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that is essential for the stimulation of the ATPase activity of 
Hsp70. Besides that, Hsp40s recognize and bind to unfolded 
or partially folded polypeptides and deliver them to Hsp70 
(Kampinga et al. 2019; Pinheiro et al. 2019; Summers et al. 
2009). Hsp70s have a conserved EEVD tetrapeptide at the 
C-terminus, which is involved in interacting with Hsp40s 
(Freeman et al. 1995; Yu et al. 2015).

Sis1, a class B Hsp40 from yeast Saccharomyces cerevi-
siae, binds the EEVD motif, while the class I (Ydj1) does 
not (Borges et al. 2012; Li et al. 2006; Yu et al. 2015), such 
that Sis1-EEVD interaction is required for in vitro protein 
refolding (Yu et al. 2015). However, the details of the inter-
action between EEVD motif and the J-domain remain to be 
understood. Here we describe the assignments of the back-
bone and sidechain of the J-domain (residues 1 to 81 and 
named Sis11 − 81) of Sis1 from S. cerevisiae in complex with 
the Hsp70 C-terminal EEVD motif. The results add sig-
nificantly to the understanding of J-domain-Hsp70-EEVD 
mechanism of interaction.

Methods and experiments

Protein expression and purification were carried out as 
previously reported (Pinheiro et al. 2019). For isotopic 
labeling, M9 minimal medium was supplemented with 
15 N ammonium chloride (1 g/L) and 13 C glucose (3 g/L) 
as the sole nitrogen and carbon sources.The octapeptide 

Biological context

Molecular chaperones play a central role in protein homeo-
stasis, including assistance in macromolecular complex 
assembly, protein transport, aggregate dissociation and 
refolding of stress-denatured proteins, and targeting mis-
folded proteins for proteolytic degradation (O. Tiroli-
Cepeda & H.I. Ramos, 2011). The Hsp70 (70 kDa heat 
shock protein) family is ubiquitous and participates in all 
of the biological processes mentioned above (Hartl 1996; 
Kim et al. 2013; O. Tiroli-Cepeda & H.I. Ramos, 2011). 
As a matter of fact, the proteostasis process depends on the 
functional interaction between Hsp70 and Hsp40 (Liu et al. 
2020). Co-chaperones from the Hsp40 family (also named 
J-proteins) are characterized by the presence of the J-domain 
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Abstract
Molecular chaperones aid proteins to fold and assemble without modifying their final structure, requiring, in several fold-
ing processes, the interplay between members of the Hsp70 and Hsp40 families. Here, we report the NMR chemical shift 
assignments for 1 H, 15 N, and 13 C nuclei of the backbone and side chains of the J-domain of the class B Hsp40 from 
Saccharomyces cerevisiae, Sis1, complexed with the C-terminal EEVD motif of Hsp70. The data revealed information on 
the structure and backbone dynamics that add significantly to the understanding of the J-domain-Hsp70-EEVD mechanism 
of interaction.
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GPTIEEVD referring to the C-terminal tail of Hsp70 was 
synthesized and purified by GenOne Biotechnologies (Rio 
de Janeiro, Brazil). All NMR spectra were recorded in 25 
mM sodium phosphate buffer (pH 7.5), 200 mM NaCl 
and 10% D2O supplemented with 250 µM PMSF, 5 mM 
sodium azide, and 2 mM EDTA to improve protein stability 
and avoid degradation. The concentrations of Sis11 − 81 and 
EEVD-peptide used in the data collection were 1 mM and 4 
mM, respectively.

NMR spectra were recorded on a Bruker Avance III HD 
900 MHz spectrometer equipped with an inverse-detection 
triple resonance z-gradient TXI probe. All experiments 
were performed at 298 K. Resonance assignments for back-
bone were obtained from the following experiments: 2D 
[1 H,15 N] HSQC, 3D HNCO, 3D HNCA, 3D HNCACB, 
3D CBCA(CO)NH and 3D HBHA(CO)NH (Gal et al. 
2011; Grzesiek and Bax 1993; Ikura et al. 1990; Witte-
kind and Mueller 1993). To assign the aliphatic sidechain, 
2D [1 H,13 C] HSQC, 3D (H)CCH-TOCSY, 3D H(C)CH-
TOCSY, 15 N and 13 C-edited NOESY-HSQC (for both ali-
phatic and aromatic regions) experiments (Kay et al. 1993; 
Logan et al. 1992; Sattler 1999). NOE distance restraints 
obtained from 15 N- and 13 C-edited NOESY spectra were 
acquired with a mixing time of 100 ms. Triple-resonance 
experiments were achieved using non-uniform sampling 
(NUS), with sampling rates between 8 and 20%. 2D 
[1 H-15 N] HSQC spectra were acquired before and after 

each 3D experiment to confirm the stability of the protein 
sample. NMR data wereprocessed with NMRpipe (Delaglio 
et al. 1995) and analyzed with CcpNmr Analysis (Vranken 
et al. 2005) available on the NMRbox platform (Maciejew-
ski et al. 2017).

Extent of assignments and data deposition

The Sis11 − 81:EEVD assigned backbone amide peaks are 
shown in the 2D [1 H-15 N] HSQC spectrum in Fig. 1 and 
refer to 100% of all possible amide H and amide N atoms 
(excluding the six prolines), 100% of all Cα atoms, 98.7% 
of all Cβ atoms and 91.6% of all CO atoms. At the end of the 
experiment, 96.4% of the backbone atoms were assigned. 
Considering all sidechain atoms, about 78.2% were assigned 
(77.5% of 13 C and 78.6% of 1 H). The chemical shift data 
is available at the Biological Magnetic Resonance Bank 
(https://www.bmrb.wisc.edu) and has the accession num-
ber 51,187. Note that there are unassigned minor peaks in 
the 2D [1 H-15 N] HSQC, possibly due to conformational 
exchange.

The order parameter (S2) and the secondary structures 
were predicted from the ensemble of backbone chemi-
cal shifts (13Cα, 13Cβ, 13CO, 15 N and 1HN) of Sis11 − 81, 
both in the free and in the bound-state, Sis11 − 81:EEVD, 
using TALOS-N (Berjanskii and Wishart 2005; Shen and 

Fig. 1 The 1 H-15 N HSQC spec-
trum of Sis11 − 81:EEVD where 
each peak is labeled with its 
residue assignment
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Bax 2013), shown in Fig. 2. S2 value is an indicator of 
flexibility and its analysis indicated that the bound state, 
Sis11 − 81:EEVD, had higher flexibility between residues 
32 and 40 when compared to the free state (Fig. 2a). This 
loop contains the HSP70 interaction 34-HPD-36 motif. 
The decrease in S2 correlates with a significant change in 
13Cα, 13Cb and 13CO chemical shifts for this region in the 
bound state. The subtle change in helical propensity for 
residues K37 and P38 was not explained by the chemical 
shift changes. Secondary structure analysis indicated that 
five α-helices (α1 6–11, α2 19–33, α3 42–56, α4 58–66, 
and α5 69–74) were predicted with high confidence and that 
there is no evidence of any β-strand conformation in the 
protein (Fig. 2b,c). The difference in predicted secondary 
structure propensities was identified between free Sis11 − 81 
and Sis11 − 81:EEVD, but they are small and mainly located 
at the first helix (residues 6–11). These data will enable us 
to characterize mechanistic details of the Sis11 − 81:EEVD 
interaction in future studies.
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