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Abstract
Fibroblastic and myofibroblastic neoplasms of the head and neck encompass a group of rare tumor types with often over-
lapping clinicopathologic features that range in biologic potential from benign to overtly malignant. Even neoplasms with 
no metastatic potential may provide significant therapeutic challenges in this region due to the unique anatomy of the head 
and neck. This review will cover the following entities, highlighting important clinical aspects of each neoplasm and then 
focusing on their characteristic histomorphology, immunophenotype, and molecular alterations: nodular and cranial fascii-
tis, fibrous hamartoma of infancy, nasopharyngeal angiofibroma, nuchal-type and Gardner fibromas, desmoid fibromatosis, 
dermatofibrosarcoma protuberans and giant cell fibroblastoma, solitary fibrous tumor, inflammatory myofibroblastic tumor, 
low-grade myofibroblastic sarcoma, infantile fibrosarcoma, low-grade fibromyxoid sarcoma, and sclerosing epithelioid 
fibrosarcoma. While some of these neoplasms characteristically arise in the head and neck, others are rarely described in 
this anatomic region and may therefore be particularly difficult to recognize. Distinction between these entities, however, is 
crucial, particularly as the molecular pathogenetic basis for these neoplasms are being rapidly elucidated, in some instances 
allowing for targeted therapeutic approaches.
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Introduction

This review provides an overview of fibroblastic and myofi-
broblastic neoplasms that may arise in the head and neck, 
beginning with benign entities (some of which have only 
recently been recognized to be neoplastic), and ending with 
clinically aggressive fibroblastic sarcomas. While some of 
these neoplasms occur frequently (even exclusively) in the 
head and neck, others are rarely reported at these sites and 
require awareness of the possibility of such tumor types in 
order to arrive at the correct diagnosis. Several neoplasms 
discussed herein have recently described or well-known 
recurrent molecular alterations, while other neoplasms are 
yet genetically uncharacterized (Table 1). Special attention 
to recent immunophenotypic and/or molecular findings 
has been paid throughout this review in order to highlight 

diagnostically or clinically relevant updates for these 
neoplasms.

Nodular and Cranial Fasciitis

Nodular fasciitis (NOF) is a benign myofibroblastic neo-
plasm that presents as a solitary subcutaneous mass on the 
upper extremities, trunk, or head and neck (up to 25% in 
some series) [1–4]. In the head and neck, NOF most com-
monly arises on the face or neck, but has also been reported 
in the oral cavity, orbit, parotid and ear [4–6]. While the 
age range at presentation is wide, the peak incidence is in 
the third and fourth decades [1, 2]. Tumors grow rapidly, 
typically with a preoperative duration of less than 3 months, 
may be tender or painless, and often measure less than 3 cm 
on excision [1–4]. Spontaneous regression prior to surgical 
resection is characteristic, with “recurrences” only occurring 
after incomplete surgical excision [1, 7].

Cranial fasciitis (CF) is a rare variant of NOF that arises 
on the scalp, most commonly in the temporal and parietal 
regions, with 80 reported cases since its original description 
in 1980 [8, 9]. In contrast to NOF, CF typically presents 
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in infants prior to two years of age (with a male predomi-
nance), including some congenital tumors [8–10]. Lesions 
often cause a “saucer-like” erosion of the outer table of the 
skull, occasionally eroding through the inner table as well 
[8]. Although trauma has often been invoked for the etiol-
ogy of both CF and NOF, evidence for this association is 
weak [4, 9].

On gross examination, NOF and CF are rubbery, fibrous 
or myxoid, focally cystic masses, which can appear circum-
scribed or somewhat infiltrative [1, 8]. Histologically, both 
are cellular lesions comprised of plump, spindled-to-stel-
late cells with bland ovoid nuclei arranged in loose fasci-
cles (Fig. 1) [2, 3, 8]. More cellular lesions appear vaguely 
storiform or whorled. The stroma may be predominantly 
myxoid or collagenous, including areas of keloidal collagen 
(see Fig. 1c); prominent admixed capillaries are reminiscent 
of granulation tissue [1–3]. The cells notably lack nuclear 
atypia, hyperchromasia, or pleomorphism, but often display 
a high mitotic rate (10 per 10 HPF or higher) without atypi-
cal forms. Extravasated erythrocytes and chronic inflam-
mation are common findings; more rarely, osteoclast-like 
giant cells may be prominent (see Fig. 1d) [3]. Immunohis-
tochemistry (IHC) is not particularly helpful; smooth muscle 
actin (SMA) is characteristically diffusely positive, and focal 
desmin expression is sometimes seen [3].

Though NOF has been widely regarded to be reactive 
in nature, recent studies have identified recurrent USP6 
gene rearrangements in most cases, often with MYH9 as the 
fusion partner (~ 70%), reclassifying these lesions as benign 
neoplasms [11–13]. USP6 gene rearrangements have also 
been documented in CF [14]. Given that these tumors are 
self-limited, the concept of “transient neoplasia” has been 
proposed [12].

Fibrous Hamartoma of Infancy

Fibrous hamartoma of infancy (FHI) is a rare benign neo-
plasm that presents as a painless, solitary, subcutaneous 
mass in the axilla, trunk, or proximal extremities, though 
up to 10% occur in the head and neck region, including 
the cheek, scalp, and orbit [15–18]. FHI typically arises in 
infants less than 2 years of age (20% of cases are congeni-
tal), with a male predominance [17, 18]. FHI recurs locally 
in 15% of cases, without aggressive behavior or metastases 
[16–18]. Grossly, FHIs are poorly circumscribed, contain-
ing variable amounts of adipose and fibrous tissue, and 
measure between 3 and 5 cm [15].

Histologically, FHI displays a distinctive triphasic orga-
noid architecture: (1) intersecting fascicles of bland spin-
dle cells within a collagenous stroma, (2) mature adipose 
tissue, and (3) nodules of primitive mesenchyme com-
posed of spindled to stellate cells within a loose baso-
philic or myxoid stroma (Fig. 2) [15, 19]. The propor-
tions of these components are highly variable; when one 
predominates, diagnosis can be challenging, especially on 
biopsy. Around a quarter of cases contain prominent areas 
of hyalinized collagenous stroma with pseudoangiomatous 
slit-like spaces, mimicking giant cell fibroblastoma (see 
Fig. 2b) [17]. IHC reveals SMA expression in fibroblastic 
fascicles and CD34 in primitive mesenchyme as well as 
hyalinized collagenous areas [17, 19]. Interestingly, recent 
studies have revealed recurrent somatic EGFR exon 20 
insertion/duplication mutations in FHI, supporting a neo-
plastic rather than hamartomatous etiology for this lesion 
[20, 21].

Table 1  Summary of molecular 
findings in fibroblastic/
myofibroblastic neoplasms

Tumor type Molecular alteration

Nodular fasciitis USP6 rearrangements (70% MYH9-USP6)
Cranial fasciitis USP6 rearrangements
Fibrous hamartoma of infancy EGFR exon 20 insertion/duplication mutations
Nasopharyngeal angiofibroma CTNNB1 exon 3 mutations
Nuchal-type fibroma Unknown
Gardner fibroma APC inactivation
Desmoid fibromatosis CTNNB1 exon 3 mutations in most sporadic cases

APC inactivation in syndromic cases
Dermatofibrosarcoma protuberans COL1A1-PDGFB fusion
Giant cell fibroblastoma COL1A1-PDGFB fusion
Solitary fibrous tumors NAB2-STAT6 fusion
Inflammatory myofibroblastic tumor ALK rearrangements (many fusion partners)
Low-grade myofibroblastic sarcoma Unknown
Infantile fibrosarcoma NTRK rearrangements in most cases (90% ETV6-NTRK3)
Low-grade fibromyxoid sarcoma FUS rearrangements (90% FUS-CREB3L2)
Sclerosing epithelioid fibrosarcoma EWSR1 or FUS rearrangements
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Nasopharyngeal Angiofibroma

Nasopharyngeal angiofibroma (NA) is a rare fibrovascu-
lar neoplasm that arises in the posterolateral nasal wall 
almost exclusively in adolescent males [22–25]. NA clas-
sically presents with the triad of nasal obstruction, recur-
rent epistaxis, and a nasopharyngeal mass; this tumor may 
be locally aggressive, causing destruction of the paranasal 
sinuses, orbit, and skull base with intracranial extension in 
occasional cases [24, 25]. NA is associated with familial 
adenomatous polyposis (FAP) in some cases [26], and these 
lesions are thought to be hormonally driven given their pre-
dilection for adolescent males, although the etiology remains 
unclear [27]. Imaging is often diagnostic, obviating preop-
erative biopsy, and recurrence despite surgical resection may 
occur in up to a quarter of cases [22–25].

Macroscopically, NAs typically measure around 4 cm 
and appear polypoid or lobulated [23]. Histologically, they 
are composed of numerous variably-sized vascular spaces 
within a fibrous stroma containing plump spindled to stellate 
stromal cells (see Fig. 2c) [28]. Vascular spaces range from 

slit-like capillaries to dilated, branching vessels of varying 
thickness. Stroma may be loose and edematous or densely 
collagenous, often containing prominent mast cells [28]. By 
IHC, stromal cells are often positive for androgen receptor 
(AR) [29, 30] and show strong diffuse nuclear staining for 
β-catenin (see Fig. 2d) [31]. Studies have shown X chromo-
some gains, with associated gains in a copy of AR [27], as 
well as somatic mutations in exon 3 of CTNNB1 (encoding 
β-catenin) in up to 75% of cases [31, 32].

Nuchal‑Type and Gardner Fibromas

Nuchal-type fibroma (NTF) and Gardner fibroma (GAF) 
are two histologically similar yet distinct benign fibroblastic 
tumors that arise within different age groups and at different 
body sites, allowing for distinction in most cases. Unlike 
GAF, which affects males and females equally, NTF has a 
strong male predominance (4.5:1) [33–35]. Notably, NTF 
occurs most commonly in the 5th decade of life, while GAF 
is more common in young children, although age ranges are 
wide for both tumor types [34, 35]. While 70% of NTF arise 

Fig. 1  a Cranial fasciitis infiltrating the outer table of the skull. b 
Cranial fasciitis composed of loose fascicles of myofibroblastic spin-
dle cells with pale eosinophilic cytoplasm in a scant myxoid stroma. c 

An example of cranial fasciitis with prominent keloidal collagen bun-
dles. d Nodular fasciitis with prominent osteoclast-like giant cells
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in the posterior neck, they may occur at extra-nuchal sites, 
including the face and upper back [33, 35]. In contrast, only 
15% of GAF occur in the head and neck, with the majority 
arising on the trunk, especially the paraspinal region [34]. 
The vast majority of GAF are associated with FAP and APC 
germline mutations, making GAF a sentinel lesion for FAP; 
all patients diagnosed with GAF should undergo genetic 
counseling, along with their parents [36, 37]. Up to 50% of 
patients with NTF have diabetes mellitus [35]. Recurrence 
following surgical excision of either lesion is not uncom-
mon [33–35]. Importantly, desmoid fibromatosis arises at 
the same site of up to half of surgically excised GAF [34].

Both lesions are poorly circumscribed, subcutaneous to 
dermal, hypocellular proliferations of nondescript, bland 
stromal fibroblasts admixed with collagen bundles (Fig. 3). 
Entrapped adipose tissue or skeletal muscle is seen in both 
lesions; entrapped nerves are common in NTF often with 
peripheral traumatic neuroma-like areas [34, 35]. IHC for 
CD34 is positive in the stromal cells of both lesions, with 

nuclear β-catenin seen in two-thirds of GAF [34–36]. Bial-
lelic APC inactivation has been reported in FAP-associated 
GAF [37].

Desmoid Fibromatosis

Desmoid fibromatosis (DF) is a locally aggressive fibroblas-
tic neoplasm, which occurs in the head and neck in up to 
15% of cases, and in a greater percentage of cases in the 
pediatric population [38–40]. In this region, the neck is most 
commonly affected; tumors of the face, mandible, parana-
sal sinuses, larynx, orbit, and oral cavity are also reported 
[38–41]. Children and young adults are most commonly 
affected by head and neck DF, although the age range is wide 
[39–41]. Patients typically present with a painless, rapidly 
growing, deep-seated mass, though pain and neurological 
deficits have been reported for DF of this region [39, 41]. 
As in other locations, DF of the head and neck is associ-
ated with prior trauma or surgery, and more rarely with APC 

Fig. 2  a Fibrous hamartoma of infancy (FHI) showing the char-
acteristic components: fascicles of spindle cells with eosinophilic 
cytoplasm, adipocytes, and nodules of stellate-to-spindle cells in a 
basophilic, myxoid stroma. b Areas of FHI often contain prominent 
stromal collagen and pseudoangiomatous slit-like spaces, mimicking 

giant-cell fibroblastoma. c Nasopharyngeal angiofibroma contain-
ing vessels of varying caliber within a hyalinized collagenous stroma 
with stellate fibroblasts. d Stromal cells in nasopharyngeal angiofi-
broma show aberrant nuclear beta-catenin
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germline mutations, highlighting the likely multifactorial 
pathogenesis of DF [39, 42]. Head and neck DF presents 
unique therapeutic challenges given the unpredictable tumor 
behavior and proximity to vital anatomic structures, with 
rare fatalities reported due to airway or vascular involvement 
and high morbidity with attempts to achieve negative mar-
gins [39, 41]. Though DF is often locally aggressive, with 
a recurrence rate of up to 30% following surgical excision, 
stable disease without treatment is common, and sponta-
neous regression also occurs [39–42]. Treatment typically 
involves surgery, but given the complexities of operating 
at this site, may also include radiotherapy, chemotherapy, 
tamoxifen, and tyrosine kinase inhibitors such as imatinib 
and sorafenib; a conservative “watchful waiting” approach 
has become more common in recent years [39, 41].

Grossly, DF appears white-tan, whorled, and fibrous, with 
ill-defined borders [42, 43]. Histologically, the lesions are 
comprised of bland spindled to stellate fibroblasts arranged 
in long sweeping fascicles within a collagenous stroma, 
irregularly infiltrating through surrounding adipose tissue 
or skeletal muscle (see Fig. 3c and d) [42–44]. Stroma may 

contain areas of dense keloidal collagen or loose myxoid 
change, as well as prominent vasculature with perivascu-
lar edema. Tumor cells are uniform, lacking nuclear atypia 
or hyperchromasia. By IHC, SMA is usually positive, and 
up to 80% of DF show nuclear staining for β-catenin [42]; 
importantly, nuclear β-catenin is also observed in superficial 
fibromatoses and some sarcomas and is therefore not spe-
cific, nor entirely sensitive, for DF [45]. Somatic mutations 
in exon 3 of CTNNB1 are found in up to 90% of sporadic 
DF, with the S45F mutation predicting a higher risk of local 
recurrence [46–48]; rarely, somatic APC mutations are iden-
tified instead [49].

Dermatofibrosarcoma Protuberans and Giant Cell 
Fibroblastoma

Dermatofibrosarcoma protuberans (DFSP) and giant cell 
fibroblastoma (GCF) are two cutaneous fibroblastic neo-
plasms that share clinicopathologic and genetic features. 
GCF predominantly affects pediatric patients and DFSP 
arises most often in young to middle-aged adults, although 

Fig. 3  a Nuchal-type fibroma entrapping fat and nerves. b Gardner 
fibroma with dense collagen, slit-like spaces, and aberrant nuclear 
beta-catenin (inset). c Desmoid fibromatosis composed of long, 

sweeping fascicles of uniform spindle cells with tapering nuclei. d 
Desmoid fibromatosis infiltrating through adjacent skeletal muscle
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both tumor types can affect newborns to elderly individuals 
[50–52]. Both have a male predilection and present with a 
slow-growing, painless, often protuberant, multinodular or 
polypoid cutaneous mass or plaque [50–52]. While they both 
most commonly arise on the trunk and proximal extremi-
ties, rare GCF and up to 15% of DFSP occur in the head 
and neck [50–53]. GCF and DFSP are associated with local 
recurrence in up to 50% of cases, especially if incompletely 
excised. Neither GCF nor conventional DFSP metastasize; 
however, the fibrosarcomatous variant of DFSP is associated 
with metastatic potential (up to 15%), typically to the lungs 
[54, 55]. Excision with wide surgical margins is the treat-
ment of choice, although tyrosine kinase inhibitors such as 
imatinib may be administered to patients with tumors at sites 
where surgery would be morbid or disfiguring [52].

Grossly, both DFSP and GCF are ill-defined, infiltrative, 
predominantly dermal and subcutaneous lesions; DFSP aris-
ing on the scalp may invade periosteum or the skull [50, 52]. 
Histologically, both neoplasms display honeycomb infiltra-
tion through subcutaneous fat (Fig. 4), often with sparing 
of entrapped skin adnexal structures. DFSP is characterized 

by uniform, cytologically bland, hyperchromatic spindle 
cells arranged in a monotonous storiform pattern with low 
mitotic activity [52]. Occasional tumors contain distinctive 
myoid nodules (see Fig. 4b). GCF is relatively hypocellular, 
composed of a haphazard arrangement of bland spindle cells 
embedded in a myxoid to collagenous stroma, containing 
distinctive angiectoid spaces lined by floret-like giant cells 
(see Fig. 4d) [50]. Interestingly, hybrid tumors with areas of 
both DFSP and GCF can be seen; pure GCF may recur as 
hybrid tumors or as DFSP and vice versa, highlighting the 
close relationship between these tumor types [51]. Mitotic 
activity is not prominent in either neoplasm but is often high 
in the fibrosarcomatous variant of DFSP, which is character-
ized by a fascicular growth pattern and enlarged, vesicular 
nuclei with increased nuclear atypia (see Fig. 4c). Approxi-
mately 5% of DFSP (and rarely GCF) may display melanin 
pigment-containing tumor cells, known as Bednar tumors 
[52]. By IHC, both tumors are characteristically positive for 
CD34, though, notably, there is loss of CD34 staining in 
half of fibrosarcomatous DFSP [54]. Genetically, both DFSP 
and GCF are associated with rearrangements of 17q21 and 

Fig. 4  a Hyalinized dermatofibrosarcoma protuberans (DFSP) show-
ing the characteristic honeycomb growth pattern through subcutane-
ous adipose tissue. b DFSP with myoid nodules. c Fibrosarcoma-

tous DFSP with fascicular architecture, plump nuclei, and increased 
mitotic activity. d Giant-cell fibroblastoma containing floret-like giant 
cells lining angiectoid spaces
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22q13, resulting in a COL1A1-PDGFB gene fusion, further 
supporting the close relationship between these tumor types 
[56]. DSFP contains this fusion within supernumerary ring 
chromosomes, whereas GCF usually harbors a balanced 
t(17;22) translocation [50, 56]. Interestingly, studies in 
hybrid GCF-DFSP tumors have shown multiple copy gains 
of COL1A1-PDGFB in DFSP areas compared to GCF areas, 
as well as progressive copy number gains of the fusion gene 
in tumors progressing from GCF to hybrid GCF-DFSP to 
fibrosarcomatous DFSP [57, 58]. Recent studies have iden-
tified alternate COL6A3-PDGFD and EMILIN2-PDGFD 
fusion genes in DFSP [59, 60].

Solitary Fibrous Tumor

Solitary fibrous tumors (SFTs) are fibroblastic neoplasms of 
intermediate biologic potential with a peak incidence in mid-
dle-aged adults and no sex predilection [61, 62]. Although 
SFTs display a wide anatomic distribution, 10–15% occur in 
the head and neck, with the sinonasal tract, orbit, oral cav-
ity and salivary glands most frequently involved [62–64]. 
Head and neck SFTs typically present as slow-growing pain-
less masses, with site-related compressive symptoms and 
at smaller sizes (often 5 cm or less) than at other anatomic 
locations [62, 64]. Rates of positive surgical resection mar-
gins and local recurrences (up to 35%) are higher in SFTs of 
the head and neck, although rates of distant metastases are 
lower than at other sites [61–64]. Recurrences may occur 
greater than 15 years after primary excision [61]. Recent 
studies have demonstrated that clinicopathologic features 
associated with increased risk of metastasis and death 
from disease include older age, larger tumor size, increased 
mitotic activity, and presence of tumor necrosis, leading to 
the creation of a 3-tiered risk stratification model including 
these factors [61, 65].

Grossly, head and neck SFTs are often circumscribed, 
solid, white-tan and fibrous, with infiltrative growth and 
bony invasion occasionally seen [62, 66]. Histologically, 
SFTs are morphologically heterogenous, characterized by 
cytologically bland ovoid to spindle cells arranged in a pat-
ternless architecture within a hypocellular to densely cellular 
collagenous stroma, associated with prominent thin-walled, 
dilated, branching hemangiopericytoma-like (“staghorn”) 
vessels (see Fig. 5) [66]. Stromal and perivascular hyalini-
zation as well as keloidal-type collagen is common. Less 
common SFT morphologic variants include myxoid (with 
prominent myxoid stroma) (see Fig. 5c), epithelioid (with 
predominantly rounded cells with pale to eosinophilic cyto-
plasm), lipomatous or fat-forming (with interspersed mature 
adipocytes, formerly known as “lipomatous hemangioperi-
cytoma”), and giant cell-rich (with scattered multinucleated 
giant cells, often lining dilated pseudovascular spaces, for-
merly known as “giant cell angiofibroma”) (see Fig. 5d), 

all of which are seen in the head and neck [62, 63, 66]. 
Mitotic activity ranges from absent to brisk, with a greater 
risk for metastasis associated with mitotic activity equal to 
or greater than 4 per 10 HPF [61, 65]. Rarely, “dedifferentia-
tion”, or high-grade sarcomatous transformation with overt 
pleomorphism and necrosis, may be identified, and is associ-
ated with poor outcomes [67]. Characteristically, SFTs are 
diffusely positive for CD34 [66]. Importantly, recent studies 
have identified recurrent NAB2-STAT6 gene fusions in nearly 
all SFTs [68–70]; subsequent studies revealed that nuclear 
expression of STAT6 by IHC is highly sensitive and specific 
for SFT (see Fig. 5a) [71]. More recent studies have revealed 
TERT promoter mutations in 20–30% of SFTs, which are 
associated with worse prognosis [72, 73].

Inflammatory Myofibroblastic Tumor

Previously termed “inflammatory pseudotumor” (among 
many other names), inflammatory myofibroblastic tumor 
(IMT) is a myofibroblastic neoplasm of intermediate bio-
logic potential that arises predominantly in children, ado-
lescents, and young adults in the lungs, abdomen, and pelvis 
[74, 75]. However, up to 15% of IMTs arise in the head 
and neck, where they are more common in adults [76–79]. 
Laryngeal IMTs present with hoarseness and dysphonia 
[77, 78], while sinonasal IMTs typically present with nasal 
obstruction and pain [76]. Systemic symptoms and labora-
tory abnormalities described in up to 30% of IMTs over-
all [75] are not typically reported in sinonasal or laryngeal 
IMTs [76, 77]. Laryngeal IMTs generally arise in the glottis 
and follow a benign clinical course following excision [77, 
78], while sinonasal and oral cavity IMTs are clinically more 
aggressive, with higher rates of recurrence, metastasis and 
mortality despite treatment [79, 80]. Other reported sites 
include pharynx, neck, skull base, salivary glands, trachea, 
and orbit [74, 79].

Grossly, IMTs appear polypoid or nodular, with fibrous or 
fleshy, white-tan cut surfaces [75], typically less than 3 cm in 
the larynx and less than 7 cm elsewhere in the head and neck 
[78, 79]. Histologically, IMTs display three histologic pat-
terns, sometimes all within the same lesion: a myxoid fascii-
tis-like pattern, a cellular spindle cell pattern, and a hypocel-
lular fibromatosis-like pattern (Fig. 6) [74, 75]. The myxoid 
pattern is characterized by plump or stellate cells loosely 
arranged in a myxoid matrix with prominent vasculature and 
an associated inflammatory infiltrate of eosinophils, neutro-
phils and lymphocytes. The cellular spindle cell pattern is 
composed of uniform elongated spindle cells with vesicular 
chromatin within a collagenous stroma arranged compactly 
in a fascicular or storiform architecture, often with numerous 
admixed plasma cells and lymphocytes. The hypocellular 
fibrous pattern mimics DF, with relatively sparse elongated 
spindle cells arranged within fascicles of dense collagenous 
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stroma containing scattered lymphocytes, plasma cells, and 
eosinophils. Nuclei typically display mild atypia and low 
mitotic activity, without atypical mitoses or hyperchromasia 
[81]. Some IMTs display scattered large polygonal “gan-
glion-like” cells with vesicular nuclei, prominent nucleoli, 
and abundant amphophilic cytoplasm [75, 81]. IHC for SMA 
and desmin is at least focally present in the vast majority of 
IMTs [75]. Recurrent chromosomal rearrangements of 2p23 
resulting in ALK gene fusions are documented in approxi-
mately 60% of IMTs, with a wide range of fusion partners 
[82, 83]. Cytoplasmic ALK staining by IHC is observed in 
up to 60% of IMTs (see Fig. 6c), which correlates with ALK 
gene rearrangement by FISH [84–86]. IMTs lacking ALK 
expression are associated with older patient age and a more 
aggressive clinical course [76, 81].

Low‑Grade Myofibroblastic Sarcoma

Low-grade myofibroblastic sarcoma is a rare, relatively indo-
lent myofibroblastic neoplasm with low metastatic potential 

and a predilection for the extremities and head and neck [87, 
88]. The oral cavity, especially the tongue, is a preferred site, 
although cases have been reported in the mandible, para-
nasal sinuses, larynx, neck, and skull base [88–90]. While 
low-grade myofibroblastic sarcoma can occur in pediatric 
and elderly patients, the majority arise during the 4th and 5th 
decades of life, commonly presenting as a painless, slowly 
enlarging mass or swelling, which may be submucosal, sub-
cutaneous, intramuscular or rarely intraosseous [87–90]. 
Following complete wide surgical excision, local recurrence 
is uncommon and distant metastasis rare, although complete 
excision of head and neck tumors may be challenging [90, 
91].

Grossly, tumors appear white-tan and fibrous, with ill-
defined margins, and are often less than 5 cm in size within 
the head and neck [88, 91]. Histologically, tumors are com-
posed of cellular fascicles (occasionally with a herringbone 
or storiform architecture) of atypical spindle cells within a 
collagenous and variably hyalinized stroma (Fig. 7) [87, 92]. 
The nuclei are tapering and wavy or plump and stellate, with 

Fig. 5  a Solitary fibrous tumor (SFT) composed of short spindle cells 
with a patternless architecture within a collagenous stroma contain-
ing a branching hemangiopericytoma-like vessel; STAT6 is positive 
(inset). b High-risk SFT with high cellularity, nuclear atypia, and 

focal tumor necrosis (upper left corner). c Myxoid SFT can be chal-
lenging to recognize. Note the dilated, thin-walled blood vessels. d 
Giant cell-rich SFT with a hyalinized stroma
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mild to moderate nuclear atypia and low mitotic activity 
(typically < 6 per 10 HPF) [92]. When intramuscular, low-
grade myofibroblastic sarcoma displays diffuse infiltration 
among individual muscle fibers creating a characteristic 
“checkerboard” pattern, mimicking proliferative myositis 
(see Fig. 7a) [87]. Unlike IMT, lymphocytes and plasma 
cells are not prominent [92]. Low-grade myofibroblastic 
sarcoma displays a variable immunophenotype with some 
tumors positive for both desmin and SMA, and others posi-
tive for only one or the other [91, 92]. Importantly, up to a 
third of tumors show nuclear β-catenin by IHC, leading to 
potential confusion with DF [45]. No recurrent cytogenetic 
or molecular genetic alterations have been described thus 
far [90, 93].

Infantile Fibrosarcoma

Infantile fibrosarcoma (IFS), also known as congenital fibro-
sarcoma, is a rare malignant fibroblastic neoplasm with a 
male predilection, which arises predominantly in the limbs 
of infants [94–96]. Over a third of IFS are present at birth, 

with the majority diagnosed prior to 12 months [96–98]. 
Up to 15% of IFS occur in the head and neck, with reported 
sites including scalp, tongue, parotid, and orbit [94–97]. IFS 
typically presents as a rapidly enlarging painless mass with 
erythematous, often ulcerated, overlying skin, mimicking a 
vascular tumor [94, 95]. Local recurrence following surgical 
excision is common (25–40%), with metastases and mor-
tality at around 10% [98–100]. While surgical excision is 
often curative, even with microscopically positive margins 
[98, 99], outcomes for tumors in the head and neck may be 
worse due to challenging surgery at this site [96]. Chemo-
therapy, and more recently targeted therapy with tyrosine 
kinase (NTRK) inhibitors, has been shown to be effective 
in surgically challenging or aggressive cases [97–99, 101].

Grossly, IFS are poorly circumscribed and lobulated, 
with a mean size of 5–6 cm (sometimes > 15 cm), and 
display fibrous or more often fleshy tan-gray cut surfaces 
with focal necrosis, hemorrhage or cystic degeneration 
[94]. Histologically, IFS are densely cellular lesions char-
acterized by monomorphic primitive hyperchromatic ovoid 
to spindle cells arranged in tight fascicles (see Fig. 7c), 

Fig. 6  a Inflammatory myofibroblastic tumor (IMT) of the trachea 
composed of uniform spindle cells. b A cellular IMT showing a fas-
cicular growth pattern and scattered lymphocytes. c Myxoid IMT 

with abundant neutrophils and diffuse expression of ALK (inset). d 
Hypocellular IMT with dense stromal collagen mimicking desmoid 
fibromatosis
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within a variably collagenous stroma [94–96, 102]. 
Tumors are diffusely infiltrative and may display promi-
nent dilated hemangiopericytoma-like vasculature, focal 
necrosis and hemorrhage, or an associated chronic inflam-
matory infiltrate and focally myxoid stroma (mimicking 
IMT) [102]. Mitotic activity is often conspicuous (> 10 per 
10 HPF), but is not prognostically significant [94, 102]. 
The immunophenotype for IFS is non-specific, with vari-
able expression of desmin, SMA, CD34 and S100 protein 
[102, 103]. Genetically, IFS harbor a t(12;15) translocation 
resulting in the oncogenic ETV6-NTRK3 gene fusion in up 
to 90% of cases [104, 105], with alternate EML4-NTRK3 
fusions in a minority of cases [106]. IHC using a pan-
TRK antibody is highly sensitive and specific for IFS with 
NTRK fusions (see Fig. 7D), typically with diffuse nuclear 
and cytoplasmic staining; of note, patchy staining can also 
be seen in a subset of FHI, DFSP, and low-grade myofibro-
blastic sarcoma [103, 107]. Recent studies have identified 
NTRK1, NTRK2, BRAF, and MET gene rearrangements in 
a small subset of cases [108–111].

Low‑Grade Fibromyxoid Sarcoma

Low-grade fibromyxoid sarcoma (LGFMS) is a decep-
tively bland and relatively indolent malignant fibroblastic 
neoplasm with a propensity for late local recurrences and 
metastases [112–115]. LGFMS predominantly affects young 
adults in the 3rd and 4th decades of life, typically presenting 
as a painless slow-growing deep-seated mass of the trunk or 
proximal extremities [113], though superficial cases have 
been reported [116], as well as rare cases in the head and 
neck [117]. In studies with long-term follow up (greater 
than 10 years), LGFMS follows a protracted clinical course, 
with local recurrence in more than half and metastases in 
almost half of cases, often decades after primary excision 
[112–115].

Grossly, tumors are circumscribed and fibrous, with a 
wide size range [112]. Histologically, LGFMS is charac-
terized by bland spindle cells with a whorled growth pat-
tern within sharply alternating collagenous and myxoid 
areas (Fig. 8), the latter associated with arcades of delicate 

Fig. 7  a A relatively hypocellular low-grade myofibroblastic sarcoma 
showing a checkerboard pattern of infiltration through muscle fibers. 
b Low-grade myofibroblastic sarcoma displaying greater cellular-
ity and nuclear atypia and characteristic infiltration through muscle 

fibers. c Infantile fibrosarcoma showing highly cellular, fascicular 
growth and a high mitotic rate. d Diffuse staining with a pan-TRK 
antibody in an infantile fibrosarcoma
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thin-walled blood vessels [112–114]. Some tumors, pre-
viously thought to be clinically distinct and designated 
“hyalinizing spindle cell tumor with giant rosettes”, dis-
play prominent collagen rosettes consisting of nodules of 
acellular hyalinized collagen surrounded by palisading epi-
thelioid fibroblasts (see Fig. 8b) [114]. Mitotic activity is 
generally low (< 1 per 10 HPF), and a subset of tumors may 
display foci of hypercellularity, hyperchromasia and mod-
erate nuclear pleomorphism, or epithelioid cell morphol-
ogy (resembling sclerosing epithelioid fibrosarcoma) [113]. 
By IHC, MUC4 is highly sensitive (> 99%) and specific 
for LGFMS [118]; EMA is also often positive (60–80%), 
and focal SMA expression is observed in around 30% of 
cases [117]. Genetically, LGFMS harbors recurrent t(7;16), 
and less frequently t(11;16), chromosomal translocations 
[119], resulting in the FUS-CREB3L2 (over 90%) and 

FUS-CREB3L1 gene fusions [120, 121], respectively, with 
rare reports of EWSR1-CREB3L1 gene fusions in non-FUS 
rearranged tumors [122].

Sclerosing Epithelioid Fibrosarcoma

Sclerosing epithelioid fibrosarcoma (SEF) is a rare, aggres-
sive malignant fibroblastic neoplasm that typically arises in 
young to middle-aged adults as a slowly growing, painless 
deep-seated mass on the trunk or extremities, and less com-
monly in the head and neck [123–127]. SEF may present 
as an intraosseous neoplasm [128], including sites such as 
the skull, mandible, and palate, with particularly aggressive 
clinical behavior due to local intracranial spread and chal-
lenges in surgical resection [124–126]. High rates of local 

Fig. 8  a Low-grade fibromyxoid sarcoma (LGFMS) showing abrupt 
demarcation between collagenous and myxoid areas. b LGFMS with 
giant collagen rosettes. c Sclerosing epithelioid fibrosarcoma (SEF) 
composed of epithelioid cells arranged in trabeculae within a dense 

collagenous stroma. d Hybrid LGFMS-SEF showing classic LGFMS 
morphology with alternating collagenous and myxoid areas (left), and 
SEF morphology with cords of rounded cells with scant clear cyto-
plasm within a sclerotic matrix (right)
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recurrence (> 50%), metastasis (40–50%), and tumor-related 
mortality are reported [123–125].

SEFs are generally large (> 5 cm), lobulated, grossly 
circumscribed masses displaying firm, gray-white, whorled 
cut surfaces [123, 124]. Histologically, SEFs are composed 
of monomorphic epithelioid cells with clear to eosinophilic 
cytoplasm arranged in cords, strands, and nests within 
a densely hyalinized sclerotic matrix (see Fig. 8c) [123]. 
Peripheral infiltration of surrounding muscle, fascia, or peri-
osteum is frequently seen, with a subset of SEF showing 
focal necrosis or fibromyxoid regions closely resembling 
LGFMS [124, 129]. By IHC, 80–90% of SEFs are strongly 
and diffusely positive for MUC4 [129], with EMA positive 
in around 40% and keratins typically negative, which is help-
ful to distinguish SEF from metastatic carcinoma. Recurrent 
gene fusions of EWSR1-CREB3L1 are found in the majority 
of SEFs, with EWSR1-CREB3L2 or FUS-CREB3L2 more 
rarely reported [125, 130, 131]. Given their overlapping 
clinicopathologic, immunophenotypic, and molecular fea-
tures, in addition to reports of tumors presenting as one and 
recurring as the other, as well as hybrid tumors (see Fig. 8d), 
LGFMS and SEF are considered to be related neoplasms 
[129, 131]. A recent study reported KMT2A gene rear-
rangements (some with a YAP1 fusion partner) in a subset 
of MUC4-negative SEFs [132].

Summary

Fibroblastic and myofibroblastic neoplasms of the head and 
neck include rare tumor types that pose significant diag-
nostic and therapeutic challenges. While some entities have 
characteristic histologic features, others show significant 
morphologic overlap (particularly on biopsy specimens) 
and require IHC or ancillary molecular testing for accurate 
diagnosis. Awareness of these entities in the head and neck 
and knowledge of their clinical behavior can help avoid 
unnecessarily aggressive treatment for benign tumors and 
ensure adequate surgery, systemic therapy (when relevant), 
and appropriate follow-up for intermediate and malignant 
neoplasms.
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