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Abstract
Memory and learning are interdependent processes that involve encoding, stor-
age, and retrieval. Especially memory retrieval is a fundamental cognitive ability to 
recall memory traces and update stored memory with new information. For effec-
tive memory retrieval and learning, the memory must be stabilized from short-term 
memory to long-term memory. Hence, it is necessary to understand the process of 
memory retention and retrieval that enhances the process of learning. Though previ-
ous cognitive neuroscience research has focused on memory acquisition and storage, 
the neurobiological mechanisms underlying memory retrieval and its role in learn-
ing are less understood. Therefore, this article offers the viewpoint that memory 
retrieval is essential for selecting, reactivating, stabilizing, and storing information 
in long-term memory. In arguing how memories are retrieved, consolidated, trans-
mitted, and strengthened for the long term, the article will examine the psychologi-
cal and neurobiological aspects of memory and learning with synaptic plasticity, 
long-term potentiation, genetic transcription, and theta oscillation in the brain.

Keywords Memory · Learning · Consolidation · Synaptic plasticity · 
Neurotransmitters · Long-term potentiation

Introduction

Memory refers to the storage of perceived information, the cognitive process essen-
tial for learning and developing other cognitive skills. The human brain perceives 
the stimuli through sensory memory, stores them in short-term or working memory, 
and passes the information to long-term memory (Baars & Gage, 2010). Though 
sensory memory and short-term memory process the perceived representations, 
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long-term memory is necessary for the long-term storage, retrieval, and association 
of information (Brem et al., 2013). Long-term memory significantly contributes to 
the unlimited storage and stabilization of information for memory retrieval. Further, 
memory storage, reactivation, and retrieval also play a significant role in learning. 
The retrieval of memory facilitates learning by accessing the relevant information 
and connecting them with the current stimuli (Packard & Knowlton, 2002).

Studies on cognitive neuroscience demonstrate that the storage and maintenance 
of memory are influenced by the transmission of information from sensory mem-
ory to long-term memory through the synaptic plasticity between neurons. Also, 
it is known that billions of neurons present in the human brain act as information 
messengers by transmitting information, thus strengthening them for a longer time 
(Knierim, 2014). This rapid and consistent transmission and strengthening of infor-
mation are required for memory and learning (Raman et al., 2019).

Despite decades of research exploring the relationship between memory and 
learning, the holistic understanding of the psychological and neurobiological pro-
cess of memory retrieval from long-term memory and its role in learning is still 
lacking. Therefore, this article provides the psychological, neurobiological, and 
biochemical perspectives of memory retrieval by shedding light on how long-term 
memory plays an important role in learning. In an attempt to know the neurobiologi-
cal processes of memory and learning, the article explains the process of synaptic 
plasticity between neurons for the transmission of information and long-term poten-
tiation for the strengthening and retention of memory that is necessary for learning. 
In addition, the article discusses the neurotransmitters, genetic transcription factors, 
and theta waves that are activated to transmit and strengthen the information for 
memory retention and retrieval.

Memory Retrieval

Memory retrieval is remembering and reinstating stored information from long-term 
memory. The retrieval of memory updates the old memories with new stimuli and 
environmental cues (Lockhart, 2001). The process of memory retrieval is equally 
important for learning, similar to the process of encoding and storing memory. 
Whenever the memory is encoded, the information forms a memory trace or engram. 
During retrieval, the memory traces are changed and reactivated for effective learn-
ing (Katkov et  al., 2017; Woodward et  al., 1973). The engram cells in the brain 
undergo biochemical changes that help to store and retain memory. While learning, 
the engram cells are activated and modified depending on the external stimuli (Han 
et  al., 2021). These learning-induced changes by engram cells induce persistent 
changes in the neurons. During the perception of stimuli, the neuronal excitability 
state of engram cells decides the retrieval of memory (Tonegawa et al., 2018). Fol-
lowing that, the reactivation of those engram cells increases the excitability state 
during the retrieval. The reactivation or awakening of the engram cell for the process 
of retrieval requires contextual cues from the environmental stimuli. This process 
of influencing the engram out of its latent state into manifested activity is called 
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ecphory (Steinvorth et al., 2006; Tulving et al., 1983). Figure 1 shows the activation 
of engram cells during encoding and the learning-induced changes during retrieval.

The effective retrieval of memory requires the rehearsal and reactivation of 
information. After the perception of memory, the spacing between the informa-
tion encoded and the duration of information stored depends on the time window 
of memory (Kornmeier et  al., 2014). The time window is a limited period within 
which additional information interferes with the primary memory, thus strengthen-
ing or weakening the memory (Bell et al., 2014). During this spacing, the informa-
tion would be labile, and the process of memory consolidation stabilizes the infor-
mation from short-term to long-term memory (Alberini & Ledoux, 2013). Further, 
the stabilized memory is reactivated by memory reconsolidation that modifies and 
strengthens the memory for permanent storage. The process of consolidation and 
reconsolidation strengthens and enhances the memory to be more accessible during 

Fig. 1   Activation of engram cell. Modified and reused with permission from (Tonegawa et al., 2015)

Fig. 2  Stabilization of memory
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the retrieval (Alberini, 2011; Herszage & Censor, 2017). Figure 2 illustrates the pro-
cess of consolidation and reconsolidation for the stabilization of memory.

Though the memories can be stabilized in the long-term memory, sometimes 
the stored memory may get interfered with or disrupted during retrieval, causing 
retrieval failure or forgetting of the memory (Anderson & Neely, 1996; Kerrén et al., 
2021). The retrieval failure majorly occurs by memory decay and memory interfer-
ence. Though long-term memory stores information for an extended period, some 
information fades or decays from long-term memory (Davis & Zhong, 2017). In an 
experimental study of memory decay, Ebbinghaus (1855) found the forgetting curve, 
which shows that memory decreases exponentially with time. The experiment pro-
poses that any new information learned and processed in long-term memory decays 
if the information is not reactivated at regular intervals (Nelson, 1985). The time 
gap between first-time and second-time learning decides the saving measure of the 
primary input. This saving measure decides the retrieval of the information and also 
saves time when the information is learned for the second time (Miller, 2021). On 
relearning, the saving measure increases, and the information is relearned in a short 
interval of time. However, when a long time is taken to relearn the information, the 
measure of saving decreases leading to the decay of the memory (Murre & Dros, 
2015). Retrieval failure also occurs when there is an interference of associated mem-
ories during retrieval. Proactive interference occurs when the previous knowledge 
interferes with the recently perceived information. Retroactive interference occurs 
when the newly learned information disrupts the already stored information in long-
term memory (Chanales et al., 2019; Unsworth et al., 2013). Figure 3 explains the 
exponential nature of forgetting by plotting a forgetting curve with the time win-
dow between retention and memory decay that decides the storage period of the 
information.

Fig. 3  Forgetting curve
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Synaptic Plasticity

The retention of information in the memory traces and stabilization of information 
by memory consolidation requires the transmission of information from one neuron 
to another. The neurons are the fundamental units of the brain that transmit informa-
tion perceived by the sensory region of the brain. Synaptic plasticity is the process 
of strengthening or weakening the synapses to effectively communicate with neu-
rons. The synapse is the junction between the axon of one neuron and the dendrite 
of another neuron (Langille & Brown, 2018; Lee et al., 2021). Further, the neuron 
which initially passes the information is called a presynaptic neuron, and the neuron 
which receives the information is called a postsynaptic neuron (Abraham & Bear, 
1996). According to Hebb’s postulate, synaptic plasticity follows the principle, “the 
neurons that fire together, wire together” (Hebb, 1949). When neuron A is excited, it 
fires spikes or action potential that cause depolarization of neuron A which reaches 
a threshold to wire with neuron B (Choi and Kaang, 2022; Mittal et al., 2018). In 
addition, the synapses can be either excitatory or inhibitory; when neuron A is 
excited, and neuron B is also excited, there will be an increase in excitatory post-
synaptic potential. When neuron A is excited, and neuron B is not excited, it inhibits 
the postsynaptic membrane potential (Adams et al., 2016; Druckmann et al., 2014). 
Also, the connection between the presynaptic and postsynaptic neurons is of two 
kinds, electrical synapse and chemical synapse. The electrical synapse uses the gap 
junction between neurons, and the chemical synapse uses the synaptic cleft, where 
the neurotransmitters transmit the information between the neurons (Goto, 2022).

The neurotransmitters are the chemical signals packed inside small sacs called 
vesicles in the presynaptic terminal. After the depolarization of the presynap-
tic neuron, the voltage-gated calcium ions present in the neuron move toward the 
neurotransmitters that activate its transmission. Further, the neurotransmitters pass 
through the synaptic cleft to reach the postsynaptic neuron (González-Espinosa & 
Guzmán-Mejía, 2013). Then the neurotransmitters are transmitted to the chemically 
gated channels on the recipient postsynaptic neuron (Südhof, 2012). When these 
chemically gated channels of the postsynaptic neuron open with sodium ions present 
on its surface, it causes excitation in the postsynaptic neuron, and when the channels 
open with potassium and chloride ions, it inhibits the postsynaptic membrane poten-
tial (Kneussel & Hausrat, 2016; Silva et al., 2021).

Therefore, the excitatory postsynaptic potential between the neurons decides the 
synaptic strength and effective synaptic plasticity (Fusi, 2008; Jackman & Regehr, 
2017). Depending on the number of neurotransmitters released, the information 
gets transmitted and stored effectively in the memory. This synaptic plasticity plays 
a central role in storing memory traces or engram for further consolidation and 
reconsolidation of memory (Evans, 1990). The transmission of information from 
presynaptic neurons and postsynaptic neurons with synaptic plasticity increases the 
strength of the information for effective memory retrieval and learning. Thus, pair-
ing the presynaptic and postsynaptic neurons by synaptic plasticity is essential for 
memory and learning (Abraham et al., 2019).
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The neurotransmitters that are majorly involved in synaptic transmission are glu-
tamate or glutamic acid (Glu). Glutamate is the excitatory neurotransmitter, where 
the excitatory neurotransmitters increase the efficacy of the presynaptic neuron 
with the action potential (Riedel et al., 2003). The neurotransmitter glutamate fur-
ther activates the ionotropic glutamate receptor (iGluR) and metabotropic glutamate 
receptor (mGluR) (Gasbarri & Pompili, 2013). The iGluR are the ion channels that 
make the excitatory synaptic plasticity faster in the Central nervous system (CNS) in 
the hippocampus (Traynelis et al., 2010). The mGluR regulates neuronal excitability 
when the action potential is rapidly released in the hippocampal-dependent spatial 
learning and memory (Mukherjee & Manahan-Vaughan, 2013). But, the neurotrans-
mitter gamma-aminobutyric acid (GABA), which is mostly present in Central Nerv-
ous System (CNS), inhibits the synaptic connectivity with the postsynaptic neuron 
(Barron, 2021; Zacharopoulos et al., 2021). Inhibiting the synapse from being con-
nected with other synapses can stop the unwanted information from being processed 
and stored in long-term memory. This way, only the necessary information relevant 
to the previously held memory will be activated for synaptic plasticity (Schmitz 
et al., 2017). The inhibitory control of GABA also plays a significant role in associa-
tive learning, which forms semantic knowledge by connecting relevant information 
(Spurny et al., 2020).

The excitatory neurotransmitter glutamate increases synaptic plasticity, and the 
inhibitory neurotransmitter GABA decreases synaptic plasticity. Together, the role 
of glutamate and GABA in the right concentration levels will provide balance and 
cognitive control (Brown et al., 2021; Tian & Chen, 2021). Hence, neurotransmitters 
are the chemical messengers involved in memory and learning by transmitting rel-
evant information and inhibiting irrelevant information (Yang et al., 2018).

Long‑Term Potentiation

Long-term potentiation is a process that strengthens the synapses to retain memory 
for a longer time in the long-term memory. The synaptic connection between two 
neurons is activated by the presynaptic neuron, which depends on the experience of 
the external stimuli (Sumi & Harada, 2020). The synaptic efficacy increases when 
the presynaptic neuron stimulates the neurotransmitters repeatedly to be connected 
with the postsynaptic neuron (Stent, 1973). The repeated and persistent connection 
between the synapses with long-term potentiation increases the ability to store infor-
mation permanently in long-term memory, which enhances memory retrieval and 
associative learning with new stimuli (Martinez & Derrick, 1996). The opposite pro-
cess of long-term potentiation is long-term depression which reduces the strength 
between the neurons to be connected (Bliss & Cooke, 2011). Long-term depression 
is equally essential as long-term potentiation because it removes unnecessary infor-
mation, allowing specific information for synaptic plasticity (Collingridge et  al., 
2010). The weakening of synaptic plasticity by long-term depression also enhances 
the process of memory retrieval and learning by inhibiting irrelevant memories. 
Thus, long-term depression develops the process of long-term potentiation and pro-
vides cognitive control.
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The high-frequency stimulation of long-term potentiation occurs in the hippocam-
pal region of the brain (Kemp & Manahan-Vaughan, 2004; Wang et al., 2021). The 
CA1 area of the hippocampus stores and retrieves long-term memory. The organiza-
tion of the information in order in the CA1 neural area of the brain helps associate 
the information (Bartsch et  al., 2011). Memory retention by the plasticity of syn-
apses forming long-term potentiation of memory depends on the N-Methyl-D-aspar-
tic acid or N-Methyl-D-aspartate (NMDA) receptor (Kumar, 2015). The long-term 
potentiation depending on the experience of the stimuli, can be divided into NMDA 
receptor-dependent and NMDA receptor-independent. NMDA receptor-dependent 
synapses connect better with the other neuron for long-term information storage 
than the NMDA-independent synapses (Sweatt, 2010). Together, the synaptic plas-
ticity and the long-term potentiation with NMDA receptors and the genetic tran-
scription of CREB and NF-kB in the region of CA1 in the hippocampus of the brain 
strengthen the information to be stored in long-term memory for effective retrieval 
and learning (Benito & Barco, 2010; Bito & Takemoto-Kimura, 2003).

Genetic Transcription

The stronger firing of the neurons for synaptic plasticity and long-term potentiation 
also requires genetic transcription. Specifically, the genetic activation of the cAMP 
response element-binding protein (CREB) in the process of synaptic plasticity is 
necessary for learning and memory (Kida, 2012). CREB is a transcription factor 
that binds to a specific DNA sequence called cAMP-response-element (CRE). The 
perception of stimuli, the experience, and the effect of the stimuli while learning 
trigger the phosphorylation of CREB-dependent gene expression (Gandolfi et  al., 
2017). The phosphorylation of CREB activates the synaptic plasticity between the 
neurons, such that the information is strengthened for the long-term potentiation of 
the memory (Deisseroth & Bito, 1996). Further, CREB activation in the neurons 
is involved in synaptic plasticity and long-term potentiation that binds the neurons 
for synaptic efficacy (Kaldun & Sprecher, 2019; Ortega-Martínez, 2015). Also, the 
CREB plays a role in initiating the process of memory consolidation, which sta-
bilizes the information from short-term memory to long-term memory (Lonze & 
Ginty, 2002; Suzuki et al., 2011). The activation of the CREB gene allows switching 
between the memory phases that increase context-specific learning. By regulating 
the neuronal activity of synaptic plasticity, CREB enhances the storage of memory 
traces that can be reactivated during retrieval for effective learning (Wang et  al., 

Fig. 4  Chromosomal location of the CREB gene (2q33.3)
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2018). Figure 4 represents the chromosomal location of the gene CREB, and Fig. 5 
shows the genetic patterns of CREB.

Another transcription factor that regulates the functioning of neurotransmitters is the 
nuclear factor kappaB (NF-kB). NF-kB regulates neuronal transmission and synaptic plas-
ticity by holding the memory trace or engram (Kaltschmidt & Kaltschmidt, 2015). With 
the activation of NF-kB, long-term potentiation is induced, forming memory traces. Fol-
lowing that, the new information forms the synaptic plasticity between the neurons. In this 
process, the older memory trace is reactivated, forming a connection between the prior 
knowledge and the external stimuli (Kaltschmidt et al., 2006). Also, the major activator for 
the synaptic activity of NF-kB is glutamate and Ca2 + , which regulate the transmission of 
information (Kaltschmidt et al., 2005). This transmission of information through neurons 
by the activation of CREB and NF-kB positively increases memory retention and retrieval, 
which influences the learning experience. Figure 6 represents the chromosomal location of 
the gene NF-kB, and Fig. 7 shows the genetic patterns of NF-kB.

Theta Oscillations

Along with the neurotransmitters and the genetic transcription CREB, the hippocam-
pal theta rhythm is activated to strengthen long-term potentiation. The theta oscillation 
in the brain is essential for encoding and retrieval of memory (ter Wal et al., 2021). 

Fig. 5  CREB gene patterns 
from Allen Human Brain Atlas, 
human.brain-map.org

Fig. 6  Chromosomal location of the NF-kB gene (4q24)
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The theta waves measure between 4 to 8 HZ and the normal functioning of the theta 
rhythm within this frequency mediates memory and learning (Bastiaansen et al., 2005; 
Kikuchi et  al., 2011). During memory retrieval, the theta waves get activated and 
update the memory for its retainment for a longer period. Depending on the higher or 
lower frequency of the theta waves, the stronger or weaker firing of synapses for long-
term potentiation is determined (Jacobs et al., 2006). Besides that, the transmission of 
information for memory storage requires synaptic plasticity, and the strong firing of 
presynaptic and postsynaptic neurons results from the oscillations of the theta wave in 
the brain (Bland, 1986; Klimesch et al., 2001). The topographical map in Fig. 8 shows 
an increase in the theta wave during the retention and retrieval of memory.

Fig. 7  NF-kB gene patterns 
from Allen Human Brain Atlas, 
human.brain-map.org

Fig. 8  Topographical map to show the activation of theta wave. The plot shows amplitude where 
the red color shows the positive amplitude of theta and blue shows the negative amplitude of theta. The 
darker red or blue indicates, the higher value of theta oscillation on an average time during the retrieval 
of information
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Electroencephalography (EEG) and magnetoencephalography (MEG) studies 
have shown that theta oscillations in the brain are stimulated for hippocampal acti-
vation during working memory (Düzel et  al., 2010; Gyorgy, 2002). Though the 
mechanism that facilitates theta brain oscillation in neural circuits is not clear, it 
is found that the theta burst stimulation (TBS), which is similar to the original 
theta activity in the brain, activates the memory consolidation and reconsolidation 
process, thus increasing the long-term potentiation of memory (Arai & Lynch, 
1992; Larson & Munkácsy, 2015). Further, the theta burst by the human theta 
burst stimulation stimulates NMDA receptors that induce long-term potentiation 
for the storage, retainment, and retrieval of memory (Capocchi et al., 1992; McCa-
lley et al., 2021).

EEG memory studies have involved theta burst stimulation in finding 
theta activity for memory storage and retrieval. The theta burst stimulation 
uses high-frequency stimulation bursts that resemble the original activation 
of theta in the hippocampal region using extracellular field potential record-
ings (Abrahamsson et al., 2016; Tse et  al., 2018). Theta bursts are repeated 
to evoke synaptic plasticity, which induces long-term potentiation for mem-
ory and learning (Albouy et al., 2022; Wong et al., 1986). The theta rhythm 
coordinates the neural activity for synaptic plasticity and long-term potentia-
tion that retains and retrieves memory for learning and creating a link with 
new knowledge. Table 1 gives an overview of the processes involved in the 
storage and retrieval of memory.

Conclusions

The consolidation of information from short-term memory to long-term mem-
ory stabilizes and retains the memory for retrieval and learning. The neurobio-
logical mechanism underlying the consolidation and reconsolidation of memo-
ries occurs when neurons communicate and transmit information. As a matter 
of fact, memory and learning are interconnected neurobiological phenomena 
that depend on the firing of neurons during acquisition and the reactivation of 
neurons during retrieval.

The above discussion shows that the neural signals from synaptic plastic-
ity are mediated by neurotransmitters, including glutamate and GABA. Further, 
the transmitted information is strengthened by long-term potentiation medi-
ated by NMDA receptors. This transmission and strengthening of neurons for 
memory and learning are activated by CREB and NF-kB genetic transcription 
and oscillation of theta waves. Taken together, it is reasonable to conclude 
that the retainment and retrieval of memory through synaptic plasticity play 
an important role in learning. However, more neurobiological studies could be 
developed on the function of neurons in acquiring, transmitting, and retrieving 
memory.
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