
SPECIAL ISSUE

Designing for Trust: A Case of Value-Sensitive Design

Pieter E. Vermaas & Yao-Hua Tan &

Jeroen van den Hoven & Brigitte Burgemeestre &

Joris Hulstijn

Received: 8 April 2010 /Accepted: 24 July 2010 /Published online: 22 September 2010
The Author(s) 2010. This article is published with open access at Springerlink.com

Abstract In this paper, we consider the meaning, roles, and uses of trust in the
economic and public domain, focusing on the task of designing systems for trust in
information technology. We analyze this task by means of a survey of what trust
means in the economic and public domain, using the model proposed by Lewicki
and Bunker, and using the emerging paradigm of value-sensitive design. We explore
the difficulties developers face when designing information technology for trust and
show how our analysis in conjunction with existing engineering design methods
provides means to address these difficulties. Our main case concerns a concrete
problem in the economic domain, namely the transfer of control from customs
agencies to companies. Control of individual items is increasingly untenable and is
replaced by control on the level of companies aimed at determining whether
companies can be trusted to be in control of their business and to be in compliance
with applicable regulations. This transfer sets the task for companies to establish this
trust by means of information technology systems. We argue that this trust can be
achieved by taking into account philosophical analyses of trust and by including
both parties in the trust relationship as clients for whom the information technology
systems are to be designed.

Keywords Design methods . Design for trust . Information technology . Trust .

Value-sensitive design

Know Techn Pol (2010) 23:491–505
DOI 10.1007/s12130-010-9130-8

P. E. Vermaas (*) : J. van den Hoven
Philosophy Department, Delft University of Technology, Delft, The Netherlands
e-mail: p.e.vermaas@tudelft.nl

Y.-H. Tan
Information and Communication Technology Department, Delft University of Technology, Delft,
The Netherlands

B. Burgemeestre : J. Hulstijn
Faculty of Economics and Business Administration, VU University Amsterdam, Amsterdam,
The Netherlands

1 Introduction

A lack of trust can be expensive. Trust allows trusting parties to keep information and
transaction costs low and to enter into mutually beneficial interaction. Trust has,
therefore, started to be something of a holy grail in the world of information systems, web
services, IT tools, and ITapplications: if only users could distinguish warranted trust from
unwarranted trust, in financial services, in accounting, in medical online information, and
if only the IT environment could reliably capture and express trustworthiness.

In this paper, we consider trust in the economic and public domain, focusing on a
particular case in information technology (IT) in which IT developers face the task
of designing for trust. We analyze this task by means of a survey of what trust means
in the economic and public domain, and by means of the emerging paradigm of
value-sensitive design and existing engineering design methods. We argue that
designing IT systems for trust requires that all parties concerned must be seen as
clients for whom the systems are designed: if IT developers design an IT system for
a company with the aim that the company can be trusted by a third party, then that
third party should be involved as a second client for whom the system is designed.
We analyze the overall and general value of trust in terms of series of more specific
values for which the IT systems are to be designed, and we describe two design
methods for doing so.

Our case originates in the context of a concrete problem in the economic domain,
namely the transfer of control from authorities and government agencies to
companies. There is currently a tendency to exercise control, monitoring, and
inspection of the business of companies on a higher level of aggregation. Controlling
on an item level, that is, monitoring or inspecting each and every container, each and
every individual food product, or each and every financial transaction, is in many
contexts typically no longer physically or economically possible. Governmental
inspection agencies such as customs, tax, and food safety control agencies are,
therefore, increasingly looking directly at the level of the companies themselves in
order to determine which can be trusted to be in control of their business and to be in
compliance with applicable regulations. In turn, companies are by this tendency now
faced with the task of establishing this trust, and they typically turn to IT systems
designs for fulfilling this task. Nevertheless, companies have difficulty designing for
trust in this way, a difficulty we set out to analyze with philosophical and design
methodological resources.

We start by introducing our case in Section 2, which is called system-based
control as developed by the Dutch Tax and Customs Administration for controlling
companies operating in the Netherlands. We analyze the task of designing IT
systems that establish the required trust in Section 3, drawing from the model of trust
by Lewicki and Bunker. Finally, we collect means to design for trust in Section 4 on
value-sensitive design, and in Section 5 on design methodology.

2 System-Based Control

Governments have the responsibility to check whether companies are compliant with
regulations in various areas such as health, safety, security, tax, and customs.

492 P.E. Vermaas et al.

Typically, this control is exercised in a command-and-control fashion, where
companies are required to provide large amounts of control data about their business
to government agencies, and in addition to checking this data, the agencies have to
perform all kind of inspections and checks on the businesses. Providing this data and
facilitating the inspections have become such an administrative burden for
companies that the European Commission has started an initiative to reduce the
burden by 25%. Hence, in recent years, governments have been looking into new
supervision models that build on the responsibility and participation of companies,
also called public–private partnerships. Trust plays a prominent role in these new
participative supervision models, and it acquires also a different meaning. In the
traditional deterrence models, trust in the compliance of companies is built up by the
agencies on the basis of their ongoing checks of the companies’ business practices.
In the new models, the companies themselves are required to establish the trust in
their businesses, and companies are expected to do so by demonstrating that they
themselves can be trusted to be in control of their businesses. Meeting these
requirements poses a difficult challenge to companies. IT systems are currently the
appropriate means for companies to provide information about their business
practices to government agencies; with the traditional deterrence models, IT systems
can be designed to make the required control data available. With the new participative
models, however, companies are expected to generate trust of being in control, and it is
currently unclear to companies how they can design IT systems that do this.

For analyzing the difficulties involved in designing IT systems for trust, we first
introduce a specific case of a participative supervision model. In the next section, we
focus on the shift in the meaning of trust that this model entails.

Our case is a governance strategy that is currently being explored by the
Netherlands Tax and Customs Administration (Dutch Customs, for short) and that is
called system-based control. In system-based control, the focus is less on the control
of commercial transactions and movement of goods by a company, and more on the
underlying procedures that the company has implemented to control its own
business processes. System-based control can thus be considered as a form of
enforcement that is based on mutual cooperation and trust between taxpayer and tax
administration (Gribnau 2008; Kamerling and van der Putten 2007). Typically, these
internal control procedures are made possible by enterprise information systems. The
aim of system-based control is to enhance taxpayer compliance while at the same
time achieving a more effective allocation of Dutch Customs resources. In system-
based control, a company receives more responsibilities and is expected to interpret
the legislation and to implement appropriate compliance measures and to provide
evidence of its progress. The tax administration must enforce compliance by guiding
the company and monitoring its progress. A penalty may be imposed only if
progress is inadequate. In practice, Dutch Customs often works with a certification
scheme. Companies that are able to demonstrate that they are in control of their
business processes and that they are compliant may apply for a so-called Authorized
Economic Operator (AEO) certificate or covenant that will give them less
supervision and a lower administrative burden in return (European Commission
2007). Companies that do not have a certificate will also not receive these benefits
and will be under stricter supervision, since they will be perceived by Dutch
Customs as being unable to reach a sufficient level of compliance.

Designing for Trust: A Case of Value-Sensitive Design 493

For system-based control, Dutch Customs must establish the reliability of the
company’s internal control framework. This forms the basis for their trust in the
company’s record keeping. Companies have some grasp of what reliability means in
this context: the Committee of Sponsoring Organizations of the Treadway
Commission (COSO) has provided a well-known standard for setting up an internal
control framework, which typically applies to control frameworks implemented in
enterprise information systems (COSO 1992). The standard recommends:

& A control environment where integrity and ethical values are supported by the
top echelons of management throughout the organization.

& Risk assessment is performed to identify and manage risks relevant to the
organization.

& Control activities such as policies, procedures, and processes are implemented to
ensure that a company carries out management directives (examples include
approvals, verifications, reconciliations, reviews of operating performance,
security of assets, and segregation of duties).

& Relevant company data contained in the information system should be
communicated in the organization and to the relevant stakeholders.

& Ongoing monitoring to assess the quality of a company’s internal control
systems.

In addition, the company must evaluate whether the proposed system has been
implemented effectively. To provide some guidance on what is considered “effective
implementation” customs refers to the COSO internal control guidelines (COSO
1992; European Commission 2007). The scores range from

0: “no control measures in place”
1: “internal control is ad hoc and unorganized”
2: “internal control has a structured approach”
3: “internal control is documented and known”
4: “internal control is subject to internal audits and evaluation”
5: “internal control measures are integrated into the business processes and

continuously evaluated”

In turn, this scoring provides Dutch Customs with an indication of the maturity level
of the company’s self-controlling abilities.

Despite this COSO standard, it appears to be very difficult for companies to adapt
their enterprise information systems so that they meet the value of being in control.
From the various case studies conducted, it appears that the IT departments of these
companies have great difficulties translating a high-level goal such as being in
control into real IT applications, as required by the first recommendation of the
COSO standard (Ayres and Braithwaite 1992; Burgemeestre et al. 2009, 2010). One
reason for this difficulty is that there is no direct translation from abstract norms and
values into IT systems and programming code. Hence, there seems to be a great
demand for a methodology that IT experts can use when interpreting high-level
norms and values for IT systems. A second reason is that in the case of participative
supervision models, companies should design their IT systems for the value of being
in control in such a way that government agencies like Dutch Customs trust the
companies to be in control. When establishing that trust, merely designing for being

494 P.E. Vermaas et al.

in control does not go far enough, as can be argued when looking at trust in more
detail.

3 Three Stages of Trust

In their model, Lewicki and Bunker (1995, 1996) identify three sequential,
cumulative stages of trust: calculus-based trust, knowledge-based trust, and
identification-based trust (Table 1).

In the first stage, calculus-based trust is based on the consistency of companies’
behavior and involves a continuous evaluation by government agencies leading to
penalties for violations of trust and rewards for preserving it. This is the typical
situation in the traditional command-and-control attitude of Dutch Customs, where
they only trust companies after frequent inspections, and where they penalize
companies if they detected a violation on inspection. This is a very minimalistic
notion of trust.

The second stage of knowledge-based trust occurs when government agencies
have enough knowledge about companies to understand them and to predict their
likely behavior. A typical example of this type of trust is that Dutch Customs
understands a company’s economic reasoning and that it knows how the company
makes tradeoffs between profit maximization against the cost of the penalties and the
likelihood of fraudulent practices being detected. Dutch Customs can use this
knowledge about the company’s preferences to predict the company’s behavior.

Identification-based trust, the highest level of trust, is based on the identification
of the desires and intentions of companies by government agencies. This is the
public–private partnership situation where a company is signaling to Dutch Customs
that they are willing to balance their profit maximization with societal responsibility
and good corporate governance by implementing measures and enterprise
information systems for being in control of their own processes. In this case, Dutch
Customs would be able to expect responsible behavior from the company and be
more confident that the company will in fact pay the taxes and customs duties it
owes. In this case, genuine trust exists, because there is a mutual understanding and
appreciation of each others’ norms and values. The mutual understanding has

Table 1 Trust basis and information needs of governments for each trust stage

Stage of trust
development

Calculus-based Knowledge-based Identification-based

Trust basis Consistency of
behavior

Predictability of
behavior

Identification and understanding

Information needs of
governments to
determine trust validity
of companies

Actual behavior Behavior in various
contexts

Mutual understanding of each others’
needs and desires

Problem-solving
strategies

Requirements for maintaining trust

Needs, preferences,
priorities

Commonly shared values

Designing for Trust: A Case of Value-Sensitive Design 495

reached a level where parties are able to act on behalf of the other. This requires the
company to espouse societal values and responsibility on the one hand (which
relates to a company being in control of its own business processes). On the other
hand, it requires Dutch Customs to understand that they should actively enable
companies to maximize their profits. In particular, Dutch Customs should take the
responsibility to reduce the transaction costs incurred by inspections and, hence,
minimize the transaction costs of inspections of trusted companies, such as AEO
certificate holders.

Since each stage has a different basis on which trust is built, the parties in the trust
relationship use different information in each stage to determine the validity of the
trust relationship. For the relationship to evolve to the next stage, sufficient
information that supports the validity of the perceived trust must be gathered. The
table below summarizes the trust bases and accompanying information needs of
government agencies for each stage.

The model of Lewicki and Bunker makes clear that if trust in the full, genuine
sense of identification-based trust is to be established between companies and
governments in participative supervision models, then companies will have to do
more than just making information about their businesses available. IT systems that
merely make control data available would be sufficient for establishing calculus-
based trust. IT systems that make business processes transparent and that make clear
that companies are in control of these processes in accordance with the COSO
standard, may easily establish simple knowledge-based trust by providing only for
the information needs of government agencies in the second stage of trust. For full
identification-based trust, the IT systems of companies should also incorporate and
acknowledge the needs and values of these agencies. A complication in taking this
last step is that it can be argued that incorporating governmental needs and values is
something different from merely providing more or different information. These
governmental needs and values should rather serve as input for designing the IT tool,
which practically turns the designing of such tools into a project in which IT
developers not only design a system for their companies but also for the government
agencies concerned.

Designing for trust for being in-control in the eyes of Dutch Customs seems,
therefore, to consist of designing a reliable enterprise information system, based on,
say, principles of accountancy and EDP (e.g., principles such as segregation of
duties, four-eyes-principle, accountability, (audit-)traceability, etc.) that meets the
COSO standard. It also seems to involve accepting Dutch Customs as a primary
client of the enterprise information system, with whom the company IT developers
should argue and negotiate whether the system serves the client’s purposes. Such
arguments and negations moreover serve the dual purpose of exchanging norms and
signaling that both parties care about these norms, in line with the classical analysis
by McCauley (1963) of how the process of contract negotiation builds trust between
companies. Companies and Dutch Customs exchange their norms when companies
walk Dutch Customs through their business processes and present their internal
control procedures; Dutch Customs indicates if they agree or not; and companies
signal that they care about the values of Dutch Customs and how these values
constrain the behavior of the company. This is precisely what identification-based
trust focuses on in public–private partnerships.

496 P.E. Vermaas et al.

4 Value-Sensitive Design

Designing IT systems for trust, or more generally, designing technical systems for
high-level values such as trust, justice, fairness, and safety, implies that software
developers and systems designers must see to it that systems inherit these values.
Moreover, they have the task of demonstrating that the systems they design have
these properties and that users see them as being imbued with the desired values.

In order to grasp the implications of the tasks for engineering when designing for
trust, it is important to realize that in addition to separating the three cumulative
stages of trust that we discussed above, full-fledged trust should be distinguished
from mere epistemic confidence. Trust is a distinctively moral phenomenon, i.e.,
morality is constitutive of the phenomenon of trust. Trust between people is crucially
concerned with assumptions or beliefs about the benevolence and moral motivation
of others. In deciding to trust or in developing trust, individuals, therefore, typically
look for evidence or reliable signals indicative of the moral motivation of the other
party. Confidence is an epistemic category and, as such, is concerned with an
estimation or prediction of the likelihood of a particular performance and behavior
by a system or person. In this sense, one may trust one’s plumber to fix the kitchen
sink or to have a fair bit of confidence in her abilities as a plumber. She strikes one
as competent if she has a documented history of doing good plumbing jobs in these
cases, if she has brought all the right gear, if she seems to make sensible remarks
about your problems, etc. This confidence is, however, different from trusting this
plumber with the silverware in the kitchen drawer or trusting her not to overcharge
you or to provide an honest statement of her competencies in the light of the tasks
before her. If this construal of the core notion of full-fledged trust as implying proper
moral motives and acting upon appropriate moral reasons is correct, then it is
essential that factual information is supplemented with statements about moral
beliefs and moral identity. A certain level of moral openness, transparency, and
articulateness is required to go beyond confidence and establish trust.

We think that the notion of value-sensitive design is highly relevant to a better
understanding of what is required in the context of designing for trust. Value-
sensitive design (see Van den Hoven and Manders-Huits (2009) for an introduction)
refers to an approach to ethics or dealing with value issues that aims firstly at
expressing or incorporating values in technological and engineering design and,
secondly, at analyzing technology in such a way as to show which values it
expresses. This assumes that human values, norms, and moral considerations can be
imparted to the things we make and use. The idea of value-sensitive design
originates historically from three more or less independent lines of inquiry. The first
is given by work done in the early 1990s by a group of Stanford University
researchers dealing with Language, Computation, and IT, comprising Terry Winograd,
Batya Friedman (who coined the term), and John Perry (Friedman 1997). This work
showed that software and computer systems could easily come to contain biases,
arbitrary assumptions, and the peculiar worldviews of their designers, which could
then affect users in various ways. Research on biases in search technology and
interfaces is a good example of their work. A second line concerns legal scholars who,
at around the same time, observed that regulation in society was taking place by means
of computer code and software. Code started to function as law and laws would in the

Designing for Trust: A Case of Value-Sensitive Design 497

future literally be encoded, as Joel Reidenberg and Larry Lessig pointed out (see
Lessing 1999, for this approach). Thirdly, advocates of so-called privacy enhancing
technology at the Dutch and Canadian Data Protection Offices observed that
technology itself, instead of traditional law, was probably the only way in which we
could deal with privacy compliance and law enforcement issues given the increasing
amount of dynamic privacy laws and regulations and the vast amount of data that are
processed in our society (Borking and Raab 2001). They emphasized that privacy
should be protected “by design.” It is impossible to have lawyers check manually whether
certain data practices are in breach or in compliance with the law. The software would in
the long run have to take care of that on our behalf, and not only in the area of privacy.

These three developments are situated against a more general background of
thinking about the value-ladenness of technology. In his 1980 political critique of
technology, Winner (1980) showed that simple engineering structures (such as bridges
and overpasses) could actually have political and moral consequences because they
constrained the people using them. And in cognitive psychology, a new way of
thinking emerged about the way technical systems immediately invite and facilitate
certain behavior in those who experience them (Gibson 1979; Norman 1988).

Design for values requires that values are specified and exemplified. Recon-
structed moral value concepts, e.g., democracy, justice, responsibility, privacy, may
function as high-level architectural principles for the design of information systems
and IT applications. These principles can be utilized as non-functional requirements,
analyzed in lower level values, and eventually specified in functional specifications
for the development of IT applications using, for instance, functional decomposition.

In this paper, we are looking at trust between organizational entities, whereas
much research is concerned with trust relationships between individuals. In this latter
research, the design perspective is emphatically taken into account. Bicchieri and
Lev-On (2010) argue, for example, on the basis of extensive laboratory research and
meta-analyses of trust games that communication preceding game play is highly
relevant for establishing trust between players. They also find that the nature and
richness of the communication channel is important, as is the content of the
communication, e.g., is it dyadic or multi-actor, or is it about the strategic interaction
or about completely different things. If these findings are also significant for
establishing trust between organizational entities, then the design of interfaces for IT
tools establishing e-trust becomes extremely important. Furthermore, designers are
then faced with questions such as: which information about reputations, history, and
identity should be made available; how much of this information should be made
available; and when, i.e., in which phases of the usages of the tool, should this be
done. Moreover, the question of how information should be presented must also be
posed. “These design decisions can push subjects toward or away from trust and
cooperation” (Bicchieri and Lev-On 2010).

The institutional and regulatory case that is central to our paper is not very
different in this respect. We need to identify what is involved in this notion of trust
and how systems in a broad sense may be designed so that they are conducive to the
establishment of trust in this specific sense. Our description and analysis of the three
cumulative stages of trust in the previous section and the distinction between full-
fledged trust and mere epistemic confidence analyzed in this section already presents
the main lower-level values that are relevant for designing IT tools for trust.

498 P.E. Vermaas et al.

The design for calculus-based trust for example, expressly implies that a constant
stream of relevant data must be made available by companies and that mechanisms
must be in place that make tampering with data impossible. In addition, facilities for
audits, monitoring, and checks are implied by this notion of trust. The design for
knowledge-based trust goes one step further and requires, in addition to providing
safeguards for the reliability of data, documentation of actions, actors, and agents,
provisions for displaying the identity of companies, and the transparency of business
processes themselves. Moreover, there should be a commitment in advance to repair
errors in case of bad outcomes and violations of these requirements and to accept
liability for these outcomes and violations. The highest rung of the ladder of trust is
identification-based trust. This level of trust requires insight into the highest level of
company strategy, establishing company values and missions and allowing key-
queries identified by control-transferring governmental authorities and agencies.
Companies should also be proactive in the value domain by initiating inquiries and
exploring the value issue themselves. Companies are to engage in reflection on their
own responsibility towards society in what could be called “spontaneous value
reflexivity.” Parties that have never thought about trust and responsibility and have
not thought about how to realize this in their organization or are only prompted to
such thinking when confronted by scandals, penalties, and negative media attention,
seem less worthy of trust. A particular example of spontaneous value reflexivity that
we observed in case studies was that of a large international chemical company with
branches in various EU member states. The company reported to Dutch Customs
that they themselves had discovered that—due to certain flaws in the cross-border
VAT control procedures in the EU—there was a possibility that they were paying
substantially less VAT than they should under applicable VAT legislation. Dutch
Customs saw this as an indication that the company was taking care of their
concerns and that this company was taking its societal responsibility seriously. It
greatly enhanced the trust Dutch Customs placed in this company, and this is
considered to be a prime example of system-based control.

5 Design Methods

We have argued that when companies design IT systems for establishing trust with
government agencies, these systems need to incorporate the values identified in the
previous section. According to the analysis of Section 3, designing for trust
ultimately implies that these systems are not merely designed for the companies
involved but that government agencies are also recognized as clients of the IT
systems, rather than merely as their users. When turning to methods for designing
and introducing the distinction between clients and users, the latter implication can
be easily accommodated. According to descriptions of the design process as
provided by design researchers, designing starts with a client expressing specific
needs. The task of designers is then to develop a system that can realize these needs,
taking into account additional design requirements such as efficiency, the technical
state-of-the-art, manufacturability, and costs. Designing typically also includes
communication with the clients about their needs, aimed at articulating and detailing
the needs and adjusting them so that they can be realized given the additional

Designing for Trust: A Case of Value-Sensitive Design 499

requirements of efficiency, the technical state-of-the-art, etc. Clients, as opposed to
users, are thus those agents who order technical systems to be designed by engineers,
and they are the agents with whom engineers collaborate when designing the
systems. Clients come thus first in more than one meaning, where users come last,
since users are agents who use the system without directly influencing its design (in
special cases, agents may play both the active role of client and the passive role of
user). The implication that IT systems have both the companies and government
agencies as their clients then means that both parties are involved in the
communication with the designers about what the IT systems need to do.

Our introduction of value-sensitive design as a new approach to designing suggests
that existing design methods are not yet suited for designing for values. Designing may
indeed seem a value-neutral activity, for instance when it is taken as a primarily
instrumental process in which designers merely develop systems in response to needs of
clients. The values involved in these systems are then only values held by the clients,
and values for which users manipulate the systems. Yet, even in an instrumentalistic
approach like this, values are involved in the design process; safety value is one
example. In a more general sense, designers have ample experience with designing for
ergonomic values of systems and for the values of buyers of more commercial systems.
When cars or household products are redesigned, for instance, designers have methods
to let the products better fit the needs and desires of buyers and customers. Hence, the
values identified in the previous section as relevant to IT systems designed for trust may
simply be incorporated as additional needs that the designers of these systems have to
address when they are developing IT systems.

Without aiming to list all possible methods designers have to their disposal, we
can characterize designing as primarily an activity in which new design problems are
solved on the basis of existing design solutions. In the case of the redesigning of
existing products, this use of existing design solutions is obvious. Redesigning starts
with an existing design and aims at an improved version on the basis of the existing
design. Even when designing new products or systems, however, designers draw on
their knowledge of existing design solutions. In the methods by Pahl et al. (2007),
designers are initially required to translate client needs into functional requirements
(and further requirements) in a conceptual phase and then to analyze these functional
requirements into a network of subfunctions. Existing design solutions for these
subfunctions are then used to come up with the overall design solution. In studies of
more creative, innovative design processes aimed at solving ill-defined design
problems, designers are described as structuring these problems and making them
manageable by choosing solution directions that originate in the designers’
experience with past design problems (e.g., Cross 2006). A first conclusion is,
therefore, that designing IT systems for trust is better not understood as entailing
designing completely new IT systems; what will happen rather is that existing
enterprise information systems will be redesigned for trust or that components of
existing IT systems will be reassembled for trust. In addition, design research
provides various means to support such design and redesign processes, means which
also allow for incorporating values. We now end with sketching two design methods
in some detail: Quality Function Deployment as a rather structured method for
determining starting points for redesigning and the less structured description of
more creative designing as the co-evolution of design problems and their solutions.

500 P.E. Vermaas et al.

Quality Function Deployment (QFD) is primarily a tool for adjusting existing
products to let them better meet the requirements of customers (King 1989; Akao
1990). In QFD, one typically starts by identifying the relevant users of a product to
be redesigned and by determining what these users value in the product. This
valuation sets user requirements and these requirements are then employed by
designers to identify the quantitative characteristics of the product that are relevant to
meeting the user requirements, acknowledging that there is a difference between the
way in which users formulate their requirements and the way in which designers
describe the products they design. The relationship between these user requirements
and product characteristics is determined one by one, which may be done in a
qualitative or quantitative way, using symbols or values like 0, 1, 3, and 9. As such,
QFD results in a matrix (see Fig. 1), in which by convention user requirements (with
weight factors that indicate their relative relevance) are listed in rows, and the
product characteristics are listed in columns (with a possible prioritization). This
matrix is topped by a roof which contains the positive and negative correlations
between the product characteristics (the QFD term for the matrix is the “house of
quality”). The method allows more information about users and product to be added,
like users’ appreciation of competitors’ products, the (quantitative) values of the
characteristics of those other products, and the target (quantitative) values of the
product characteristics of the product to be designed (which are typically determined
in contrast to the competitors’ products). Still, the matrix as shown in Fig. 1 already
provides ample information to designers about how to improve the product: it
provides information on what users value, what characteristics are relevant for
improving the appreciation of the product by these users, and how changes in these
characteristics depend on one another. Moreover, it is part and parcel of the QFD

User
Requirements

Requirement-
Characteristic
Relationships

Characteristic-
Characteristic
Relationships

Artefact
Characteristics

Weight Factors

Prioritisation

Target Values

Fig. 1 The “house of quality”
in QFD

Designing for Trust: A Case of Value-Sensitive Design 501

method that the users themselves express what they value in the product in their own
nontechnical terms, as is typically revealed by marketing research; designers are
merely required to identify the relevant product characteristics and their relations to
these user requirements.

For the case of designing IT systems for trust, the QFD method is readily
available for redesigning existing enterprise information systems. Application of this
method would mean that the values derived from trust as identified in the previous
section are listed as user requirements and that IT developers analyze which of the
characteristics of their existing systems are relevant to meeting these values. This
analysis then can be used for redesigning enterprise information systems to better
meet the values related to trust.

Redesigning enterprise information systems on the basis of QFD may, in
principle, be a simple matter of adjusting the characteristics relevant for trust, and
then evaluating and detailing the resulting new systems, for instance by invoking the
users to assess the new systems once again. This simple linear approach to designing
need not always work, which can be made clear with the second model of more
creative designing as the co-evolution of design problems and their solutions. In the
second model, it becomes clear that a change in a solution to a design problem may
also create a change in the problem, creating new requirements that users may bring
up in assessing the solution. The designing or redesigning of enterprise information
systems may then lead to an ongoing cycle of adjustments in the systems and
adjustments in the requirements government agencies put on these systems.

In this second model, designers start by considering a design problem that does
not suggest an immediate solution. Designers have to develop the solution, and in
doing so, drawing from their past experiences with designing, they not only create a
solution or solution direction but also change the original problem. Designing
becomes in this way a process in which a “space” of design solutions co-evolves
with a “space” of design problems (Cross and Dorst 1998; Cross 2006). The choice
for a specific general solution to a problem may put that problem in a new light,
yielding a more clear understanding of that problem, with the subsequent
consequence that another general solution should be sought. Or a solution to a part
of the original problem may yield to that better understanding of the problem.
Designing then becomes a succession of syntheses of solutions and analyses of those
solutions and the effects they have on the problem. The designer looks for a
problem–solution pair that “matches,” in that the solution is an acceptable response
to the way in which this solution sets down the original problem. Finding that
specific pair is the creative leap in designing, when it is recognized that a tenable
map is found that bridge the co-evolving problem and solution spaces.

This model does not provide cookbook recipes for guiding the design of IT
systems that establish trust with government agencies, but it may provide the proper
way of understanding this design, for instance by explaining the iterations needed.
Merely adjusting existing enterprise information systems such that they better meet
the requirements set by government agencies may not yet be the creative leap that
companies need to take to satisfy these agencies. In this model, an adjustment like
this may change the problem agencies have, inciting new requirements from the
agencies. Actually, our cases studies showed that the fundamental problem is that the
IT developers are typically not experts on interpreting high-level values as to what it

502 P.E. Vermaas et al.

means for a company to be in-control. On the other hand, the EDP auditors from
Dutch Customs may very well be experts at analyzing in-control issues, but they
typically do not have the detailed knowledge that IT experts from the company do to
know all the relevant business process. To some extent, redesigning an IT system to
be in-control has almost the same software complexity level as solving the infamous
millennium-bug problem that happened at the turn of the century. What we observed
in the case studies was a complex negotiation process that evolved between the
experts of the company and of Dutch Customs, which is probably best analyzed as
the abovementioned process in which a “space” of design solutions co-evolves with
a “space” of design problems. Typically, in the case studies, there is a co-evolution
process taking place in which the company proposes a space of redesign options for
their IT systems to become in-control, and Dutch Customs incrementally
reformulates its interpretation of how they view in-control in the specific context
of this company. The process we observed also had elements of co-creation of a
space of shared values related to the issue of being in-control, where the
contributions of the company and Dutch Customs are equally important. Another
interesting observation is that Dutch Customs explicitly stated that they wanted to be
acknowledged by the company in this negotiation process not as an opponent, but as
one of their key stakeholders, reflecting the societal responsibility of the company.
Hence, the outcome of this process is not only an improved IT system for being in-
control in the company but more importantly the process of co-creation of these
shared values. These shared values constitute the foundation of the enhanced trust-
based relationship in system-based control. Hence, what is needed is that companies
design their IT systems for trust, acknowledging the government agencies as clients
and as users of the systems, with requirements that can be related to these systems
with tools like QFD, and with requirements that can change as a result of the
designing of the IT systems.

6 Conclusions

In this paper, we considered trust in the economic and public domain, analyzing the
task of designing systems for trust in information technology, focusing on our
specific case of companies and the trust relationship with Dutch Customs through
information technology systems. We introduced the model by Lewicki and Bunker
to separate the three cumulative stages of calculus-based trust, knowledge-based
trust, and identification-based trust, showing that each stage requires the provision of
additional types of information for establishing trust. We distinguished trust from
mere epistemic confidence, showing that for establishing trust over mere confidence
a certain level of moral openness, transparency, and articulateness is required. We
introduced the paradigm of value-sensitive design and two engineering design
methods to argue that information technology developers and engineers can design
for high-level values such as trust: these high-level values can be analyzed in terms
of lower level values that can be more easily incorporated as requirements in
designing, and existing design methods such as quality function deployment already
provide means to design for values. Moreover, in design methods, it is standard that
engineers argue and negotiate with their clients, suggesting that both parties in the

Designing for Trust: A Case of Value-Sensitive Design 503

trust relationship should be seen as clients for whom information technology systems
are designed.

Our analysis of the task of designing for trust may be taken as a case of value-
sensitive design. In this approach, the high-level value of trust is examined and broken
down into lower-level values and requirements that can be used by engineers in their
decisions in designing technical systems, thus guiding engineers when designing such
systems and helping to avoid a situation in which the designed systems, once completed,
are judged afterward to be deficient with regard to values. Philosophical accounts and
analyses of these values have shown to be instrumental to designing for trust, as may be
expected; what was perhaps less expected is that we showed that engineering design
methods already incorporate means for designing for trust.

Acknowledgement We would like to thank Marc de Vries and acknowledge his authorship of Fig. 1. The
research by Pieter Vermaas was supported by the Netherlands Organization for Scientific Research (NWO).

Open Access This article is distributed under the terms of the Creative Commons Attribution
Noncommercial License which permits any noncommercial use, distribution, and reproduction in any
medium, provided the original author(s) and source are credited.

References

Akao, Y. (Ed.). (1990). Quality function deployment: Integrating customer requirements into product
design. Cambridge: Productivity.

Ayres, I., & Braithwaite, J. (1992). Responsive regulation: Transcending the deregulation debate. Oxford:
Oxford University Press.

Bicchieri, C., & Lev-On, A. (2010). Studying the ethical implications of e-trust in the lab. Ethics and
Information Technology, in press

Borking, J. J., & Raab, C. D. (2001). Laws, PETs and other technologies for privacy protection. The
Journal of Information, Law and Technology, 2001 (1) http://www2.warwick.ac.uk/fac/soc/law/elj/jilt/
2001_1/borking

Burgemeestre, B., Hulstijn, J., & Tan, Y.-H. (2009). Rule-based versus principle-based regulatory
compliance. In G. Governatori (Ed.), Proceedings of JURIX 2009 (pp. 37–46). Amsterdam: IOS.

Burgemeestre, B., Hulstijn, J., & Tan, Y.-H. (2010). Towards an architecture for self-regulating agents: A
case study in international trade. Lecture Notes in Computer Science, 6069, 320–333.

Committee of Sponsoring Organizations of the Treadway Commission, COSO (1992). COSO. Internal
control integrated framework. Technical report

Cross, N. (2006). Designerly ways of knowing. London: Springer.
Cross, N., & Dorst, K. (1998). Co-evolution of problem and solution spaces in creative design:

Observations from an empirical study. In J. Gero & M. L. Maher (Eds.), Computational models of
creative design IV (pp. 243–262). Sydney: University of Sydney.

Gribnau, H. (2008). Soft law and taxation: the case of the Netherlands. Legisprudence, 1, 291–326.
European Commission. (2007). AEO guidelines, technical report TAXUD/2006/1450. Brussels: General

Taxation and Customs Union.
Friedman, B. (Ed.). (1997). Human values and the design of computer technology, CSLI lecture notes 72.

Cambridge: Cambridge University Press.
Gibson, J. J. (1979). The ecological approach to visual perception. Boston: Houghton-Mifflin.
Kamerling, R. N. J., & van der Putten, J. A. M. (2007). Tax auditing in the Netherlands. Usselo: Dutch

Tax and Customs Administration.
King, B. (1989). Better design in half the time: implementing QFD in America. Methuen: GOAL/QPC.
Lessing, L. (1999). Code and other laws of cyberspace. New York: Basic.
Lewicki, R. J., & Bunker, B. B. (1995). Trust in relationships: a model of trust development and decline.

In B. B. Bunker & J. Z. Rubin (Eds.), Conflict, cooperation and justice (pp. 133–174). San Francisco:
Jossey-Bass.

504 P.E. Vermaas et al.

http://www2.warwick.ac.uk/fac/soc/law/elj/jilt/2001_1/borking
http://www2.warwick.ac.uk/fac/soc/law/elj/jilt/2001_1/borking

Lewicki, R. J., & Bunker, B. B. (1996). Developing and maintaining trust in work relationships. In R. M.
Kramer & T. R. Tyler (Eds.), Trust in organizations: frontiers of theory and research (pp. 114–139).
Thousand Oaks: Sage.

McCauley, S. (1963). Non-contractual relations in business: a preliminary study. American Sociological
Review, 28(1), 55–67.

Norman, D. A. (1988). The psychology of everyday things. New York: Basic.
Pahl, G., Beitz,W., Feldhusen, J., & Grote, K. H. (2007).Engineering design: a systematic approach (3rd ed.).

London: Springer.
Van den Hoven, J., & Manders-Huits, N. (2009). Value sensitive design. In J. K. B. Olsen, S. A. Pedersen,

& V. F. Hendricks (Eds.), A companion to the philosophy of technology (pp. 477–481). Chichester:
Wiley Blackwell.

Winner, L. (1980). Do artifacts have politics? Daedalus, 109, 121–136.

Designing for Trust: A Case of Value-Sensitive Design 505

	Designing for Trust: A Case of Value-Sensitive Design
	Abstract
	Introduction
	System-Based Control
	Three Stages of Trust
	Value-Sensitive Design
	Design Methods
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

