

NMR resonance assignments of mouse lipocalin‑type prostaglandin D synthase/prostaglandin J₂ complex

Shigeru Shimamoto¹ · Yuta Nakahata1 · Yuji Hidaka1 · Takuya Yoshida2 · Tadayasu Ohkubo2

Received: 23 January 2022 / Accepted: 30 March 2022 / Published online: 20 April 2022 © The Author(s), under exclusive licence to Springer Nature B.V. 2022

Abstract

Lipocalin-type prostaglandin (PG) D synthase (L-PGDS) catalyzes the isomerization of PGH₂ to produce PGD₂, an endogenous somenogen, in the brains of various mammalians. We recently reported that various other PGs also bind to L-PGDS, suggesting that it could serve as an extracellular carrier for PGs. Although the solution and crystal structure of L-PGDS has been determined, as has the structure of L-PGDS complexed PGH₂ analog, a structural analysis of L-PGDS complexed with other PGs is needed in order to understand the mechanism responsible for the PG trapping. Here, we report the nearly complete ${}^{1}H$, ${}^{13}C$, and ${}^{15}N$ backbone and side chain resonance assignments of the L-PGDS/PGJ₂ complex and the binding site for PGJ₂ on L-PGDS.

Keywords Prostaglandin $D_2 \cdot$ Prostaglandin $H_2 \cdot$ Prostaglandin $J_2 \cdot$ Lipocalin \cdot Lypocalin-type prostaglandin D synthase

Abbreviations

Biological context

Lipocalin-type prostaglandin (PG) D synthase (L-PGDS; EC 5.3.99.2) is isolated from the rat brain and identifed as the PGD₂ synthesizing enzyme (Urade et al. [1985](#page-4-0)). L-PGDS is abundantly expressed in the central nervous system of various mammals, male genitals, human heart, and mouse adipocytes (Fujimori et al. [2007](#page-3-0)), and is the second most abundant protein after serum albumin in human CSF (Clausen [1961](#page-3-1); Xu and Venge [2000\)](#page-4-1). In addition, it has also been revealed that L-PGDS is the only enzyme among members of the lipocalin gene family that is composed of a group of lipidtransporter proteins (Toh et al. [1996;](#page-4-2) Urade and Hayaishi [2000\)](#page-4-3). L-PGDS binds a large variety of ligands, such as retinoids (Tanaka et al. [1997](#page-3-2)), biliverdin, bilirubin, thyroid hormones (Beuckmann et al. [1999\)](#page-3-3), gangliosides (Mohri et al. [2006\)](#page-3-4), and amyloid β peptide (Kanekiyo et al. [2007](#page-3-5)). L-PGDS is thus thought to be a multifunctional protein possessing both the ability to synthesize $PGD₂$ and to serve as a carrier protein for lipophilic molecules.

Mouse L-PGDS is a 189 amino acid protein, and is posttranslationally modifed by the cleavage of an N-terminal signal peptide comprising 24 amino acid residues (Hoffmann et al. [1996](#page-3-6); Urade and Hayaishi [2000](#page-4-3)). Mouse L-PGDS contains three cysteine residues, Cys65, Cys89, and Cys186. These three cysteine residues are conserved among all mammals. Two of these Cys residues, Cys89 and Cys186, form a disulfde bridge, which is highly conserved among most lipocalins. On the other hand, Cys65 residue is unique to L-PGDS and is essential for the catalytic reaction (Urade et al. [1995;](#page-4-4) Irikura et al. [2003\)](#page-3-7). In previous mutational and structural studies, we reported that L-PGDS has a large hydrophobic cavity in its β-barrel fold and two substrate binding sites are present in the cavity (Shimamoto et al. [2021\)](#page-3-8). In an isothermal titration calorimetry (ITC) analysis, we showed that L-PGDS binds not only its substrate, $PGH₂$, but also to various other PGs, such as $PGD₂$, $PGE₂$, and $PGF_{2\alpha}$ (Shimamoto et al. [2021\)](#page-3-8). The affinity of some PGs $(K_d = 0.3 \sim 3 \mu M)$ was higher than those of thyroid hormones $(K_d = 0.5 \sim 6 \mu M)$, endogenous ligands of L-PGDS

 \boxtimes Shigeru Shimamoto sshimamoto@life.kindai.ac.jp

¹ Faculty of Science and Engineering, Kindai University, Higashi-Osaka, 3-4-1 Kowakae, Osaka 577-8502, Japan

² Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan

(Beuckmann et al. [1999\)](#page-3-3), suggesting that L-PGDS has the ability to transport PGs (Shimamoto et al. [2021\)](#page-3-8).

The $PGD₂$, produced by L-PGDS, is chemically unstable and readily undergoes non-enzymatically dehydration to produce the J series of PGs, such as PGJ₂, Δ^{12} -PGJ₂, and 15-deoxy- $\Delta^{12,14}$ -PGJ₂ (Fitzpatrick and Wynalda [1983](#page-3-9); Kikawa et al. [1984\)](#page-3-10). These PGJs are actively taken into cells and accumulated in the nuclei, and especially 15-deoxy- $\Delta^{12,14}$ -PGJ₂ is known as a natural activator for the peroxisome proliferator-activated receptor γ (PPARγ) (Kliewer et al. [1995](#page-3-11)).

The mechanism by which L-PGDS recognizes PG is not fully understood, because a structural analysis of L-PGDS in complex with PGs, except for the substrate analog, remains to be performed. In this study, we report that 15-deoxy- $\Delta^{12,14}$ -PGJ₂, which is nonenzymatically derived from PGD₂ binds to L-PGDS by NMR and present the nearly complete assignment of the backbone and side chain resonances of the L-PGDS/15-deoxy- $\Delta^{12,14}$ -PGJ₂ complex.

Methods and experiments

The gene corresponding to Δ 1-24 mouse L-PGDS (165 residues) was synthesized and inserted into a bacterial expression vector pGEX-2T and transformed into *Escherichia coli* BL21(*DE3*) cells. The transformed colonies were grown in 3 mL of LB medium containing 100 mg/L of ampicillin at 37 °C for 4 h. One milliliter of the bacterial culture was diluted in 1 L of M9 minimal medium containing $15N$ ammonium chloride (1 g/L) and/or ¹³C glucose (2 g/L) as the sole nitrogen and carbon sources. The bacterial culture was grown at 37 °C to an optical density at 600 nm of 0.6. After induction with 1 mM isopropyl-β-D-thiogalactopyranoside, the protein was expressed as a glutathione S-transferase fusion protein in BL21(*DE3*) cells for 5 h at 37 °C. The cells were harvested by centrifugation for 30 min at 4000×g at 4 °C, resuspended in 30 mL of PBS and sonicated in 4 °C. The bacterial lysate was clarifed by centrifugation at 20,000×g for 30 min at 4 °C. The protein was purifed by affinity chromatography with Glutathione Sepharose 4B

Fig. 1 $\,$ $\rm{^{1}H_{2}}$ ¹⁵N HSQC spectrum of the L-PGDS/15-deoxy- Δ ^{12,14}-PGJ₂ complex. All assigned cross peaks are labeled with sequence number. The aliased peaks are shown in red

Fig. 2 Chemical shift perturbations of the ${}^{1}H-{}^{15}N$ HSQC spectrum of L-PGDS upon the binding of 15-deoxy- $\Delta^{12,14}$ -PGJ₂. **A** ¹H and $15N$ chemical shift differences versus the amino acid sequence. The chemical shift diferences were calculated according to the empirical equation Δ ppm = { $(\Delta \delta_{HN} \times W_{HN})^2 + (\Delta \delta_N \times W_N)^2$ }^{1/2} where, $\Delta \delta_{HN}$ and $\Delta \delta_N$ are the chemical shift changes of ¹H and ¹⁵N, respectively. The weighting factors used were $W_{HN} = 1$, $W_N = 0.2$. The residues

with relatively large changes in chemical shift (Δ ppm \geq 0.2) are highlighted in red. **B** Mapping of NMR signal perturbation on L-PGDS backbone structure by binding of 15 -deoxy- $\Delta^{12,14}$ -PGJ₂. Backbone residues with relatively large changes in chemical shift (Δ ppm \geq 0.2) are shown in red, whereas residues whose signals disappeared upon the binding of 15-deoxy- $\Delta^{12,14}$ -PGJ₂ are shown in blue. Magenta dotted ellipses indicate the catalytic binding site of the PGH₂ substrate

(GE Healthcare, Tokyo, Japan) and size-exclusion chromatography with Superdex 75 (GE Healthcare, Tokyo, Japan), as reported previously (Inui et al. [2003\)](#page-3-12). The L-PGDS/15 $deoxy-\Delta^{12,14}-PGJ_2$ complex sample was prepared by incubating a 1:1 ratio of L-PGDS and 15-deoxy- $\Delta^{12,14}$ -PGJ₂ (Cayman, CA, USA). The complex sample were dialyzed and concentrated to approximately 0.5 mM in the NMR bufer (50 mM sodium phosphate, D_2O or an 85% H₂O/15% D₂O, pH 6.5).

To perform backbone and side chain resonance assignments of the L-PGDS/15-deoxy- $\Delta^{12,14}$ -PGJ₂ complex, all 2D and 3D NMR experiments were carried out at 25 °C on an INOVA600 with a triple resonance ${}^{1}H/{}^{13}C/{}^{15}N$ cryoprobe. Backbone assignments were obtained from the standard double and triple resonance NMR experiments, ${}^{1}H-{}^{15}N$ HSQC, CBCA(CO)NH and HNCACB (Bax et al. [1994](#page-3-13); Kay [1995](#page-3-14)). Side chain assignments were achieved by measurement of ¹H-¹³C HSQC, HBHA(CO)NH, HCCH-TOCSY and CCH-TOCSY. All spectra were processed with NMRPipe (Delaglio et al. [1995](#page-3-15)). Resonance assignment was performed using the NMRviewJ (Merck Research Laboratories).

Extent of assignments and data deposition

Using the sequence-specifc backbone assignments, 84% ¹H_N, 84% ¹⁵N, 91% C_α, and 90% C_β chemical shifts were assigned for the L-PGDS/15-deoxy- $\Delta^{12,14}$ -PGJ₂ complex (Fig. [1](#page-1-0)). Signals for several residues in the N-terminus and loops (e.g., Gln25, Gly26, His27, Ser53, Trp54, Asn124, and Tyr125) were missing from the ${}^{1}H_{-}{}^{15}N$ HSQC presumably due to ms-μs exchange line broadening and/or exchange with the solvent. These residues are also not defned in apo-L-PGDS (Shimamoto et al. [2007\)](#page-3-16). For the aliphatic side chain moieties of the protein, 84% ¹H and 85% ¹³C were assigned. The chemical shifts have been deposited in the BioMagn-ResBank ([http://www.bmrb.wisc.edu\)](http://www.bmrb.wisc.edu) under the accession number 51128.

In a comparison of the ${}^{1}H-{}^{15}N$ HSQC spectrum of L-PGDS/15-deoxy- $\Delta^{12,14}$ -PGJ₂ complex with apo-L-PGDS, numerous peaks in the HSQC showed signifcant perturbations upon 15-deoxy- $\Delta^{12,14}$ -PGJ₂ addition, suggesting that 15-deoxy- $\Delta^{12,14}$ -PGJ₂ binds to L-PGDS. Upon 15-deoxy- $\Delta^{12,14}$ -PGJ₂ binding, large chemical shift changes were

observed at the catalytic site that is comprised of 7 residues, the Cys65 catalytic center, Ser45, Ala46, Gly47, Tyr63, Met64, and Phe83 (Shimamoto et al. [2021\)](#page-3-8). In addition, the chemical shifts for 12 residues (Val95, Leu96, Ser108, Ser114, Ile115, His116, Ser117, Val118, Ser119, Leu130, Ser133, and Gly135) were changed substantially (Fig. [2A](#page-2-0)). These residues are located at the high affinity substrate binding site which is involved in trapping the substrate into the cavity during the catalytic reaction (Shimamoto et al. [2021](#page-3-8)). These results suggest that 15-deoxy- $\Delta^{12,14}$ -PGJ₂ has the potential to inhibit L-PGDS activity.

In our previous study, we elucidated the binding of L-PGDS to several ligands, such as PGs (Shimamoto et al. [2007,](#page-3-16) [2021](#page-3-8)), NADs (Qin et al. [2015\)](#page-3-17), retinoic acid (Shimamoto et al. [2007](#page-3-16)) and biliverdin (Miyamoto et al. [2010](#page-3-18)) by NMR titration experiments and demonstrated that high affinity ligands, such as retinoic acid and biliverdin $(K_d < 0.1 \mu M)$, caused a significant broadening of the resonances of L-PGDS (Shimamoto et al. [2007](#page-3-16); Miyamoto et al. 2010). In the 1 H- 15 N HSQC spectrum of the L-PGDS/15deoxy- $\Delta^{12,14}$ -PGJ₂ complex, the HN signals of 13 residues disappeared due to the signal broadening and these residues were close to the residues that showed large chemical shift changes (Fig. [2](#page-2-0)B). This suggests that 15 -deoxy- $\Delta^{12,14}$ -PGJ₂ binding as well as biliverdin binding cause signifcant broadening in signals for residues in the binding site.

Acknowledgements This study was supported, in part, by Grants 16K18868 (to S.S.) from Grant-in-Aid for Young Scientists (B).

Declarations

Conflict of interest The authors declare that they have no known competing fnancial interests or personal relationships that could have appeared to infuence the work reported in this paper.

References

- Bax A, Delaglio F, Grzesiek S, Vuister GW (1994) Resonance assignment of methionine methyl groups and chi 3 angular information from long-range proton-carbon and carbon-carbon J correlation in a calmodulin-peptide complex. J Biomol NMR 4(6):787–797
- Beuckmann CT, Aoyagi M, Okazaki I, Hiroike T, Toh H, Hayaishi O, Urade Y (1999) Binding of biliverdin, bilirubin, and thyroid hormones to lipocalin-type prostaglandin D synthase. Biochemistry 38(25):8006–8013
- Clausen J (1961) Proteins in normal cerebrospinal fuid not found in serum. Proc Soc Exp Biol Med 107:170–172. [https://doi.org/10.](https://doi.org/10.3181/00379727-107-26569) [3181/00379727-107-26569](https://doi.org/10.3181/00379727-107-26569)
- Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6(3):277–293
- Fitzpatrick FA, Wynalda MA (1983) Albumin-catalyzed metabolism of prostaglandin D2. Identifcation of products formed in vitro. J Biol Chem 258(19):11713–11718
- Fujimori K, Aritake K, Urade Y (2007) A novel pathway to enhance adipocyte diferentiation of 3T3-L1 cells by up-regulation of lipocalin-type prostaglandin D synthase mediated by liver X receptor-activated sterol regulatory element-binding protein-1c. J Biol Chem 282(25):18458–18466. [https://doi.org/10.1074/jbc.](https://doi.org/10.1074/jbc.M701141200) [M701141200](https://doi.org/10.1074/jbc.M701141200)
- Hofmann A, Bachner D, Betat N, Lauber J, Gross G (1996) Developmental expression of murine Beta-trace in embryos and adult animals suggests a function in maturation and maintenance of blood-tissue barriers. Dev Dyn 207(3):332–343
- Inui T, Ohkubo T, Emi M, Irikura D, Hayaishi O, Urade Y (2003) Characterization of the unfolding process of lipocalin-type prostaglandin D synthase. J Biol Chem 278(5):2845–2852
- Irikura D, Kumasaka T, Yamamoto M, Ago H, Miyano M, Kubata KB, Sakai H, Hayaishi O, Urade Y (2003) Cloning, expression, crystallization, and preliminary X-ray analysis of recombinant mouse lipocalin-type prostaglandin D synthase, a somnogen-producing enzyme. J Biochem 133(1):29–32
- Kanekiyo T, Ban T, Aritake K, Huang ZL, Qu WM, Okazaki I, Mohri I, Murayama S, Ozono K, Taniike M, Goto Y, Urade Y (2007) Lipocalin-type prostaglandin D synthase/beta-trace is a major amyloid beta-chaperone in human cerebrospinal fuid. Proc Natl Acad Sci U S A 104(15):6412–6417
- Kay LE (1995) Pulsed feld gradient multi-dimensional NMR methods for the study of protein structure and dynamics in solution. Prog Biophys Mol Biol 63(3):277–299
- Kikawa Y, Narumiya S, Fukushima M, Wakatsuka H, Hayaishi O (1984) 9-Deoxy-delta 9, delta 12–13,14-dihydroprostaglandin D2, a metabolite of prostaglandin D2 formed in human plasma. Proc Natl Acad Sci U S A 81(5):1317–1321. [https://doi.org/10.](https://doi.org/10.1073/pnas.81.5.1317) [1073/pnas.81.5.1317](https://doi.org/10.1073/pnas.81.5.1317)
- Kliewer SA, Lenhard JM, Willson TM, Patel I, Morris DC, Lehmann JM (1995) A prostaglandin J2 metabolite binds peroxisome proliferator-activated receptor gamma and promotes adipocyte differentiation. Cell 83(5):813–819. [https://doi.org/10.1016/0092-](https://doi.org/10.1016/0092-8674(95)90194-9) [8674\(95\)90194-9](https://doi.org/10.1016/0092-8674(95)90194-9)
- Miyamoto Y, Nishimura S, Inoue K, Shimamoto S, Yoshida T, Fukuhara A, Yamada M, Urade Y, Yagi N, Ohkubo T, Inui T (2010) Structural analysis of lipocalin-type prostaglandin D synthase complexed with biliverdin by small-angle X-ray scattering and multi-dimensional NMR. J Struct Biol 169(2):209–218
- Mohri I, Taniike M, Okazaki I, Kagitani-Shimono K, Aritake K, Kanekiyo T, Yagi T, Takikita S, Kim HS, Urade Y, Suzuki K (2006) Lipocalin-type prostaglandin D synthase is up-regulated in oligodendrocytes in lysosomal storage diseases and binds gangliosides. J Neurochem 97(3):641–651
- Qin S, Shimamoto S, Maruno T, Kobayashi Y, Kawahara K, Yoshida T, Ohkubo T (2015) Thermodynamic and NMR analyses of NADPH binding to lipocalin-type prostaglandin D synthase. Biochem Biophys Res Commun 468(1–2):234–239. [https://doi.org/10.1016/j.](https://doi.org/10.1016/j.bbrc.2015.10.124) [bbrc.2015.10.124](https://doi.org/10.1016/j.bbrc.2015.10.124)
- Shimamoto S, Yoshida T, Inui T, Gohda K, Kobayashi Y, Fujimori K, Tsurumura T, Aritake K, Urade Y, Ohkubo T (2007) NMR solution structure of lipocalin-type prostaglandin D synthase: evidence for partial overlapping of catalytic pocket and retinoic acid-binding pocket within the central cavity. J Biol Chem 282(43):31373–31379
- Shimamoto S, Nakagawa Y, Hidaka Y, Maruno T, Kobayashi Y, Kawahara K, Yoshida T, Ohkubo T, Aritake K, Kaushik MK, Urade Y (2021) Substrate-induced product-release mechanism of lipocalintype prostaglandin D synthase. Biochem Biophys Res Commun 569:66–71.<https://doi.org/10.1016/j.bbrc.2021.06.092>
- Tanaka T, Urade Y, Kimura H, Eguchi N, Nishikawa A, Hayaishi O (1997) Lipocalin-type prostaglandin D synthase (beta-trace) is a newly recognized type of retinoid transporter. J Biol Chem 272(25):15789–15795
- Toh H, Kubodera H, Nakajima N, Sekiya T, Eguchi N, Tanaka T, Urade Y, Hayaishi O (1996) Glutathione-independent prostaglandin D synthase as a lead molecule for designing new functional proteins. Protein Eng 9(12):1067–1082
- Urade Y, Hayaishi O (2000) Biochemical, structural, genetic, physiological, and pathophysiological features of lipocalin-type prostaglandin D synthase. Biochim Biophys Acta 1482(1–2):259–271
- Urade Y, Fujimoto N, Hayaishi O (1985) Purifcation and characterization of rat brain prostaglandin D synthetase. J Biol Chem 260(23):12410–12415
- Urade Y, Tanaka T, Eguchi N, Kikuchi M, Kimura H, Toh H, Hayaishi O (1995) Structural and functional signifcance of cysteine

residues of glutathione-independent prostaglandin D synthase. Identifcation of Cys65 as an essential thiol. J Biol Chem 270(3):1422–1428

Xu S, Venge P (2000) Lipocalins as biochemical markers of disease. Biochim Biophys Acta 1482(1–2):298–307. [https://doi.org/10.](https://doi.org/10.1016/s0167-4838(00)00163-1) [1016/s0167-4838\(00\)00163-1](https://doi.org/10.1016/s0167-4838(00)00163-1)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.