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Abstract
Matrin-3 is a multifunctional protein that binds to both DNA and RNA. Its DNA-binding activity is linked to the formation 
of the nuclear matrix and transcriptional regulation, while its RNA-binding activity is linked to mRNA metabolism including 
splicing, transport, stabilization, and degradation. Correspondingly, Matrin-3 has two zinc finger domains for DNA binding 
and two consecutive RNA recognition motif (RRM) domains for RNA binding. Matrin-3 has been reported to cause amyo-
trophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) when its disordered region contains pathogenic mutations. 
Simultaneously, it has been shown that the RNA-binding activity of Matrin-3 mediated by its RRM domains, affects the 
formation of insoluble cytoplasmic granules, which are related to the pathogenic mechanism of ALS/FTD. Thus, the effect 
of the RRM domains on the phase separation of condensed protein/RNA mixtures has to be clarified for a comprehensive 
understanding of ALS/FTD. Here, we report the 1H, 15N, and 13C resonance assignments of the two RNA binding domains 
and their solution structures. The resonance assignments and the solution structures obtained in this work will contribute to 
the elucidation of the molecular basis of Matrin-3 in the pathogenic mechanism of ALS and/or FTD.

Keywords RRM · Matrin-3 · RNA binding domain · Amyotrophic lateral sclerosis · Frontotemporal dementia

Fahu He and Kanako Kuwasako have contributed equally to this 
work.

 * Shigeyuki Yokoyama 
 yokoyama@riken.jp

 * Yutaka Muto 
 ymuto@musashino-u.ac.jp

1 RIKEN Center for Life Science and Technologies, 1-7-22 
Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan

2 RIKEN, Systems and Structural Biology Center, 1-7-22 
Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan

3 Department of Pharmaceutical Sciences, Faculty 
of Pharmacy and Research Institute of Pharmaceutical 
Sciences, Musashino University, Tokyo 202-8585, Japan

4 Institute of Advanced Energy and Graduate School of Energy 
Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011, 
Japan

5 RIKEN Yokohama NMR Facility, 1-7-22 Suehiro-cho, 
Tsurumi-ku, Yokohama 230-0045, Japan

6 Present Address: RIKEN Quantitative Biology Center, 
1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan

7 Tatsuo Miyazawa Memorial Program, RIKEN Genomic 
Sciences Center, Yokohama 230-0045, Japan

8 Center for Biomolecular Magnetic Resonance, Institute 
of Biophysical Chemistry, Goethe-University Frankfurt am 
Main, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, 
Germany

9 Department of Chemistry, Tokyo Metropolitan University, 
1-1 Minami-Ohsawa, Hachioji, Tokyo 192-0397, Japan

10 RIKEN Structural Biology Laboratory, 1-7-22 Suehiro-cho, 
Tsurumi-ku, Yokohama 230-0045, Japan

11 Present Address: RIKEN Cluster for Science, Technology 
and Innovation Hub, 1-7-22 Suehiro-cho, Tsurumi, 
Yokohama 230-0045, Japan

http://orcid.org/0000-0001-8073-7077
http://crossmark.crossref.org/dialog/?doi=10.1007/s12104-021-10057-0&domain=pdf


42 F. He et al.

1 3

Biological context

Matrin-3, which was first identified as a protein compo-
nent of the nuclear matrix (Nakayasu and Berezney 1991; 
Belgrader et al. 1991), is a multiple functional protein. 
As a DNA-binding protein, it controls transcriptional 
regulation (Belgrader et al. 1991; Hibino et al. 1993a, b, 
1998, 2000; Niimori-Kita et al. 2018). Furthermore, as an 
RNA-binding protein, it plays important roles in mRNA 
metabolism including splicing, transport, stabilization, and 
degradation (Salton et al. 2011; Kula et al. 2013; Uemura 
et al. 2017; Coelho et al. 2015; Boehringer et al. 2017; 
Banerjee et al 2017; Ahmed and Barmada 2021).

Matrin-3 is well-conserved among vertebrates. Human 
Matrin-3 is composed of 847 amino-acid residues and 
possesses two CCHH-type zinc finger (ZF) domains 
(the regions spanning residues H291-Y326 for ZF1 and 
P797-T847 for ZF2, respectively), which were reportedly 
responsible for the DNA-binding activity of Matrin-3 
(Hibino et al. 2000). In the peptide region between the 
two ZF domains, there are two tandemly-linked RNA rec-
ognition motif domains (RRM domains) spanning residues 
R398-I477 and R496-V576, respectively (referred to as 
RRM1 and RRM2, hereafter in the text) (Supplementary 
Fig. 1a) (Hibino et al. 2006). It has been reported that 
RRM2 could bind to the RNA sequence (5′-AUCUU-3′) 
(Ray et al. 2013), but RRM1 does not show any substantial 
RNA binding activity (Ayala et al. 2005; Kuo et al. 2009; 
Buratti and Baralle 2001). On the other hand, enhanced 
cross-linking immunoprecipitation (eCLIP) experi-
ments showed another RNA sequence bound to Matrin-3 
other than the pyrimidine-rich sequence described above 
(Ramesh et al. 2020a, b; Van Nostrand et al. 2016). The 
remaining amino-acid sequences in Matrin-3, namely 
the N-terminal region, and that region between RRM2 
and ZF2, consist of two intrinsically disordered regions, 
termed N- and C-IDR, respectively.

Recently, Matrin-3 has attracted remarkable attention, 
since functional abnormalities of Matrin-3 cause hard-to-
treat neuromuscular human diseases, amyotrophic lateral 
sclerosis and frontotemporal dementia (ALS/FTD) (Brown 
and Al-Chalabi 2017; Ito et al. 2017; Xue et al. 2020; 
Ahmed and Barmada 2021; Malik and Barmada 2021). For 
familial ALS, a growing number of genetic mutations have 
been identified on several genes. In particular, pathogenic 
mutants of TAR DNA-binding protein of 43 kDa (TDP-
43) and fused in sarcoma (FUS) form insoluble granules 
in the cytoplasm, leading to neuronal cell death (Kamel-
garn et al. 2016; Picchiarelli and Dupuis 2020). Matrin-3 
has also been associated with familial ALS. The S85C, 
F115C, P154S, and T622A mutants within the N- and 
C-IDR of Matrin3 have been identified as pathogenic (Lin 

et al. 2015; Leblond et al. 2016; Xu et al. 2016; Marangi 
et al. 2017). In this case, the inclusion bodies of wild-type 
TDP-43 proteins with the mutated Matrin-3 are frequently 
formed in the cytoplasm. Moreover, even in the sporadic 
ALS cases, the insoluble granules of wild-type TDP-43 
formed in the neural cytoplasm also frequently contain 
wild-type Matrin-3 (Tada et al. 2018).

In normal neurons, Matrin-3 adopts a granular nuclear 
localization. However, in spinal cord samples obtained from 
patients with ALS, Matrin-3 diffuses in the cytoplasm and 
is involved in the formation of insoluble granules in spinal 
motor neurons. Recent studies have suggested that the for-
mation of cytoplasmic aggregates of TDP-43 is dependent 
on a liquid–liquid phase separation (LLPS) and dysfunc-
tional Matrin-3 affects the LLPS of TDP-43. In this case, it 
has been deduced that the solubility of Matrin-3 is increased 
upon the interaction with RNA, which suppresses the forma-
tion of an abnormal LLPS (Maharana et al. 2018; Gallego-
Iradi et al. 2019; Česnik et al. 2020).

On the other hand, it has been also reported that the 
RNA-binding activity of Matrin-3 could accelerate ALS 
pathogenesis. The G4C2 repeat expansion in the first intron 
of the C9orf72 gene is the most common genetic cause of 
ALS. When its abnormally-transcribed RNA molecules 
are translocated into the cytoplasm, they are speculated to 
recruit several RNA binding proteins for the formation of the 
insoluble granules, and also Matrin-3 through protein-RNA 
interaction (DeJesus-Hernandez et al. 2011, Renton et al. 
2011; Ramesh et al. 2020a).

These evidences suggest that the RNA binding activity 
mediated by RRMs of Matrin-3 could play an important 
role in the formation of insoluble granules in the cytoplasm. 
However, it is not clear yet how their RNA binding activities 
contribute to ALS pathogenesis, which has been hypoth-
esized to be through protein–protein and/or protein-RNA 
interactions (Kamelgarn et al. 2016; Iradi et al. 2018; Malik 
et al. 2018; Ramesh et al. 2020b).

Here we report the 1H, 13C, and 15N chemical shift assign-
ments and the solution structures of the two RRM domains 
of mouse Matirn-3, since the amino-acid sequences of its 
RRM domains are entirely identical to the corresponding 
human domains. These assignments and the structural infor-
mation obtained in this work will provide insight in the fur-
ther understanding of the neurodegenerative disease caused 
by Matrin-3.

Methods and experiments

Sample preparation

A clone of mouse Matrin-3 was utilized, as the primary 
sequences of the regions corresponding to RRM1 and 
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RRM2 are identical between humans and mice. In our study, 
a cDNA clone with a natural variation (an S397R muta-
tion), which appeared at a position just preceding the RRM1 
region, was used for plasmid construction. Mouse Matrin-3 
is composed of 846 amino-acid residues. The protein sam-
ples used for the NMR experiments were RRM1 and RRM2 
of mouse Matrin-3, corresponding to residues Q390-K478 
(RRM1) and K478-V576 (RRM2), respectively (Supplemen-
tary Fig. 1b). The folding states of the proteins were checked 
by 2D 1H–15N HSQC experiments with 15N-labeled samples 
(Kigawa et al. 2004), and we could produce the two RRM 
domains in soluble forms.

15N/13C-labeled Matrin-3 RRM1 and RRM2 were syn-
thesized using an Escherichia coli cell-free protein synthesis 
system (Kigawa et al. 2004; Matsuda et al. 2007) and treated 
and purified as described previously (Li et al. 2008). The 
samples were expressed as N-terminal His-tagged fusion 
proteins. The fusion proteins were purified using a Ni–NTA 
affinity column. The His-tag was released by TEV protease 
cleavage and the two RRM domains were further puri-
fied using Superdex-75 gel filtration chromatography (GE 
Healthcare). For structure determination, uniformly 15N/13C-
labeled RRM samples were concentrated to nearly 1.0 mM 
in 20 mM Tris–HCl (Tris-d6) buffer (pH 7.0), containing 
100 mM NaCl, 1 mM dithiothreitol, and 0.02%  NaN3 with 
the addition of 2H2O to 10% v/v.

NMR spectroscopy and structure calculations

All NMR data were acquired at 298 K on Bruker 600 MHz 
and Bruker 800 MHz spectrometers and processed with 
NMRPipe software (Delaglio et al. 1995). Two-dimensional 
1H–13C and 1H–15N HSQC spectra, three-dimensional 
HNCO, HN(CA)CO, HNCA, HN(CO)CA, HNCACB, 
CBCA(CO)NH, HBHA(CO)NH, H(CCCO)NH, (H)CC(CO)
NH, HCCH-TOCSY, HCCH-COSY, CCH-TOCSY and 
NOESY spectra (Clore and Gronenborn 1998; Cavanagh 
et al. 2007) were used to assign all carbon, nitrogen, and 
hydrogen atoms of the proteins.

NOE peaks from the 15N and 13C-edited 3D NOESY 
spectra with 80 ms mixing time were converted to distance 
restraints for the structure calculations of Matrin-3 RRM1 
and RRM2. The three-dimensional structures of the pro-
teins were determined by combined automated NOESY 
cross peak assignment and structure calculation with tor-
sion angle dynamics (Herrmann et al. 2002) implemented 
in the program CYANA 2.1 (Güntert et al. 1997). The dihe-
dral angle restraints for ϕ and ψ were obtained from the 
main-chain and the 13Cβ chemical shift values using the 
program TALOS (Cornilescu et al. 1999) and by analyz-
ing the NOESY spectra. Stereospecific assignments for 
isopropyl methyl and methylene groups were determined 
based on the patterns of the inter- and intra-residual NOE 

intensities (Powers et al. 1993). For each RRM, the structure 
calculations started from 200 randomized conformers using 
the standard CYANA simulated annealing schedule, with 
40,000 torsion angle dynamics steps per conformer (Güntert 
and Buchner 2015). Among them, the 20 structures with the 
lowest CYANA target function values were deposited in the 
Protein Data Bank (accession codes: 1X4D for RRM1 and 
1X4F for RRM2).

Further refinements by restrained molecular dynamics 
followed by restrained energy minimization were performed 
for the 40 conformers with the lowest final CYANA tar-
get function values, using the Amber12 program with the 
Amber 2012 force field and a generalized Born model (Case 
et al. 2005), as described previously (Tsuda et al. 2011). 
Finally, the 20 conformers with the lowest Amber energy 
values were selected. They were deposited in the Protein 
Data Bank (accession codes: 7FBR for RRM1 and 7FBV 
for RRM2). PROCHECK-NMR (Laskowski et al. 1996) and 
MOLMOL (Koradi et al. 1996) were used to validate and to 
visualize the final structures, respectively.

Extent of resonance assignments

The assigned 1H-15N HSQC spectra of RRM1 and RRM2 
are depicted in Fig. 1a and b. In the case of RRM1, the 
backbone resonance assignments were almost complete, 
except for the amide protons and nitrogen atoms of Val399, 
Lys409, Asn410, Lys433, Gln472, Lys473, and Arg476. In 
total, 98.8%, 100%, and 94.3% of the  Cα,  Cβ, and C′ chemical 
shifts were determined, respectively. Furthermore, the chem-
ical shifts of the side-chain resonances except for the  Cδ and 
 Cε protons of Tyr454, and the side-chain  NH2 resonances of 
Gln390 were also assigned. The backbone and side-chain 
resonance assignments for RRM2 are complete except for 
the amide protons and nitrogen atoms of Gln486, Lys487, 
Asp489, Glu493, His505, Gly507, Met531, and Lys573, the 
side-chain resonances of Lys479, Lys 483, Gln486, Arg530, 
Lys573, and the  Cζ protons of Phe536. As described below, 
the N-terminal segment spanning residues 478–496 adopted 
a disordered structure, which caused the missing backbone 
resonances. In total, 98.9%, 98.9%, and 91.9% of the  Cα,  Cβ, 
and C′ chemical shifts were determined, respectively. For 
both RRM domains, all X-Pro peptide bonds were confirmed 
to be in the trans conformation.

The quality of the NOESY spectra of RRM1 and RRM2 
are appropriate for straight-forward structure calculation. 
In the 15N- and 13C-edited 3D NOESY spectra, 2063 non-
redundant distance restraints including 758 long-range 
distance restraints for RRM1, and 1905 non-redundant dis-
tance restraints including 707 long-range distance restraints 
for RRM2, were identified. The backbone torsion angle 
restraints calculated by the TALOS program (Cornilescu 
et al. 1999) were also used for structure calculations with the 
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program CYANA 2.1 (Herrmann et al. 2002; Güntert et al. 
1997; Güntert 2004) and Amber12 (Case et al. 2005). The 
main chain of the calculated structures of RRM1 and RRM2 
were fitted for residues 398–471 and 496–569, respectively 
(these regions correspond to the canonical secondary 

structural elements of the RRM domain). A bundle of 20 
conformers representing the solution structures of RRM1 
and RRM2 are shown in Fig. 2a and b, respectively. Their 
precisions are characterized by RMSD values to the mean 
coordinates of 0.25 Å for the backbone atoms and 0.93 Å 

Fig. 1  1H-15N HSQC spec-
tra of the two RRM domains 
of Matrin-3 a RRM1 and b 
RRM2. Signals are labeled with 
their assignments. Both data 
sets were acquired on Bruker 
600 MHz spectrometers by the 
States-TPPI method with the 
water-flip back pulse sequence. 
The red-colored peak of V564 
is aliased
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for all heavy atoms of RRM1, and 0.31 Å for the backbone 
atoms and 1.18 Å for all heavy atoms of RRM2. For these 
regions, the structural qualities of both RRMs also reflect 
that 100.0% of the (ϕ,ψ) backbone torsion angle pairs are 
in the most favored and additionally allowed regions of the 
Ramachandran plot, according to the program PROCHECK-
NMR (Laskowski et al. 1996). Statistics regarding the qual-
ity and precision of the final 20 best conformers that repre-
sent the solution structures of RRM1 and RRM2 are given 
in Supplementary Table I.

Solution structures of the two RRM domains 
of Matrin‑3

T h e  M a t r i n - 3  R R M 1  a n d  R R M 2  a d o p t s 
a  β 1 – α 1 – β 2 – β 3 – α 3 – β 4  t o p o l o g y 
(β1:V399–M403, α1:N410–V419, β2:I425–L431, 
β3:E436–E440, α2:T444–T456, and β4:R467–L470 for 
RRM1, and β1:V497–S501, α1:D510–A517, β2:I523–M529, 
β3:Q534–E538, α2:R542–K554, and β4:K565–L568 for 
RRM2) (Supplementary Fig. 1 and Fig. 2a–d). As a canoni-
cal RRM fold, the four β-strands form an antiparallel β-sheet 
with the order of β4–β1–β3–β2. The α1 and α2 helices are 
packed against the β-sheet structure. The α2 helix and 
the β′–β″ hairpin structures (L460–P465 for RRM1, and 
W558–C563 for RRM2) associate with the loop between 
the β1 strand and the α1 helix (Fig. 2c, d).

For both RRMs, some amino-acid residues in the C-ter-
minal regions just following the β4-strand do not show 
signals in the 1H-15N HSQC spectra. Thus, the C-terminal 
regions were determined less well than the core of the RRM-
fold in the structural calculations and did not show distinct 
secondary structure elements. However, the C-terminal 
regions were located near the β-sheet surface by NOEs 
between hydrophobic amino-acid residues (Y474 and I477 
of RRM1, and Y572 and L575 of RRM2, Supplementary 
Figs. 1 and 2) and hydrophobic amino-acid residues in the 
β-sheets (V399, L429, and F438 of RRM1, and V497, I527, 
and F536 of RRM2) respectively. The C-terminal extension 
of PTBP1 RRM1 also exhibited the same structural feature, 
as reported previously (Oberstrass et al. 2005) (Supplemen-
tary Fig. 2).

Analysis using the DALI protein structural compari-
son server (http:// ekhid na2. bioce nter. helsi nki. fi/ dali/) 
showed that the overall structures of Matrin-3 RRM1 
and RRM2 are very similar to the first RRM domain of 
PTBP1 (Z-score: 10.9, RMSD: 1.76 Å for the  Cα atoms 
of matched residues in its best 3D superimposition form 
PDBID:2N3O) (Supplementary Fig. 2a) and the first RRM 
domain of hnRNP L (Z-score: 10.3, RMSD: 1.76 Å for the 
 Cα atoms of matched residues in its best 3D superimpo-
sition form PDBID:2MQL). Structure superpositions of 
Matrin-3 RRM1, RRM2, and PTBP1 RRM1 (Oberstrass 
et al. 2005) revealed the characteristic structural points of 

Fig. 2  Solution structures of the two RRM domain of Matrin-3. 
Best-fit superposition of the backbone atoms from the 20 structures 
of Matrin-3 a RRM1 and b RRM2 with the lowest energy, as calcu-
lated by CYANA2.1 and Amber12. Ribbon presentation of the low-
est energy structure of Matrin-3 c RRM1 and d RRM2. The helices, 
β-strands, β′–β″ hairpin and loop regions are shown in red, cyan, 
green and gray, respectively. In addition, the regions corresponding to 

the C-terminal extensions specific for the PTBP-1 subgroup (Gln472–
Ile477 for RRM1 and Glu570-Leu575 for RRM2) were colored 
brown. Electrostatic surface presentation of Matrin-3 e RRM1 and f 
RRM2 in the same view as (c) and (d). The back surface of the struc-
tures are shown for g RRM1 and h RRM2 (surface models (e) and (f) 
are rotated 180 degrees around vertical axis). Blue and red represent 
positive and negative electrostatic surface potentials, respectively

http://ekhidna2.biocenter.helsinki.fi/dali/
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these RRMs as mentioned below (for comparison, the struc-
ture of Musashi-1 RRM1 is shown in Supplementary Fig. 2b 
as an example of a “standard” RRM domain). As previously 
pointed out (Blatter et al. 2015), these RRMs comprise the 
sub-group (hereafter referred to as the PTBP-1 subgroup).

First, the α2 helices of the PTBP-1 subgroup members 
are longer than in average RRM-folds. In most RRMs, the 
α2 helices are composed of ten or eleven residues, while the 
α2 helices of the Matrin-3 RRMs are composed of fourteen 
residues. Thus, they are one turn longer at the C-terminus 
than other canonical RRMs. Second, the members of the 
PTBP-1 subgroup have a C-terminal extension that covers 
the β-sheet surface (Supplementary Fig. 2). Aliphatic amino-
acid residues are located in the C-terminal fragment just 
following the β4 strands (I477 of Matrin-3 RRM1 and L575 
of Matrin-3 RRM2) and interact with hydrophobic amino-
acid residues on the β-sheet surface, as it was discussed by 
Blatter et al. based on our deposited solution structures of 
the Matrin-3 RRMs (PDBID: 1X4D and 1X4F) (Blatter 
et al. 2015). However, the lengths between the end of the 
β4-strand and the key aliphatic amino-acid residues (I477 of 
RRM1 and L575 of RRM2) are different from that of PTBP1 
RRM1 (L136 of PTBP1 RRM1). Based on a comparison of 
the tertiary structures, the positions corresponding to the 
side-chains of Lys473 of RRM1 and Lys571 of RRM2 in 
Matrin-3 were occupied by His133 in PTBP1 RRM1. Then, 
the aromatic amino-acid residue corresponding to Y474 
(RRM1) and Y572 (RRM2) was not identified in PTBP1 
RRM1. In the calculated structures of Matrin-3 RRM1 and 
RRM2, the side-chains of the preceding Lys residues (K473 
of RRM1 and K571 of RRM2) seem to stack with the aro-
matic rings of the tyrosine residues (Y474 of RRM1 and 
Y572 of RRM2) and the side-chains of the aromatic amino-
acid residues located on the β3-strand (F438 of RRM1 and 
F536 of RRM2), respectively, through the cation-π interac-
tions (Supplementary Fig. 2c). These interactions were spe-
cific for Matrin-3 RRMs among the PTBP-1 subgroup mem-
bers. In the case of Martin-3 RRMs, the aromatic side chains 
of Y474 of RRM1 and Y572 of RRM2 seem to occupy the 
space utilized for recognition of the uracil base in PTBP-1 
RRM1. Instead, the spaces could be found on the opposite 
side of the aromatic ring of Y474 of RRM1 and Y572 of 
RRM2. In many RRMs, the stacking interactions between 
the exposed aromatic ring and RNA bases were utilized for 
RNA recognition (Burd and Dreyfuss 1994; Maris et al. 
2005). Thus, it is probable that the spaces are utilized for 
the accommodation of the RNA bases.

The canonical RRM sequence has two well-conserved 
consensus sequences, RNP1 [(R/K)-G-(F/Y)-(G/A)-(F/Y)-
V-X-(F/Y)] and RNP2 [(L/I)-(F/Y)-(V/I)-X-(N/G)-L], 
which correspond to the β3 strand and β1 strand, respec-
tively (Bandziulis et al. 1989; Burd and Dreyfuss 1994; 

Mulder et al. 2007).  In the canonical RRMs, aromatic 
amino-acid residues are located at the third and fifth posi-
tions of RNP1 and at the second position of RNP2. They 
are exposed to solvent and play important roles in the RNA 
binding activity of RRM domains. However, in the PTBP-1 
subfamily including Matrin-3 RRM1 and RRM2, hydro-
philic amino-acid residues (Glu436 for Matrin-3 RRM1 
and Gln534 for Matrin-3 RRM2) are located at the third 
position of RNP1. In addition, His residues are located at 
the second position of RNP2. These features were rare in 
the canonical RRMs (Muto and Yokoyama 2012). Further-
more, in the case of Matrin-3 RRM1, an acidic amino-acid 
residue (Asp404) is also located at the position immedi-
ately following the β1 strand. Consequently, with Glu436, 
a negatively-charged patch was formed at the edge of the 
β-sheet surface of Matrin-3 RRM1 in contrast to Matrin-3 
RRM2 (Supplementary Fig. 1b and Fig. 2e, f). This could 
be the reason that Matrin-3 RRM1 reportedly could not 
bind to RNA molecules. On the other hand, when the sur-
face models of Fig. 2e, f are viewed from behind, acidic 
amino-acid residues were clustered and formed a wide 
negatively-charged patch on the upper surface formed 
by the C-terminus region of the α1 helix and N-termi-
nus region of the α2 helix in Matrin-3 RRM1 and RRM2 
(Fig. 2g, h), which was not obvious in PTBP1 RRM1. 
Therefore, this negatively-charged surface may mediate 
the specific protein/protein interaction of Matrin-3. We 
expect that the assignments and the structural informa-
tion obtained in this study will provide the insight on the 
further understanding of the pathogenesis of ALS and/or 
FTD involving Matrin-3.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s12104- 021- 10057-0.
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