts of the driver
code vanished. Configuration got radically simpler--no more groveling around
for the system MDA and user's mailbox, no more worries about whether the
underlying OS supports file locking.

Also, the only way to lose mail vanished. If you specified delivery to a file
and the disk got full, your mail got lost. This can not happen with SMTP for-
warding because your SMTP listener won't return "OK" unless the message
can be delivered or at least spooled for later delivery.

Also, performance improved (though not so you would notice it in a single
run). Another not insignificant benefit of this change was that the manual
page got a lot simpler.

Later, I had to bring delivery via a user-specified local MDA back in order to
allow handling of some obscure situations involving dynamic SLIP. But I found
a much simpler way to do it.

ldaauoa x!u!lAI aql paqsnd spleMOj~ snu!q "iool ~u!qaea~ e se osn aoj 'SDd IaIflI
aoj x!uFl a,x!leu aldtu!s e pl!nq ol eap! [eu.~!ao aql peq tnnequauej~ ~aapt. W

• o~ plnoa `{aql lq~noql saoleu.~!ao aql aaaq~ puo`{aq seap! poo~,saidoad
20qlo a>lel ol luau~pn! ~uuaau[~ua aql ~qu.~eq `{q ao--seap! jo slo[~U.l.Aleq ,{q
S! leqa o>I!I seop! aoj z~a ol ,{e,~ ,{iuo aqL "pau!epma2oj uoAa '[e~nleu 'alqea.~au !
tuaas lsn! sllnsaa oR1 p~e,vualje leql [n.pa~od os seap! u,q!sap ,{q 1! olu! pa[[nd
105~ ol a,xeq no A-s!ql a>I! I l[nsaa e aoj ueld ao m!e ,{[iea2 aou uea no,(~u!ql I

• uaaao~mj lsotuie lnq
pap~eas!p lsn{ lou a~e saA!letuali e aql leql ,{IlUoladmoa os aqa!u sl! SlI! J leql
stue~oM a!ssep asoql jo auo,,'2allpt ~o~olea,e atuoaaq ,(ile!luaaod ol uo!l!lad
-tuoa aql jo luo~j u! q~noua aej Pallnd 1! 'amleaj ~u!pae,~uoj clJ~S aql ql~.M

• spaau ,{llea2 uo!laauuoa l!etu ddd/dIqS e pue xoq x!uFl e ql!a~ 2a:,tae q
,~a,xa u2e~oM e uo spue R ,(m peq I "aldoad aaqlo ~aj e ol Injasn aq ol uad
-deq lq~q!tu leql >peq [euos2ad leD!a1 e u! pa~qe~qua 2o~uol ou se,,a 1 leql am uo
pau~ep ,{ilenpe~ 1I "ls!I elaq ~u!uoa~3nq e pue ',(ep ~a,xa 1! pasn I asneaaq ilaw~
pa~ao~ ~ou> I 1 leql apoa 'u~q!sap aA!leaOUU! pue leau e ql!,~ sea¢ I aaaqg

dFl swmaD I!etuqala:I

• aas ol pasnaoj-asop ool aI11! I e lsn! a2a,~ no,{ leql ,{q2eau
ut,~ a~nq e pu.tj lq~!tu sIap!11no ano,{ jo auo 'acu pue ~as!aqqao H ,(ue H ql!~
se 'Iia~ ~a,x s~lao~ s!q Z "tus!ueqaatu uo!lea!ummuoa alqeleaS e ,{q pale!patu
uo!lel!oldxa ,{q pa,~oi[o J 'uo!snjj!p ,{q ,{[ie!luassa uo!le2oldxa :pooj pu!j slue
~o R 11,{ aa111q ao 'u!e~p e spu!j 211e~ jo alppnd e ,{et~ aql aap!suoD "lanpoM
too,{ aeau aaeds u~!sap aql q~noaql ~u!:,IleW~-mopue~ s~adola,xap-oa jo slo I jo
~UplU!ql aql aAeq ol alqen[eh,gdaA aq uea 1! 'u~!sap jo Iaaal ~aq~!q e le UaA~t

• a2ew~jos aql jo ldaauoa ~o sa!l!l!qedea
IeU.~!m aql u!,,uo!ss!tuo jo s~nq,~u!x!j---~u~nqap jo sasea ie!aads atuoaaq
,{eua luatuaauequa pue luatudolaAa p 'aA!leaal! ,{[p!de~ s! apom luatudolaAa p
too`(uaqM "ool 's[aaeds u.~!sap jo uo!lemldxa (lualxa ~u!s.uchns sdeqaad e o~,)
pue luamdoiaAa p 'a[qez!lalle~ed s! leql ~qu.~qnqap `{[uo lou s! 1I "[!euaqalaJ ol
atuea Ma,x!ia p dMATS t~oq lnoqe ~ols s!ql u! uossa I ie~aua~ amtu e s! aaatLL

"I!etuqaaaJ 1! patueua2 1 's~polq oR1 jjo
sqauotu oa¢1 'og "s~aa!ia p uaql slInd lua!pdod ,~au aql 's2atqlap uaql saqsnd
I!empuas a2att,~ lnq 'svMa/a2e qloq .'per lua!pdod plo aql ueql I.mmpuas jo Ienp
e a>l! I aaotu qantu pa>too I u.cq!sap ~au aqj~ "a~ueqa atueu aql mj atu!l se~ 1I

• lua!pdod Ie21saaue aql u2o.tj lua2aj.j!p 'u~o
sl! jo ~!luap! ue pa~!nbae u~!sap [!etuqalaj aql 'ssaaoM aql u! pu v "lq:~.u s! 1!
,~om t no,{ uaq~ s! leqa '2aldtu!s pue aa111q qloq ~u!111~ s! apoa 2no`(uaqM

,,'/i,aaw a~lt2~ ol a2ou~ gu~.~tlou s.l a.~a~/l ua~az .~az/l~2
lnq "ppv ol a2om ~uz.ztlou s.l a2a~/l uattm .lou paaaz.~lat2 s! (ugl.sap uz.) uol.loaflad, , 'lq

:p!es (s~ooq
%u~pi!qa a!ssep ~u.uoqlne ~ou se~ aq uaq~ aau~q!sap Wa~.m pure 2ole.~e ue se~
oqM) &adnx3qu!e Sap ou!olu-v "ssauaA!l~ajja jo sso I lnoql.~ 1! op uea no,{
uaqM sa2nleaj palenuueaadns ,{erie ~oaql ol alel!saq lou o(1 ~.Ieaotu atLL

666~ lle:t / Lg!IOd a~ 'X$OlOUqaa&,a~paiMou>i ~E

Raymond 35

further than Andrew probably thought it could go---and it grew into some-
thing wonderful. In the same way (though on a smaller scale), I took some
ideas by Carl Harris and Harry Hochheiser and pushed them hard. Neither of
us was "original" in the romantic way people think of genius. But then, most
science and engineering and software development isn't done by original ge-
nius, hacker mythology to the contrary.

The results were pretty heady stuff all the same-- in fact, just the kind of
success every hacker lives for. And they meant I would have to set my stan-
dards even higher.To make fetchmail as good as I now saw it could be, I would
have to write not just for my own needs, but also include and support features
necessary to others but outside my orbit. And do that while keeping the pro-
gram simple and robust.

The first and overwhelmingly most important feature I wrote after realizing
this was multidrop support-- the ability to fetch mail from mailboxes that had
accumulated all mail for a group of users, and then route each piece of mail to
its individual recipients.

I decided to add the multidrop support partly because some users were
clamoring for it, but mostly because I thought it would shake bugs out of the
single-drop code by forcing me to deal with addressing in full generality. And
so it proved. Getting RFC 822 <http://info.internet.isi.edu:80/in-notes/rfc/files/
rfc822.txt> parsing right took me a remarkably long time, not because any
individual piece of it is hard but because it involved a pile of interdependent
and fussy details.

But multidrop addressing turned out to be an excellent design decision as
well. Here's how I knew:

15. Any tool should be useful in the expected way but a truly great tool lends itself to
uses you never expected.

The unexpected use for multi-drop fetchmail is to run mailing lists with the
list kept, and alias expansion done, on the client side of the SLIP/PPP connec-
tion. This means someone running a personal machine through an ISP ac-
count can manage a mailing list without continuing access to the ISP's alias
files.

Another important change demanded by my beta testers was support for 8-
bit MIME operation. This was pretty easy to do, because I had been careful to
keep the code 8-bit clean. Not because I anticipated the demand for this fea-
ture, but rather in obedience to another rule:

16. When writing gateway software of any kind, take pains to disturb the data stream
as little as possible--and never throw away information unless the recipient forces
you to!

Had I not obeyed this rule, 8-bit MIME support would have been difficult
and buggy. As it was, all I had to do is read RFC 1652 <http://
info. internet.isi.edu:80/in-notes/rfc/files/rfc1652, txt> and add a trivial bit of header-
generation logic.

36 Knowledge, Technology, & Policy / Fall 1999

Some European users nudged me into adding an option to limit the num-
ber of messages retrieved per session (so they can control costs from their
expensive phone networks). I resisted this for a long time, and I am still not
entirely happy about it. But if you are writing for the world, you have to listen
to your customers--this does not change just because they are not paying you
in money.

A Few More Lessons from Fetchmail

Before we go back to general software-engineering issues, there are a couple
more specific lessons from the fetchmail experience to ponder.

The rc file syntax includes optional "noise" keywords that are entirely ig-
nored by the parser. The English-like syntax they allow is considerably more
readable than the traditional terse keyword-value pairs you get when you strip
them all out.

These started out as a late-night experiment when I noticed how much the
rc file declarations were beginning to resemble an imperative minilanguage.
(This is also why I changed the original popclient"server" keyword to"poll.")

It seemed to me that trying to make that imperative mini-language more
like English might make it easier to use. Now, although I am a convinced
partisan of the"make it a language'school of design as exemplified by Emacs
and HTML and many database engines, I am not normally a big fan of"En-
glish-like" syntaxes.

Traditionally programmers have tended to favor control syntaxes that are
very precise and compact and have no redundancy at all. This is a cultural
legacy from when computing resources were expensive, so parsing stages had
to be as cheap and simple as possible. English, with about 50 percent redun-
dancy, looked like a very inappropriate model then.

This is not my reason for normally avoiding English-like syntaxes; I men-
tion it here only to demolish it. With cheap cycles and core, terseness should
not be an end in itself. Nowadays it is more important for a language to be
convenient for humans than to be cheap for the computer.

There are, however, good reasons to be wary. One is the complexity cost of
the parsing stage--you do not want to raise that to the point where it is a
significant source of bugs and user confusion in itself. Another is that trying to
make a language syntax English-like often demands that the"English"it speaks
be bent seriously out of shape, so much so that the superficial resemblance to
natural language is as confusing as a traditional syntax would have been. (You
see this in a lot of so-called "fourth generation" and commercial database-
query languages.)

The fetchmail control syntax seems to avoid these problems because the
language domain is extremely restricted. It is nowhere near a general- pur-
pose language; the things it says simply are not very complicated, so there is
little potential for confusion in moving mentally between a tiny subset of En-
glish and the actual control language. I think there may be a wider lesson
here:

Raymond 37

17. When your language is nowhere near Turing-complete, syntactic sugar can be
your fro'end.

Another lesson is about security by obscurity. Some fetchmail users asked
me to change the software to store passwords encrypted in the rc file, so snoop-
ers would not be able to casually see them.

I did not do it, because this doesn't actually add protection. Anyone who
has acquired permissions to read your rc file will be able to run fetchmail as
you anyway--and if it is your password they are after, they would be able to rip
the necessary decoder out of the fetchmail code itself to get it.

All .fetchmailrc password encryption would have done is give a false sense
of security to people who do not think very hard. The general rule here is:

18. A security system is only as secure as its secret. Beware of pseudo-secrets.

Necessary Precondi t ions for the Bazaar Style

Early reviewers and test audiences for this paper consistently raised ques-
tions about the preconditions for successful bazaar-style development, includ-
ing both the qualifications of the project leader and the state of code at the
time one goes public and starts to try to build a co-developer community.

It is fairly clear that one cannot code from the ground up in bazaar style.
One can test, debug and improve in bazaar style, but it would be very hard to
originate a project in bazaar mode. Linus did not try it. I did not either.Your
nascent developer community needs to have something runnable and test-
able to play with.

When you start community-building, what you need to be able to present
is a plausible promise.Your program does not have to work particularly well. It
can be crude, buggy, incomplete, and poorly documented. What it must not
fail to do is (a) run and (b) convince potential co-developers that it can be
evolved into something really neat in the foreseeable future.

Linux and fetchmail both went public with strong, attractive basic designs.
Many people thinking about the bazaar model as I have presented it have
correctly considered this critical, then jumped from it to the conclusion that a
high degree of design intuition and cleverness in the project leader is indis-
pensable.

But Linus got his design from Unix. I got mine initially from the ancestral
popclient (though it would later change a great deal, much more proportion-
ately speaking than has Linux). So does the leader/coordinator for a bazaar-style
effort really have to have exceptional design talent, or can he get by on leveraging
the design talent of others? I think it is not critical that the coordinator be able to
originate designs of exceptional brilliance, but it is absolutely critical that the
coordinator be able to recognize good design ideas from others.

Both the Linux and fetchmail projects show evidence of this. Linus, while
not (as previously discussed) a spectacularly original designer, has displayed a

38 Knowledge, Technology, & Policy / Fall 1999

powerful knack for recognizing good design and integrating it into the Linux
kernel. And I have already described how the single most powerful design
idea in fetchmail (SMTP forwarding) came from somebody else.

Early audiences of this paper compl imented me by suggesting that I am
prone to undervalue design originality in bazaar projects because I have a
lot of it myself, and therefore take it for granted. There may be some truth
to this; design (as opposed to coding or debugging) is certainly my stron-
gest skill.

But the problem with being clever and original in software design is that
it gets to be a habi t --you start reflexively making things cute and compli-
cated when you should be keeping them robust and simple. I have had
projects crash on me because I made this mistake but I managed not to
with fetchmail.

So I believe the fetchmail project succeeded partly because I restrained
my tendency to be clever; this argues (at least) against design originality
being essential for successful bazaar projects. And consider Linux. Suppose
Linus Torvalds had been trying to pull off fundamental innovations in operat-
ing system design during the development; does it seem at all likely that
the resulting kernel would be as stable and successful as what we have?

A certain base level of design and coding skill is required, of course,
but I expect almost anybody seriously thinking of launching a bazaar ef-
fort will already be above that minimum. The open-source community 's
internal market in reputation exerts subtle pressure on people not to launch
development efforts they're not competent to follow through on. So far
this seems to have worked pretty well.

There is another kind of skill not normally associated with software devel-
opment that I think is as important as design cleverness to bazaar projects--
and it may be more important. A bazaar project coordinator or leader must
have good people and communications skills.

This should be obvious. In order to build a development community, you
need to attract people, interest them in what you are doing, and keep them
happy about the amount of work they are doing. Technical sizzle will go a long
way towards accomplishing this, but it is far from the whole story. The person-
ality you project matters, too.

It is not a coincidence that Linus is a nice guy who makes people like him
and want to help him. It is not a coincidence that I am an energetic extrovert
who enjoys working a crowd and has some of the delivery and instincts of a
stand-up comic. To make the bazaar model work, it helps enormously if you
have at least a little skill at charming people.

The Social Context of Open-Source Software

It is truly written: the best hacks start out as personal solutions to the author's
everyday problems, and spread because the problem turns out to be typical for
a large class of users. This takes us back to the matter of role 1, restated in
a perhaps more useful way:

Raymond 39

19. To solve an interesting problem, start by finding a problem that is interesting to
yOU.

So it was with Carl Harris and the ancestral popclient, and so with me and
fetchmail. But this has been understood for a long time. The interesting point,
the point that the histories of Linux and fetchmail seem to demand we focus
on, is the next stage--the evolution of software in the presence of a large and
active community of users and co-developers.

In The Mythical Man-Month, Fred Brooks observed that programmer time is
not fungible; adding developers to a late software project makes it later. He
argued that the complexity and communication costs of a project rise with the
square of the number of developers, while work done only rises linearly. This
claim has since become known as"Brooks's Law" and is widely regarded as
true. But if Brooks's Law were the whole picture, Linux would be impossible.

Gerald Weinb~g's classic The Psychology Of Computer Programming supplied
what, in hindsight, we can see as a vital correction to Brooks. In his discussion
of"egoless programming,'Weinberg observed that in shops where developers
are not territorial about their code, and encourage other people to look for
bugs and potential improvements in it, improvement happens dramatically
faster than elsewhere.

Weinberg's choice of terminology has perhaps prevented his analysis from
gaining the acceptance it deserved--one has to smile at the thought of de-
scribing Internet hackers as"egoless." But I think his argument looks more
compelling today than ever.

The history of Unix should have prepared us for what we are learning from
Linux (and what I have verified experimentally on a smaller scale by deliber-
ately copying Linus's methods). That is, that while coding remains an essen-
tially solitary activity, the really great hacks come from harnessing the attention
and brainpower of entire communities. The developer who uses only his or
her own brain in a closed project is going to fall behind the developer who
knows how to create an open, evolutionary context in which feedback explor-
ing the design space, code contributions, bug-spotting, and other improve-
ments come back from hundreds (perhaps thousands) of people.

But the traditional Unix world was prevented from pushing this approach
to the ultimate by several factors. One was the legal constraints of various
licenses, trade secrets, and commercial interests. Another (in hindsight) was
that the Internet was not yet good enough.

Before cheap Internet, there were some geographically compact communi-
ties where the culture encouraged Weinberg's"egoless" programming, and a
developer could easily attract a lot of skilled kibitzers and co-developers. Bell
Labs, the M1T AI Lab, UC Berkeley--these became the home of innovations
that are legendary and still potent.

Linux was the first project to make a conscious and successful effort to
use the entire world as its talent pool. I do not think it is a coincidence that
the gestation period of Linux coincided with the birth of the World Wide
Web, and that Linux left its infancy during the same period in 1993-1994
that saw the takeoff of the ISP industry and the explosion of mainstream

40 Knowledge, Technology, & Policy / Fall 1999

interest in the Intemet. Linus was the first person who leamed how to play by
the new rules that pervasive Inter-net made possible.

While cheap Internet was a necessary condition for the Linux model to
evolve, I think it was not by itself a sufficient condition. Another vital factor
was the development of a leadership style and set of cooperative customs that
could allow developers to attract co-developers and get maximum leverage
out of the medium.

But what is this leadership style and what are these customs? They can-
not be based on power relat ionships--and even if they could be, leader-
ship by coercion would not produce the results we see. Weinberg quotes
the autobiography of the 19th-century Russian anarchist Pyotr Alexeyvich
Kropotkin's Memoirs of a Revolutionist to good effect on this subject:

Having been brought up in a serf-owner's family, I entered active life, like all
young men of my time, with a great deal of confidence in the necessity of com-
manding, ordering, scolding, punishing and the like. But when, at an early stage,
I had to manage serious enterprises and to deal with [free] men, and when each
mistake would lead at once to heavy consequences, I began to appreciate the
difference between acting on the principle of command and discipline and act-
ing on the principle of common understanding. The former works admirably in
a military parade, but it is worth nothing where real life is concerned, and the
aim can be achieved only through the severe effort of many converging wills.

The"severe effort of many converging wills" is precisely what a project like
Linux requires--and the "principle of command" is effectively impossible to
apply among volunteers in the anarchist's paradise we call the Internet. To
operate and compete effectively, hackers who want to lead collaborative projects
have to learn how to recruit and energize effective communities of interest in
the mode vaguely suggested by Kropotkin's"principle of understanding."l"hey
must learn to use Linus's Law.

Earlier I referred to the"Delphi effect 'as a possible explanation for Linus's
Law. But more powerful analogies to adaptive systems in biology and eco-
nomics also irresistibly suggest themselves. The Linux world behaves in many
respects like a free market or an ecology, a collection of selfish agents attempt-
ing to maximize utility which in the process produces a self-correcting spon-
taneous order more elaborate and efficient than any amount of central planning
could have achieved. Here, then, is the place to seek the "principle of under-
standing."

The "utility function" Linux hackers are maximizing is not classically eco-
nomic, but is the intangible of their own ego satisfaction and reputation among
other hackers. (One may call their motivation "altruistic" but this ignores the
fact that altruism is itself a form of ego satisfaction for the altruist.) Voluntary
cultures that work this way are not actually uncommon; one other in which I
have long participated is science fiction fandom, which unlike hackerdom ex-
plicitly recognizes "egoboo" (the enhancement of one's reputation among
other fans) as the basic drive behind volunteer activity.

Linus, by successfully positioning himself as the gatekeeper of a project in

Raymond 41

which the development is mostly done by others, and nurturing interest in the
project until it became self-sustaining, has shown an acute grasp of Kropotkin's
"principle of shared understanding."This quasi-economic view of the Linux
world enables us to see how that understanding is applied.

We may view Linus's method as a way to create an efficient market in
"egoboo" - - to connect the selfishness of individual hackers as firmly as pos-
sible to difficult ends that can only be achieved by sustained cooperation. With
the fetchmail project I have shown (albeit on a smaller scale) that his methods
can be duplicated with good results. Perhaps I have even done it a bit more
consciously and systematically than he.

Many people (especially those who politically distrust free markets) would
expect a culture of self-directed egoists to be fragmented, territorial, wasteful,
secretive, and hostile. But this expectation is clearly falsified by (to give just
one example) the stunning variety, quality and depth of Linux documentation.
It is a hallowed given that programmers hate documenting; how is it, then,
that Linux hackers generate so much of it? Evidently Linux's free market in
egoboo works better to produce virtuous, other-directed behavior than the
massively-funded documentation shops of commercial software producers.

Both the fetchmail and Linux kernel projects show that by properly reward-
ing the egos of many other hackers, a strong developer/coordinator can use
the Internet to capture the benefits of having lots of co-developers without
having a project collapse into a chaotic mess. So to Brooks's Law I counter-
propose the following:

20. Provided the development coordinator has a medium at least as good as the
Internet, and knows how to lead without coercion, many heads are inevitably better
than one.

I think the future of open-source software will increasingly belong to people
who know how to play Linus's game, people who leave behind the cathedral
and embrace the bazaar. This is not to say that individual vision and brilliance
will no longer matter; rather, I think that the cutting edge of open-source
software will belong to people who start from individual vision and brilliance,
then amplify it through the effective construction of voluntary communities of
interest.

And perhaps not only the future of open-source software. No closed-source
developer can match the pool of talent the Linux community can bring to bear
on a problem.Very few could afford even to hire the more than two hundred
people who have contributed to fetchmail!

Perhaps in the end the open-source culture will triumph not because coop-
eration is morally right or software "hoarding" is morally wrong (assuming
you believe the latter, which neither Linus nor I do), but simply because
the closed-source world cannot win an evolutionary arms race with open-
source communities that can put orders of magni tude more skilled t ime
into a problem.

42 Knowledge, Technology, & Policy / Fall 1999

On Management and the Maginot Line

The original"Cathedral and Bazaar"paper ended with the vision above 4hat
of happy networked hordes of programmer/anarchists out competing and over-
whelming the hierarchical world of conventional closed software.

A good many skeptics were not convinced, however; and the questions
they raise deserve engagement. Most of the objections to the bazaar argu-
ment come down to the claim that its proponents have underestimated the
productivity-multiplying effect of conventional management .

Traditionally-minded software-development managers often object that the
casualness with which project groups form and change and dissolve in the
open-source world negates a significant part of the apparent advantage of
numbers that the open-source community has over any single closed-source
developer. They would observe that in software development it is really sus-
tained effort over time and the degree to which customers can expect continu-
ing investment in the product that matters, not just how many people have
thrown a bone in the pot and left it to simmer.

There is something to this argument, to be sure; in fact, I have developed
the idea that expected future sendce value is the key to the economics of soft-
ware production in"The Magic Cauldron'<http://www. tuxedo, org/-esr/writings/
magic-cauldron/>.

But this argument also has a major hidden problem: its implicit assump-
tion that open-source development cannot deliver such sustained effort.
In fact, there have been open-source projects that maintained a coherent di-
rection and an effective maintainer community over quite long periods of time
without the kinds of incentive structures or institutional controls that conven-
tional management finds essential. The development of the GNU Emacs edi-
tor is an extreme and instructive example; it has absorbed the efforts of hundreds
of contributors over fifteen years into a unified architectural vision, despite
high turnover and the fact that only one person (its author) has been continu-
ously active during all that time. No closed-source editor has ever matched
this longevity record.

This suggests a reason for questioning the advantages of convention-
ally-managed software development that is independent of the rest of the
arguments over cathedral vs. bazaar mode. If it is possible for GNU Emacs
to express a consistent architectural vision over fifteen years, or for an oper-
ating system like Linux to do the same over eight years of rapidly changing
hardware and platform technology; and if (as is indeed the case) there have
been many well-architected open-source projects of more than five years du-
r a t i on - then we are entitled to wonder what, if anything, the tremendous
overhead of conventionally-managed development is actually buying us.

Whatever it is certainly does not include reliable execution by deadline,
or on budget, or to all features of the specification; it is a rare "managed"
project that meets even one of these goals, let alone all three. It also does not
appear to be ability to adapt to changes in technology and economic context
during the project lifetime, either;, the open-source community has proven far more
effective on that score (as one can readily verify, for example, by comparing

Raymond 43

the thirty-year history of the Internet with the short half-lives of proprietary
networking technologies--or the cost of the 16-bit to 32-bit transition in
Microsoft Windows with the nearly effortless up-migration of Linux during
the same period, not only along the Intel line of development but to more
than a dozen other hardware platforms including the 64-bit Alpha as well).

One thing many people think the traditional mode buys you is somebody
to hold legally liable and potentially recover compensation from if the project
goes wrong. But this is an illusion; most software licenses are written to dis-
claim even warranty of merchantability, let alone performance--and cases of
successful recovery for software nonperformance are vanishingly rare. Even if
they were common, feeling comforted by having somebody to sue would be
missing the point.You did not want to be in a lawsuit; you wanted working
software.

So what is all that management overhead buying? In order to understand
that, we need to understand what software development managers believe
they do. A woman I know who seems to be very good at this job, says software
project management has five functions:

1. To define goals and keep everybody pointed in the same direction.
2. To monitor and make sure crucial details don't get skipped.
3. To motivate people to do boring but necessary drudgework.
4. To organize the deployment of people for best productivity.
5. To marshal resources needed to sustain the project.

Apparently worthy goals, all of these; but under the open-source model,
and in its surrounding social context, they can begin to seem strangely irrel-
evant. We will take them in reverse order.

My friend reports that a lot of resource marshalling is basically defensive;
once you have your people and machines and office space, you have to defend
them from peer managers competing for the same resources, and higher-ups
trying to allocate the most efficient use of a limited pool.

But open-source developers are volunteers, self-selected for both interest
and ability to contribute to the projects they work on (and this remains gener-
ally true even when they are being paid a salary to hack open source.) The
volunteer ethos tends to take care of the "attack"side of resource-marshalling
automatically; people bring their own resources to the table. And there is little
or no need for a manager to"play defense"in the conventional sense.

Anyway, in a world of cheap PCs and fast Internet links, we consis-
tently find that the only really limiting resource is skilled attention. Open-source
projects, when they founder, essentially never do so for want of machines or links
or office space; they die only when the developers themselves lose interest.

That being the case, it is doubly important that open-source hackers or-
ganize themselves for maximum productivity by sel f -select ion--and the
social milieu selects ruthlessly for competence. My friend, familiar with both
the open-source world and large dosed projects, believes that open source has
been successful partly because its culture only accepts the most talented 5
percent or so of the programming population. She spends most of her time

44 Knowledge, Technology, & Policy ! Fall 1999

organizing the deployment of the other 95 percent, and has observed first-
hand the well-known variance of a factor of one hundred in productivity be-
tween the most able programmers and the merely competent.

The size of that variance has always raised an awkward question: would
individual projects, and the field as a whole, be better off without more than
50 percent of the least able in it? Thoughtful managers have understood for a
long time tb.at if conventional software management 's only function were to
convert the least able from a net loss to a marginal win, the game might not be
worth the candle.

The success of the open-source community sharpens this question consid-
erably, by providing hard evidence that it is often cheaper and more effective
to recruit self-selected volunteers from the Internet than it is to manage build-
ings full of people who would rather be doing something else.

Which brings us neatly to the question of motivation. An equivalent and
often-heard way to state my friend's point is that traditional development
management is a necessary compensation for poorly motivated programmers
who would not otherwise turn out good work.

This answer usually travels with a claim that the open-source community
can only be relied on to do work that is"sexy"or technically sweet; anything
else will be left undone (or done only poorly) unless it is churned out by money-
motivated cubicle peons with managers cracking whips over them. I address
the psychological and social reasons for being skeptical of this claim in"Home-
steading the Noosphere." For present purposes, however, I think it is more
interesting to point out the implications of accepting it as true.

If the conventional, closed-source, heavily-managed style of software de-
velopment is really defended only by a sort of Maginot line of problems con-
ducive to boredom, then it is going to remain viable in each individual
application area for only so long as nobody finds those problems really inter-
esting and nobody else finds any way to route around them. Because the mo-
ment there is open-source competition for a "boring" piece of software,
customers are going to know that it was finally tackled by someone who chose
that problem to solve because of a fascination with the problem itself--which,
in software as in other kinds of creative work, is a far more effective motivator
than money alone.

Having a conventional management structure solely in order to motivate,
then, is probably good tactics but bad strategy; a short-term win, but in the
long-term a surer lose.

So far, conventional development management looks like a bad bet now
against open source on two points (resource marshalling, organization) - - a n d
also that it is living on borrowed time with respect to a third (motivation). And
the poor beleaguered conventional manager is not going to get any succor
from the monitoring issue; the strongest argument the open-source commu-
nity has is that decentralized peer review trumps all the conventional meth-
ods for trying to ensure that details do not get slipped.

Can we save defining goals as a justification for the overhead of conven-
tional software project management? Perhaps; but to do so, we will need good
reason to believe that management committees and corporate roadmaps

Raymond 45

are more successful at defining worthy and widely-shared goals than the
project-specific "benevolent dictators" and tribal elders who fill the analo-
gous role in the open-source word.

That is on the face of it a pretty hard case to make. And it is not so much the
open-source side of the balance (the longevity of Emacs, or Linus Torvalds's
ability to mobilize hordes of developers with talk of"world domination") that
makes it tough. Rather, it is the demonstrated awfulness of conventional mecha-
nisms for defining the goals of software projects.

One of the best-known folk theorems of software engineering is that 60
percent to 75 percent of conventional software projects are either never com-
pleted or rejected by their intended users. If that range is anywhere near true
(and I have never met a manager of any experience who disputes it) then
more projects than not are being aimed at goals which are either (a) not real-
istically attainable or (b) just plain wrong.

This, more than any other problem, is the reason that in today's software
engineering world the very phrase"management commit tee ' is likely to send
chills down the hearer's spine---even (or perhaps especially) if the hearer is a
manager. The days when only programmers griped about this pattern are long
past;"Dilbert"cartoons hang over executives" desks now.

Our reply, then, to the traditional software development manager, is simple
if the open-source community has really underestimated the value of conven-
tional management , why do so many of you display fear, loathing, and
contempt for your own process?

Once again the existence of the open-source community sharpens this ques-
tion considerably--because we have fun doing what we do. Our creative play
has been racking up technical, market-share, and mind-share successes at an
astounding rate. We are proving not only that we can do better software but
that joy is an asset.

Two and a half years after the first version of this article, the most radical
thought I can offer to close with is no longer a vision of an open-source-domi-
nated software world; that, after all, looks plausible to a lot of sober people in
suits these days.

Rather, I want to suggest what may be a wider lesson about software,
(and probably about every kind of creative or professional work). Human
beings generally take pleasure in a task when it falls in a sort of optimal-
challenge zone; not so easy as to be boring, not too hard to achieve. A
happy programmer is one who is neither underutilized nor weighed down
with ill-formulated goals and stressful process friction. Enjoyment tracks
efficiency.

Relating to your own work process with fear and loathing (even in a dis-
placed, ironic way) should therefore be regarded in itself as a sign that the
process has failed. Joy, humor, and playfulness are indeed assets; it was not
mainly for the alliteration that I wrote of"happy hordes" above, and it is no
mere joke that the Linux mascot is a cuddly, neotenous penguin.

It may well turn out that one of the most important effects of open source's
success will be to teach us that play is the smartest kind of work.

46 Knowledge, Technology, & Policy / Fall 1999

Further Reading

I quoted several bits from Frederick Brooks's classic The Mythical Man-Month
because, in many respects, his insights have yet to be improved upon. I heartily
recommend the 25th Anniversary edition from Addison-Wesley (ISBN 0-201-
83595-9), which adds his 1986"No Silver Bullet"paper.

The new edition is wrapped up by an invaluable twenty-years-later ret-
rospective in which Brooks forthrightly admits to the few judgements in
the original text which have not stood the test of time. I first read the retro-
spective after the first public version of this paper was substantially com-
plete, and was surprised to discover that Brooks attributes bazaar-like practices
to Microsoft! (In fact, however, this attribution turned out to be mistaken. In
1998 we learned from the"Halloween Documents"<http://www.opensource.org/
halloween/> that Microsoft's internal developer communi ty is heavily
balkanized, with the kind of general source access needed to support a bazaar
not even truly possible.)

Gerald Weinberg's The Psychology Of Computer Programming (NewYork:Van
Nostrand Reinhold,1971) introduced the rather unfortunately-labeled con-
cept of "egoless programming." While he was nowhere near the first person to
realize the futility of the "principle of command," he was probably the first to rec-
ognize and argue the point in particular connection with software development.

Richard Gabriel, contemplating the Unix culture of the pre-Linux era,
reluctantly argued for the superiority of a primitive bazaar-like model in
his 1989 paper "Lisp: Good News, Bad News, and How To Win Big."
Though dated in some respects, this essay is still rightly celebrated among
Lisp fans (including me). A correspondent reminded me that the section
titled "Worse Is Better" adumbrates Linux. The paper is accessible on the
World Wide Web at <http://www.naggum.no/worse-is-better.html>.

De Marco and Lister's Peopleware: Productive Projects and Teams (NewYork:
Dorset House, 1987; ISBN 0-932633-05-6) is an under appreciated gem which
I was delighted to see Fred Brooks cite in his retrospective. While little of what
the authors have to say is directly applicable to the Linux or open-source com-
munities, the authors' insight into the conditions necessary for creative work
is acute and worthwhile for anyone attempting to import some of the bazaar
model's virtues into a commercial context.

Finally, I must admit that I very nearly called this paper"The Cathedral and
the Agora,"the latter term being the Greek for an open market or public meet-
ing place. The seminal" agoric systems'papers by Mark Miller and Eric Drexler,
by describing the emergent properties of market-like computational ecolo-
gies, helped prepare me to think clearly about analogous phenomena in the
open-source culture when Linux rubbed my nose in them five years later.These
papers are available on the Web at <http://www.agorics.com/agorpapers.htmI>.

Epilog: Netscape Embraces the Bazaar

It is a strange feeling to realize you are helping make history. On 22
January1998, approximately seven months after I first published "The Ca-

Raymond 47

thedral and the Bazaar," Netscape Communications, Inc. announced plans to give
away the source for Netscape Communicator <http:/~'ww.netscape.com/newsref/pr/
neur3release558.html>. I had no due this was going to happen. Eric Hahn, ExecutiveVice
President and Chief Technology Officer at Netscape, emailed me shortly after-
wards as follows: "On behalf of everyone at Netscape, I want to thank you for
helping us get to this point in the first place. Your thinking and writings were
fundamental inspirations to our decision.'qhe following week I flew out to Silicon
Valley at Netscape's invitation for a day-long strategy conference (on 4 Feb. 1998)
with some of their top executives and technical people. We designed Netscape's
source-release strategy and license together.

A few days later I wrote the following:

Netscape is about to provide us with a large-scale, real-world test of the bazaar
model in the commercial world. The open-source culture now faces a danger; if
Netscape's execution does not work, the open-source concept may be so discred-
ited that the commercial world will not touch it again for another decade.

On the other hand, this is also a spectacular opportunity. Initial reaction to the
move on Wall Street and elsewhere has been cautiously positive. We are being given
a chance to prove ourselves, too. If Netscape regains substantial market share
through this move, it just may set off a long-overdue revolution in the software
industry. The next year should be a very instructive and interesting time.

And indeed it was. As I write in mid-1999, the development of what was
later named"Mozil la 'has been only a qualified success. It achieved Netscape's
original goal, which was to deny Microsoft a monopoly lock on the browser
market. It has also achieved some dramatic successes (notably the release of
the next-generation Gecko rendering engine).

However, it has not yet garnered the massive development effort from out-
side Netscape that the Mozilla founders had originally hoped for.The problem
here seems to be that for a long time the Mozilla distribution actually broke
one of the basic rules of the bazaar model; they did not ship something poten-
tial contributors could easily run and see working. (Until more than a year
after release, building Mozilla from source required a license for the propri-
etapy Motif library.)

Most negatively (from the point of view of the outside world) the Mozilla
group has yet to ship a production-quality browser- -and one of the project's
principals caused a bit of a sensation by resigning, complaining of poor man-
agement and missed opportunities."Open source," he correctly observed,"is
not magic pixie dust."

And indeed it is not. The long-term prognosis for Mozilla looks rather
better now (in July 1999) than it did at the time of Jamie Zawinski's resig-
nation letter--but he was right to point out that going open will not neces-
sarily save an existing project that suffers from ill-defined goals or spaghetti
code or any of the software engineering's other chronic ills. MoziUa has
managed to simultaneously provide an example of how open source can
succeed and how it could fail.

48 Knowledge, Technology, & Policy / Fall 1999

In the meantime, however, the open-source idea has scored successes and
found backers elsewhere. 1998 and late 1999 saw a t remendous explosion of
interest in the open-source development model, a trend both driven by and
driving the continuing success of the Linux operating system.The trend Mozilla
touched off is continuing at an accelerating rate.

A c k n o w l e d g m e n t s

This paper was improved by conversations with a large number of people
who helped debug it. Particular thanks to Jeff Dutky <dutky@wam. umd.edu>,
who suggested the"debugging is parallelizable" formulation, and helped de-
ve lop the ana lys i s t h a t p r o c e e d s f r o m it. Also to N a n c y L e b o v i t z
<nancyl@universe.digex.net> for her suggest ion that I emulate Weinberg by
quo t ing Kropotkin. Perceptive cri t icisms also came f rom Joan Esl inger
<wombat@kilimanjaro.engr.sgi.com> and Marty Franz <marty@net-link. net> of
the GeneralTechnics list. GlenVandenburg <glv@vanderburg.org> pointed out
the importance of self-selection in contributor populat ions and suggested the
fruitful idea that much development rectifies"bugs of omission"; Daniel Up-
per <upper@peak.org> suggested the natural analogies for this. I am grateful to
the members of PLUG, the Philadelphia Linux User's group, for providing the
first test audience for the first public version of this article. Paula Matuszek
<matuspOO@mh.us.sbphrd.com> enl ightened me about the practice of software
management . Finally, Linus Torvalds's comments were helpful and his early
endorsement very encouraging.

N o t e s

1. In Programming Pearls, the noted computer-science aphorist Jon Bentley comments on
Brooks's observation with"If you plan to throw one away, you will throw away two."He is
almost certainly right. The point of Brooks's observation, and Bentley's, is not merely that
you should expect first attempt to be wrong, it is that starting over with the right idea is
usually more effective than trying to salvage a mess.

2. John Hasler has suggested an interesting explanation for the fact that duplication of effort
does not seem to be a net drag on open source development. He proposes what I will dub
"Hasler's Law": the costs of duplicated work tend to scale sub-quadratically with team
size--that is, more slowly than the planning and management overhead that would be
needed to eliminate them.

3. This claim actually does not contradict Brooks's Law. It may be the case that total com-
plexity overhead and vulnerability to bugs scales with the square of team size, but that the
costs from duplicated work are nevertheless a special case that scales more slowly. It is not
hard to develop plausible reasons for this, starting with the unquestioned fact that it is
much easier to agree on functional boundaries between different developers' code that
will prevent duplication of effort than it is to prevent the kinds of unplanned bad interac-
tions across the whole system that underlie most bugs.

4. The combination of Linus's Law and Hasler's Law suggests that there are actually three
critical size regimes in software projects. On small projects (I would say one to at most
three developers) no management structure more elaborate than picking a lead program-
mer is needed. And there is some intermediate range above that in which the cost of
traditional management is relatively low, so its benefits from avoiding duplication of
effort, bug-tracking, and pushing to see that details are not overlooked actually net
out positive.

Raymond 49

5. Above that, however, the combination of Linus's Law and Hasler's Law suggests there is
a large-project range in which the costs and problems of traditional management rise
much faster than the expected cost from duplication of effort. Not the least of these costs
is a structural inability to harness the many-eyeballs effect, which (as we have seen) seems
to do a much better job than traditional management at making sure bugs and details are
not overlooked. Thus, in the large-project case, the combination of these laws effectively
drives the net payoff of traditional management to zero.

6. Examples of successful open-source, bazaar development predating the Internet explo-
sion and unrelated to the Unix and Intemet traditions have existed. The development of
the PKZIP compression utility during 1990-1992, primarily for DOS machines, was one
such. Another was the RBBS bulletin board system (again for DOS), which began in 1983
and developed a sufficiently strong community that there have been fairly regular releases
up to the present (mid-1999) despite the huge technical advantages of Internet mail and
file-sharing over local BBSs. While the PKZIP community relied to some extent on Intemet
mail, the RBBS developer culture was actually able to base a substantial on-line commu-
nity on RBBS that was completely independent of the TCP/IP infrastructure.

