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Abstract Ion mobility–mass spectrometry is often applied
to the structural elucidation of multiprotein assemblies in
cases where X-ray crystallography or NMR experiments
have proved challenging. Such applications are growing
steadily as we continue to probe regions of the proteome
that are less-accessible to such high-resolution structural
biology tools. Since ion mobility measures protein structure
in the absence of bulk solvent, strategies designed to more-
broadly stabilize native-like protein structures in the gas-
phase would greatly enable the application of such measure-
ments to challenging structural targets. Recently, we have
begun investigating the ability of salt-based solution addi-
tives that remain bound to protein ions in the gas-phase to
stabilize native-like protein structures. These experiments,
which utilize collision induced unfolding and collision in-
duced dissociation in a tandem mass spectrometry mode to
measure protein stability, seek to develop a rank-order sim-
ilar to the Hofmeister series that categorizes the general
ability of different anions and cations to stabilize gas-
phase protein structure. Here, we study magnesium chloride
as a potential stabilizing additive for protein structures in
vacuo, and find that the addition of this salt to solutions
prior to nano-electrospray ionization dramatically enhances
multiprotein complex structural stability in the gas-phase.
Based on these experiments, we also refine the physical
mechanism of cation-based protein complex ion stabiliza-
tion by tracking the unfolding transitions experienced by
cation-bound complexes. Upon comparison with unbound
proteins, we find strong evidence that stabilizing cations act
to tether protein complex structure. We conclude by putting

the results reported here in context, and by projecting the
future applications of this method.
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Introduction

Proteins are amongst the most versatile macromolecules in
living systems, and serve crucial functions in essentially all
biological processes in a manner dependent upon their
structures, dynamics and stabilities. Because protein assem-
blies are often large, heterogeneous and dynamic entities,
there are numerous challenges in developing models of their
high-resolution structure. Techniques such as X-ray crystal-
lography and NMR spectroscopy have been widely and
successfully used to gain atomic-level structural information
on a large number of protein complexes and networks [46],
but despite this success, similar analyses are difficult to
perform on assemblies that exhibit high degrees of flexibil-
ity, heterogeneity and polydispersity [42,46]. Such proper-
ties are thought to be pervasive within the proteome, and are
found in abundance within membrane-associated protein
complexes [54], a class of protein assemblies that are among
the most sought-after therapeutic targets [39]. Furthermore,
since neither X-ray nor NMR techniques typically separate
components during analysis, both require highly purified
samples. These and other challenges highlight the need to
develop new approaches aimed at multiprotein structure
determination [42,46,51].

Mass spectrometry (MS) and, more recently, ion mobility-
MS (IM-MS) of intact complexes is emerging as one of many
alternative approaches in the field of structural proteomics
[7,8,23,31,33,42,44–46,48,55,56]. It is now well established
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that MS can yield insights into the composition, stoichiometry
and connectivity of heterogeneous multiprotein assemblies at
relatively low concentrations [2,24–26,49,59]. When com-
bined with IM, it becomes possible to separate species not only
according to their mass-to-charge ratio (m/z) but also accord-
ing to their ability to traverse an ion guide containing inert gas
under the influence of a weak electric field, thus yielding ion
size and shape information [9,13–15,34,35,47,50,53,55]. Trav-
eling wave IM separations specifically, that utilize a series of
low-voltage ‘waves’ to propel ions for such size-dependant
separations, have enabled most of the modern applications of
IM-MS to structural biology [18,19,48,57]. IM-MS experi-
ments, thus, provide measurements of gas-phase protein size,
which when combined with detailed molecular modeling can
generate 3D topology models [40,41].

Although promising, the application of IM-MS for
building architectural models of multiprotein complexes
calls for a general correlation between gas-phase measure-
ments and protein structures in solution. There have been
several reports of significant rearrangements of protein
structure upon transfer to the gas phase [28,33]. Specifi-
cally, the processes of electrospray ionization (ESI), des-
olvation, transport and analysis can occur over a range of
time scales and energies. As a consequence, biological
molecules and assemblies can rearrange at the local resi-
due level, unfold to more elongated conformations, and
even refold to compact, yet non-native conformations
[3,6,10]. Such rearrangements prompt the development
of general strategies aimed at the protection of protein
structure, at every level, in the absence of bulk solvent,
and would have far reaching implications in characterizing
the structures of gas-phase biomolecules.

While the use of gas phase additives has been reported as
a means of stabilizing protein-complex ions [4,52], our
group focuses on pre-ionization, additive-based approaches
using Hofmeister-type salts [16,17,37], and have recently
classified a large number of anions and cations in terms of
their ability to stabilize multiprotein structure [20,22]. For
these experiments, we use both collision induced unfolding
(CIU), in which collisionally-heated ions are induced to
create a series of unfolded conformations recorded by IM,
and collision induced dissociation (CID), where the same
collisional heating eventually leads to protein complex dis-
sociation into highly-unfolded monomeric and stripped
complex product ions captured by MS [6]. More impor-
tantly, our IM-MS data clearly show that anions and cations
can differentially stabilize protein complexes through sepa-
rate mechanisms, and that while the relative binding affini-
ties of these buffer elements are likely retained in our
measurements [21], the stabilization modes we observe are
unique to the gas-phase. Whereas anions perform optimally
as stabilizers when they bind to the protein and then disso-
ciate from the complex to stabilize the system through

‘dissociative-cooling’ [22], the best cationic stabilizers are
those that remain bound to the protein assembly in large
numbers, even following extensive activation in the gas
phase [20]. We have hypothesized that two modes of action
are potentially critical in this later class of stabilizers. Cat-
ions either form multidentate interactions within proteins,
enabling the tethering of disparate protein structural regions,
or they act to replace highly mobile protons with less mobile
cations with relatively restricted mobility, thus inhibiting the
Coulombic unfolding of protein subunits, which is a critical
step in the asymmetric dissociation of noncovalent protein
complexes [20].

In this report, we investigate the use of magnesium chlo-
ride as an additive for stabilizing gas-phase protein struc-
tures, as this salt is composed of a cation/anion pair that
previous results suggest should be strongly stabilizing for
desolvated protein ions [20–22]. Our data demonstrate that
both anions and cations derived from the addition of this salt
in nESI solutions prior to ionization, can be used in concert
to stabilize protein structures in the absence of bulk sol-
vent to an extent not previously accessible using either
constituent alone. In addition, we refine the mechanism by
which cationic additives exert a stabilizing influence on
gas-phase protein structure by observing the detailed
structural transitions experienced by multiprotein com-
plexes using CIU. Upon comparison with control data,
we find strong evidence that stabilizing cations act to
tether protein complex structure, rather than stabilize pri-
marily through limiting charge mobility, as previously
postulated.

Materials and methods

Materials

The protein tetramers avidin (egg white), and concanavalin
A (ConA, jack bean), along with salts (ammonium acetate,
ammonium chloride and magnesium acetate) were pur-
chased from Sigma (St. Louis, MO). All protein samples
were buffer exchanged into 100 mM ammonium acetate at
pH7 using Micro Bio-Spin 6 columns (Bio-Rad, Hercules,
CA) and prepared to a final concentration of 10 μM. To
study the influence of different salts on protein stability
without significantly altering buffer capacity or solution
pH, the salts were prepared as stock solutions in 100 mM
ammonium acetate at a concentration of 20 mM, each of
which was then added to protein solutions. Final solutions
contained added salt concentrations of 4 mM for ammonium
chloride, 2 mM for magnesium acetate and 2 mM for mag-
nesium chloride. The total salt and protein concentrations
listed above were chosen primarily to avoid nESI-based ion
suppression effects [1].
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Ion mobility–mass spectrometry

Sample aliquots (5 μL) were analyzed using a quadrupole-
ion mobility-time-of-flight mass spectrometry (Q-IM-ToF
MS) instrument (Synapt G2 HDMS, Waters, Milford,
MA). Protein ions were generated using a nESI source.
The capillary of the nESI source was typically held at
voltages 1.4 kV for avidin and 1.65 kV for ConA, with the
source operating in positive mode. The sampling cone was
operated at 50 V. The instrument settings were optimized to
allow transmission of intact protein complexes and to preserve
noncovalent interactions [11,27,43]. The trap traveling-wave
ion guide was pressurized to contain 3.3×10−2mbar of argon
gas. The ion trap was run in an accumulation mode and ion
lifetimes in the trap prior to IM analysis range from 0 to 50 ms
in our experiments. The traveling-wave ion mobility separator
was operated at a pressure of 3.5 mbar (N2), and employed a
series of DC voltage waves (40 V wave height traveling at
800–1000 m/s) to generate ion mobility separation. The ToF-
MS was operated over the m/z range of 800–15000 and at a
pressure of 1.6×10−6mbar.

Collision induced unfolding and dissociation

Collisional activation in the ion trap traveling-wave ion
guide prior to the ion mobility separator was used for CIU
and CID of protein complexes in order to investigate the
gas-phase stability of protein ions in the presence of differ-
ent salts. This work was all performed in tandem-MS (quad
selection) mode. Ions were selected in the quadrupole mass
filter at a m/z corresponding to the 16+ charge state of avidin
tetramer and 20+ of ConA tetramer. Charge states were
chosen based on their intensity across each solution state
interrogated, and control IM arrival time data were screened
for evidence of overlapping non-tetrameric ions at the same
m/z value. Each of these mass-selected ions were activated
by increasing the trap collision voltage (Trap CE, as indi-
cated in the instrument control software) which acts as a bias
voltage between the quadrupole and the ion trap traveling-
wave ion guide to accelerate ions to increased kinetic ener-
gies for CIU and CID experiments. For all protein-salt
systems investigated here, energy-dependent arrival-time
distribution profiles (CIU ‘fingerprints’) were constructed
using 5 V stepwise increments of the trap CE. Upper voltage
limits were identified as those where no further dissociation
was observed.

Data analysis

All mass spectra were calibrated externally using a solution of
cesium iodide (100 mg/mL) and were processed with Mas-
slynx 4.1 software (Waters). Spectra are shown with minimal
smoothing and without background subtraction. The relative

abundance of mass-selected tetrameric ions (Itet) was calculat-
ed as a percentage of the total intensity of all the signals
observed in the mass spectra corresponding to either intact
protein complex ions or their corresponding fragment ions
(i.e., monomer or trimer) using Eq. 1. The relative abun-
dance of the compact form observed for tetrameric ions
separated by ion mobility (If), which is the only feature
observed under non-activating conditions, was calculated
as a percentage of the total intensity of the peaks in the
arrival time distribution observed at a selected m/z value
corresponding to intact tetramer using Eq. 2. These two values
are used to chart the dissociation and unfolding of tetramers as
a function of collision energy, respectively. The average relative
standard deviation for the determination of either Itet (%) or If
(%) is 2–4 % [22].

Itet %ð Þ ¼ Itet
Itet þ Imon

� 100 ð1Þ

If %ð Þ ¼ IfoldedP
Iconformers

� 100 ð2Þ

Results and discussion

The influence of tuned salt additives on MS data

Our previous work ranked a series of Hofmeister-type
anions and cations for their ability to increase the structural
stability of multiprotein complexes in the absence of bulk
solvent upon their addition in solution in small amounts
prior to nESI using IM-MS, and we discovered that the
stabilization mechanisms accessed by cations and anions
are strikingly different but not mutually exclusive. There-
fore, the combined effects of anions and cations can be
utilized simultaneously by adding a salt comprised of
highly-stabilizing cations and anions in an effort to further
enhance the stability of gas-phase protein structure. It is
important to note that this strategy requires the simultaneous
binding of both free anions and cations to proteins in solu-
tion as a prerequisite for increased protein ion structural
stability when compared to isolated anion-only or cation-
only complexes.

For this study, we selected Mg2+ and Cl- to comprise our
stabilizing salt additive based on their comparative ability to
stabilize gas-phase protein structure in previous datasets
[20–22]. We applied this salt additive to 2 tetrameric protein
complexes, avidin (64 kDa) and ConA (103 kDa), having
large differences not only in molecular weight, but also in
isoelectic point and protein structure, in order to assess its
effects on protein stability and compare the addition of mag-
nesium chloride to both magnesium and chloride adducted
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proteins in isolation. MS data are shown in Fig. 1, where
tetramer ions are generated from four different buffer compo-
sitions (black: control/100 % 100 mM NH4OAc, blue:
100 mMNH4OAc with added NH4Cl, red: 100 mMNH4OAc
with added Mg(OAc)2, purple: 100 mMNH4OAc with added
MgCl2). In the absence of added salts, we observe intact
avidin and ConA tetramers, with base peaks corresponding
to the 16+ and 20+ tetramer charge states respectively (black).
The charge states observed for these complexes change slight-
ly upon addition of Cl- and Mg2+ producing charge reduction
and amplification when compared to control data respectively.
We ascribe the observed changes in average charge state to the
relative bound populations of H+, Mg2+ and Cl- found in each
case, all of which can be bound as either charged species or
neutralized, coupled with the invariant surface areas of the
proteins studied. Additionally, the peak widths observed for
mass spectra acquired from Cl- or Mg2+-containing solutions
display significant broadening when compared with spectra
obtained from complexes prepared in pure ammonium ace-
tate, despite the use of similar instrument conditions in their
acquisition. This peak broadening is attributed to a larger
average number of Cl- or Mg2+ bound to the surface of the
gas-phase protein complex ions than ammonia or acetate

adducts available in control solutions, owing to their differen-
tial volatility [17,36]. In the presence of MgCl2 (purple),
however, we notice a charge state distribution similar to
control data, which can be primarily ascribed to the simulta-
neous binding of both Mg2+ and Cl- to the protein and an
averaging of their differential influence on the overall charge
state observed. Further evidence of simultaneous cation and
anion binding is observed in the increased breadth of the MS
peaks recorded from MgCl2 doped solutions, which also
exhibit a larger shift in centroid molecular mass when com-
pared with samples containing either NH4Cl or Mg(OAc)2
additives. This agrees well with our observation of resolved
populations corresponding to Mg2+ and Cl- both bound to
small monomeric proteins (cytochrom c, ubiquitin) incubated
with MgCl2 (data not shown). From these MS measurements,
we estimate that between 45 and 48 chloride adducts and 64–
80 magnesium adducts are present simultaneously on the
surface of these two protein tetramers during our subsequent
gas-phase stability measurements.

Quantifying the stabilizing effect of tuned salt additives

In order to evaluate the influence of MgCl2 as a stabilizing
additive for gas-phase protein structure, we performed CIU
and CID stability measurements on the avidin and ConA ions
incubated in the same four solution conditions as shown in
Fig. 1. As a further set of control experiments, we also mea-
sured solutions where MgCl2 additives were replaced with
tetramethylammonium bicarbonate (TMAHCO3) in equal
concentrations and measured under identical instrument con-
ditions. While our previous data identify the components of
MgCl2 as strongly stabilizing, the same dataset indicated that
the components of TMAHCO3 provided gas-phase protein
ions with no measurable increase in their structural stability
when added separately to solutions prior to nESI [20–22].

Plots of collision voltage versus ion intensity for compact
(If) and intact (Itet) tetramer ions recorded for the 16+ charge
state of avidin (Fig. 2a) and the 20+ charge state of ConA are
shown in Fig. 2b, and allow us to monitor protein complex
unfolding and dissociation respectively. Charge states were
chosen based on their intensity across each solution state
interrogated, and control IM arrival time data were screened
for evidence of overlapping non-tetrameric ions at the same
m/z value. Both If and Itet are observed to decrease as the
collision voltage used to accelerate the ions and initiate
collisional activation is increased. In addition, If is depleted
at lower voltages than Itet for ions generated from all five
buffer compositions. Taken together, these results indicate
that protein complexes dissociate only after the tetramer
precursor ions have undergone significant unfolding in the
absence of the bulk solvent, as reported previously [6,30].
Importantly, when comparing a plot of If (open, dashed) and
Itet (closed, solid), we observe that the addition of MgCl2 to

Fig. 1 nESI MS data for the avidin and ConA tetramer ions, (both
10 μm) generated from ammonium acetate-based solutions with no
added salt (control, black), 4 mM ammonium chloride (blue), 2 mM
magnesium acetate (red), or 2 mM magnesium chloride (purple).
Spectra for each protein complex were obtained using similar IM-MS
instrumental conditions
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the sample solution (purple triangle) increases the voltage
values at which If and Itet are observed to decrease, and that
this change is greater than that observed for the addition of
Mg2+ (red triangles) and Cl- (blue triangles), respectively,
and far greater than that observed for TMAHCO3 (purple
diamonds), which is similar to the measurements made for
ions generated from pure ammonium acetate based control
solutions (black).

Our results are clearly illustrated through a comparison of
normalized collision energy (eV*) at which If and Itet de-
crease to 50 % of their original intensity for avidin (Fig. 2c)
and ConA ions (Fig. 2d) as a function of the buffer compo-
sition used for nESI. Generally, we observe that cations are
stronger stabilizers than anions of gas-phase protein struc-
ture, especially when CID data are considered. This agrees
well with our previous observations, which indicated that
cations preferentially act to stabilize gas-phase proteins by
remaining bound to the assembly at relatively high internal
temperatures [20], whereas stabilizing anions mainly bind
and then dissociate from protein ions to access a ‘dissociative
cooling’ mechanism [22] which can, on its own, produce
significant increases in protein ion stability. Most importantly,
it is clear from our data that the simultaneous presence of
both stabilizing cations and anions causes a significant
increase in protein complex stability relative to the addition
of either component in isolation, resulting in a 7.2–8.1 %

and a 10.7–13.3 % increase in protein quaternary and
tertiary structural stability respectively for avidin and
ConA. In contrast, protein ions created from TMAHCO3

doped solutions exhibit no significant increases in stability,
resulting in dissociation and unfolding threshold values
similar to control data acquired from ions generated from
pure ammonium acetate. Though anticipated, this result is
significant, as it indicates the differential stability we ob-
serve is predicated on the chemical character of the salts
added rather than the increased degrees of freedom gained
through potential TMAHCO3 adduction.

The influence of tuned salt additives on protein tetramer
dissociation in the gas phase

To obtain a more complete mechanistic picture of MgCl2
protein ion stabilization in the gas phase, we also measured
CID data for ConA tetramer ions generated from the four
buffer compositions mentioned above. Figure 3b shows tan-
demmass spectra for 20+ ConA tetramer ions at high collision
energies (170 V acceleration). ConA tetramer ions generated
from pure ammonium acetate buffer (black, control) follow
the conventional asymmetric charge partitioning dissociation
pathway, generating fragment ions that correspond to highly
charged monomers (open square, 25.62 kDa) and lower-
charge state trimers (not shown) [32]. Additionally, three

Fig. 2 Elucidating the extent of unfolding and dissociation from IM-
MS. Plots of the relative intensities of tetramer ions (Itet, solid lines),
and the relative intensities of compact tetramer ions (If, dashed lines)
are shown as a function of trap collision voltage for the 16+ charge
states of avidin tetramer (a) and the 20+ of ConA tetramer (b).
Tetramer ions were generated from ammonium acetate-based solutions
containing 10 μm protein and no added salt (control, black), 4 mM
ammonium chloride (blue), 2 mM magnesium acetate (red), 2 mM

magnesium chloride (purple triangle), or 2 mM tetramethylammonium
(TMA) bicarbonate (purple diamond). Histogram plots of the collision
energy (eV*) required for the 50 % dissociation (filled) and unfolding
(hollow) of intact avidin (c) and ConA (d) are shown for the five buffer
conditions mentioned above. Collision Energy (eV*) is a normalized
version of ion kinetic energy, that takes into account both the charge on
the ion and reduced mass of the ion-neutral collision complex [22]
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peptide fragments are also observed in the product ion spec-
trum for the ConA tetramer which have similar appearance
energies to monomer ejection. These ions have intact masses
of 12.94 kDa (open triangle), 12.68 kDa (low signal intensity,
not marked), and 8.90 kDa (open circle), and likely corre-
spond to the c-terminal half (residues 164–281), n-terminal
half (residues 30–148), and a secondary n-terminal fragment
(tentatively identified as the b82 ion in reference to the se-
quence order of the fragment, rather than the intact ConA
monomer) resulting from decay of the 12.68 kDa fragment
ion respectively (PDB ID: 2CNA), respectively.

ConA CID datasets also reveal a number of illuminating
differences between cation and anion stabilized protein ions.
For example, we observe that Mg2+ ions remain bound to the
ConA tetramer in large numbers following extensive activa-
tion in the gas phase. This observation is reflected in the mass
difference recorded between the ConA tetramer generated
from Mg2+ doped solutions (red) and those created from

control solutions (black, Fig. 3c). We also observe a series
of resolved Mg2+ adducts bound to the 7+ ions of the
12.94 kDa, C-terminal peptide fragment produced from
Mg2+-bound ConA tetramer (Fig. 3a, red). Conversely,
MS data for Cl- exposed tetramer indicate that chloride
adducts are completely dissociated from the protein com-
plex prior to product ion formation (Fig. 3a, c, blue). In
these experiments, as observed previously, Cl- acts to sta-
bilize the protein complex through a “dissociative cooling”
mechanism, where chloride adducts dissociate from the
tetramer upon collisional activation as neutrals to carry
energy away from the activated protein ions [22].

In addition to altering the structural stability of intact
protein complexes, our IM-MS measurements indicate that
cation addition can alter the CID pathway accessed during
protein complex dissociation. For instance, the absolute
number of charges transferred to the leaving monomeric
protein subunits decreases slightly when ConA is incubated

Fig. 3 CID of ConA tetramer obtained from ammonium acetate-based
solutions containing 10 μM ConA and no added salt (control, black),
4 mM ammonium chloride (blue), 2 mM magnesium acetate (red),
2 mM magnesium chloride (purple). Tandem mass spectra of the 20+

charge state of ConA tetramer created from the above four buffer
solutions acquired at the highest trap collision voltages where ion
transmission is observed (b), where tetramer precursor ions, dissociat-
ed monomer product ions, two peptide fragment ions (12.94 kDa and
8.90 kDa) are denoted by open diamond, square, triangle, and circle,
respectively. The yellow box highlights the region of the mass spec-
trum containing the 7+ charge state of the 12.94 kDa peptide fragment
product, and this region is shown in detail in (a). Detailed analysis

reveals a distribution of Mg2+ adducts resolved byMS whenMg(OAc)2
or MgCl2 are added to the sample solutions while there are no Cl-

adducts observed adhered to the product ions when NH4Cl is added
(a). Peaks corresponding to adducts arising from sodium, potassium,
sodium + potassium and sodium + potassium + potassium- binding are
marked with filled stars, circles, diamonds, and crosses, respectively.
The green box indicates the remaining ion signal for the 20+ tetramer
precursor ion population (c). A mass difference of≈840 Da is recorded
relative to control (intact mass=102.6 kDa, in good agreement with
sequence mass), indicating the tight binding of cations at high trap CE
(170 V) when the ConA tetramer is incubated with Mg2+. A black
dashed line marks the m/z of highest abundance (m/z=5130)

46 Int. J. Ion Mobil. Spec. (2013) 16:41–50



with added Mg2+ when compared to Cl- adducted or control
samples (Fig. 3b, red). Specifically, the charge state of the
most abundant monomer (open square) ions observed
from Mg2+ bound proteins is decreased from 12+ to 11+

when compared to control, in combination with signifi-
cantly increased signal intensity for the 7+–9+ monomer
charge states. This charge state shift is also observed in
the CID of the Mg-bound avidin tetramer (data not shown).
Additionally, we observe a decrease in signal intensity of
50 % for the peptide fragments that typically result from low-
energy ConA CID (open triangle and circle) compared with
control datasets.

The observations above correlate well with our previous
assertions regarding cation-mediated gas-phase protein ion
stabilization. Our previous results have narrowed the avail-
able mechanisms of this process to two possibilities [20].
The first requires bound cations to form strong multidentate
interactions within gas-phase proteins, thus enabling the
tethering of different regions of the protein structure togeth-
er and increasing structural stability. The second relies upon
the decreased mobility of added cations within multiply-
charged protein ions when compared with protons, which
may work to restrict charge mobility and inhibit the Coulom-
bic unfolding of subunits within the complex, thus limiting the
asymmetric dissociation of noncovalent protein complexes. In
contrast to the cation-bound protein ions measured here, the
dissociation profiles measured for anion-bound protein com-
plex ions are unchanged relative to control (Fig. 3b, blue),
indicative of the complete dissociation of anion-based adducts
in the early stages of collisional activation. As such, it is not
surprising that our CID data for proteins incubated with
MgCl2 mimics the dissociation behavior of those same sam-
ples having added Mg2+ rather than those doped with excess
Cl-, as the former will remain bound to influence CID while
the latter will not.

CIU unfolding ‘fingerprints’ reveal mechanistic insights
in cation-bound protein stabilization

To further investigate the mechanism at work in protein ions
incubated in MgCl2 containing solutions, we constructed
CIU unfolding ‘fingerprints’ for protein complex ions de-
rived from such solutions, as well as control samples con-
taining the constituent anion and cation components of the
salt. Changes in the tertiary/secondary structures of protein
ions are induced during the CIU process, leading to several
structural ensembles that are stable on the millisecond time-
scale and can be resolved in both IM drift time and in terms
of the collision energies required to drive the structural
changes observed. For clarity, CIU fingerprint data is pro-
jected as a contour plot (Fig. 4) where intensities for the
features observed are denoted by a color-based axis
[16,30,38]. A careful analysis of CIU fingerprint data allows

the nature of protein complex stabilization to be identified by
observing the conformational features that are stabilized (elon-
gated on the collision energy axis) relative to control data.

A control fingerprint for the avidin tetramer is shown
Fig. 4a, highlighted with a black Y-axis. At low trap collision
voltages (Trap CE), the 16+ charge state of the avidin tetramer
has a drift time of ~10 ms, which persists to a Trap CE of 52 V
and is the most compact conformer for this protein observed in
our experiments. At higher collision voltage (>55 V) more
elongated conformations are observed that have drift times
>12 ms. Three distinct conformations in addition to the most
compact protein configuration are identified under our con-
ditions, and we use a simple (I, II, III, IV) nomenclature for
these conformational families, which constitute the unfolding
pathway of avidin monomers within the complex. The unfold-
ing landscape observed in our fingerprints varies substantially
as a function of the buffer compositions used to prepare
samples for nESI. For example, fingerprint data acquired for
avidin with added Cl- shows that the most compact conformer
(I) is observed at substantially larger collision voltages
(>65 V) when compared to those ions generated from pure
ammonium acetate solutions, indicating that the increased
stability observed in our experiments for the protein ions
afforded by anions is due primarily to the enhanced stability
of this compact conformer (Fig. 4a, blue Y-axis). In contrast,
avidin incubated with added Mg2+ displays a different CIU
fingerprint. Despite the similar degree to which the most
compact conformer (I) is stabilized, we observe a partially
unfolded conformer (II) that has a shorter drift time (~11.5 ms)
and persists at higher energies (Fig. 4a, red Y-axis). This
surprising observation is attributed to the development of a
new partially unfolded structure that is unique to avidin sam-
ples incubated with Mg2+, and thus provides evidence sup-
porting our cation-mediated stabilization model involving the
tethering of flexible regions within protein ions through strong
multi-dentate interactions. This observation holds for ConA as
well, where Mg-bound protein ions exhibit a more-gradual
transition between conformer II→III without developing any
discrete, resolved conformational populations (Fig. 4b, red Y-
axis). Finally, we observe conformation IVover a significantly
broadened energy range when Mg(OAC)2 is added to solu-
tions prior to nESI. This result, as observed throughout our
IM-MS dataset, stands in contrast to ions incubated in the
presence of excess Cl- or pure ammonium acetate buffers,
where discrete and well-resolved conformational families are
observed by IM (Fig. 4b, blue and black Y-axis). In fact, the
presence of excess Cl- in nESI samples has no observable
affect on the drift time axis of the CIU fingerprints recorded,
only the breadth of energies over which each structure is
observed is changed. It is likely that such complex transitions,
as observed between conformer families II and III, and the
broadened energy distributions observed for highly-unfolded
conformational families, as detected in conformer family IV,
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constitute further evidence of cation-based tethering interac-
tions within protein monomers (Fig. 4b, red Y-axis).

Critically, fingerprint data collected from avidin and ConA
tetramer ions incubated with MgCl2 displays elements from
both the fingerprints of its constituent components (Fig. 4a, b,
purple Y-axis). Specifically, MgCl2-containing samples dis-
play a highly stabilized compact state (I) resulting primarily
from the dissociation of Cl- adducts at lower collision voltage,
as well as the multi-state transitions and broadened energy
profile of the highly unfolded species detected for Mg2+

bound protein ions. Thus, our CIU fingerprint data supports
the observation that proteins and complexes incubated with
MgCl2 derive their increased stability through the simulta-
neous binding of both Mg2+ and Cl- adducts, and that both
dissociative cooling and tethering-type stabilization mecha-
nisms are accessed by the resultant assemblies.

Conclusions

The correlation between solution and gas-phase protein struc-
ture has, in part, driven the development and application of

IM-MS in structural biology. For example, MS measurements
have been used to study bioactive peptide aggregation [12],
membrane protein structure [5,58], and protein stability
changes upon ligand binding [29,30]. The application of IM
and MS to protein quaternary structure has rapidly developed
in recent years, enabling the determination of multiprotein
stoichiometry, dynamics, and 3D topology [7,56]. However,
several reports have highlighted the uncontrolled distortion of
protein structure in the absence of solvent, including both the
general compaction of protein size and structural rearrange-
ments that may occur upon desolvation and transfer to the gas
phase. In order to facilitate the use of gas-phase measurements
in the construction of native-state protein models, we herein
investigated the stabilizing effect of MgCl2, as this salt bears
anion and cation components previously identified in isolation
for their stabilizing affects. Our CIU and CID data clearly
indicate that the simultaneous presence of both stabilizing
cations and anions causes a significant increase in gas-phase
protein quaternary and tertiary structural stability relative to
their individual effects. On average, MgCl2 doped samples
produce gas-phase protein ions that are ~50 % more stable
than those produced from pure ammonium acetate buffered

Fig. 4 CIU fingerprint contour plots are shown for 16+ charge states of
avidin tetramer (a) and 20+ of concanavalin A tetramer (ConA, b)
generated from ammonium acetate-based solutions with no added salt
(control, black Y-axis), 4 mM ammonium chloride (blue Y-axis), 2 mM
magnesium acetate (red Y-axis), or 2 mM magnesium chloride (purple

Y-axis), where ion trap collision voltage is charted against IM drift
time, and the ion intensities are denoted by a color-coded axis. The
conformational forms for the tetramer are highlighted (white box) and
labeled (I, II, III, IV, V)
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solutions, and ~10 % more stable than those samples with
Mg2+ added alone. Furthermore, our data reveal additional
details in the mechanism associated with stabilizing gas-phase
protein ions through cation adduction. Specifically, through
our ‘CIU fingerprint’ data we are able to detect evidence of
frustrated protein unfolding transitions and highly-stabilized
unfolded structures for Mg-bound protein ions, and both
effects are likely due to multi-dentate cation-protein inter-
actions. Samples containing added MgCl2 are able to ac-
cess the above mode of stabilization, along with the
dissociative cooling-type stabilization associated with chlo-
ride anion adduction simultaneously, to create protein com-
plex ions having superior structural stability. In future
experiments, we plan to use the mechanistic insights presented
in this report to further refine stabilizing additives for the
nESI-IM-MS analysis of proteins and protein complex, thus
enabling the evaluation of labile protein structures not readily
amenable to gas-phase studies.
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