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Abstract

Lamins are the main components of the nucleoskeleton. They form a protein meshwork that underlies the inner nuclear
membrane. Mutations in the LMNA gene coding for A-type lamins (lamins A and C) cause a large panel of human diseases,
referred to as laminopathies. These diseases include muscular dystrophies, lipodystrophies and premature aging diseases.
Lamin A exhibits a C-terminal region that is different from lamin C and is post-translationally modified. It is produced as
prelamin A and it is then farnesylated, cleaved, carboxymethylated and cleaved again in order to become mature lamin A. In
patients with the severe Hutchinson—Gilford progeria syndrome, a specific single point mutation in LMNA leads to an aber-
rant splicing of the LMNA gene preventing the post-translational processing of prelamin A. This leads to the accumulation
of a permanently farnesylated lamin A mutant lacking 50 amino acids named progerin. We here report the NMR 'H, 1N,
1B3C0, BCa and *CP chemical shift assignment of the C-terminal region that is specific to prelamin A, from amino acid
567 to amino acid 664. We also report the NMR 4, BN, ¥CO, *Ca and '3CB chemical shift assignment of the C-terminal
region of the progerin variant, from amino acid 567 to amino acid 614. Analysis of these chemical shift data confirms that
both prelamin A and progerin C-terminal domains are largely disordered and identifies a common partially populated a-helix

from amino acid 576 to amino acid 585. This helix is well conserved from fishes to mammals.
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Biological context

The nuclear lamina is a universal feature of metazoan
nuclear envelopes (Gerace and Huber 2012; Burke and
Stewart 2013). It forms a filamentous layer at the nuclear
face of the inner nuclear membrane (Mahamid et al. 2016;
Turgay et al. 2017) and is composed primarily of A- and
B-type lamins (Xie et al. 2016). Lamins provide struc-
tural integrity to the nuclear envelope and contribute to
genome organization and function (Gruenbaum and Fois-
ner 2015). Lamin levels correlate with tissue rigidity and
with mechanical stability of the nucleus (Swift et al. 2013).
The two A-type lamin isoforms lamins A and C encoded
by the gene LMNA are mainly expressed in fully differen-
tiated cells. They are largely identical, diverging only in
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their C-terminal regions. The lamin A C-terminal region
undergoes extensive processing. It is produced as prelamin
A and is then farnesylated, cleaved, carboxymethylated and
cleaved again to lead to mature lamin A. Yet a specific single
point mutation in LMNA leads to the internal deletion of 50
amino acids preventing the post-translational processing of
prelamin A (Fig. 1). The deletion mutant, called progerin,
remains farnesylated and accumulates at the nuclear periph-
ery, causing nuclear architectural defects such as blebs and
herniations of the nuclear envelope and thickening of the
nuclear lamina (Maraldi and Lattanzi 2007). This mutant
causes an extremely rare genetic disorder characterized by
premature, rapid aging shortly after birth called Hutchin-
son—Gilford progeria syndrome (HGPS (De Sandre-Gio-
vannoli et al. 2003; Eriksson et al. 2003)). Progerin is also
present to a lower extend in non-pathological cells and is a
biomarker of cellular aging (McClintock et al. 2007). The
prelamin A-specific C-terminal region is highly conserved
from fishes to mammals (Fig. 1). It is essential for binding
to other nuclear envelope proteins such as SUN1 (Haque
et al. 2010), to histone modifying enzymes such as SIRT®,
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Fig.1 Sequence alignment of human C-terminal region specific to
prelamin A, including a representative set of 14 homologous lamins
from mammals, frogs to fishes. The upper sequence is that of human
prelamin A. The other sequences are marked using their GenBank
Identifier number: 109256198, Panthera pardus; 16905, Mus mus-
culus; 101704567, Heterocephalus glaber; 100923083, Sarcophi-
lus harrisii; 104468957, Pterocles guttularis; 102948145, Chelo-
nia mydas; 373673, Xenopus laevis; 733973, Xenopus tropicalis;

which is known to deacetylate histone H3 at lysine 9 and 56
(Ghosh et al. 2015), and to the shelterin complex at telom-
eres (Wood et al. 2014). To further investigate the binding
properties of prelamin A and progerin C-terminal regions,
before and after post-translational modifications, we have
produced and purified these regions and we have described
their conformations based on the analysis of their NMR H,
BN, BCo, B¥Co and 13CB chemical shifts.

Methods and experiments
Protein expression and purification

The human prelamin A peptide PreLamC, from amino
acid 567 to amino acid 664, and the human progerin pep-
tide ProgC, from amino acid 567 to amino acid 614, were
expressed in Escherichia coli BL21 DE3 Star(Novagen),
using a pETM13 vector coding for a GST-tagged protein
with a TEV protease site and an additional tryptophan
between the cleavage site and the protein. Their cDNAs
were optimized for expression in Escherichia coli (Gen-
script). Moreover, mutated versions of both peptides PreL-
amC and ProgC in which cysteines are replaced by alanines
were also expressed as GST fusion proteins, with a TEV
site followed by an additional methionine and an alanine
instead of Gly567. These will be further called PreLamC**
and ProgC", respectively. All these peptides were pro-
duced using the following protocol. Bacteria were grown
in N and '3C labelled M9 minimum medium at 37 °C and
induced at an optical density of 0.8 with 1 mM Isopropyl
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102359604, Latimeria chalumnae; 109072855, Cyprinus carpio;
109902034, Oncorhynchus kisutch; 101072260, Takifugu rubripes;
104964806, Notothenia coriiceps; 106528028, Austrofundulus lim-
naeus. The conserved cysteines are indicated by red arrows. The
fragment deleted in progerin is highlighted by a red box. Under the
sequence alignment, a graph highlighting the amino acid conserva-
tion as calculated by Jalview is displayed (Waterhouse et al. 2009)

f-p-1-thiogalactopyranoside at 37 °C during 3 h. Cells were
lysed in 50 mM Tris—HCI, pH 8.0, 300 mM NacCl, 40 mM
imidazole, 5% glycerol, 1% Triton X-100 and 1 mM phenyl-
methanesulfonyl fluoride. Then bacteria were centrifuged
at 20,000xg for 20 min. Proteins were purified using Glu-
tathione-Sepharose 4B beads (GE Healthcare) equilibrated
with a buffer containing 50 mM Tris—HCI pH 8.0, 150 mM
NaCl (and 10 mM dithiothreitol in the case of cysteine-con-
taining peptides). The tag cleavage was performed by adding
TEV protease on the beads before washing with the buffer.
Peptides collected during washing were concentrated and
aliquoted in 1 ml tubes to be heated 10 min at 95 °C. After
centrifugation at 14,000xg for 15 min, the supernatants were
loaded on a gel filtration column Superdex 75 10/300GL
(GE Healthcare) equilibrated in 20 mM Phosphate pH 6.5,
150 mM NaCl, 2 mM dithiothreitol. Finally, all the samples
were concentrated up to 600 pM for NMR experiments.

NMR spectroscopy

Most NMR experiments were performed on uniformly "N
and "°C labelled ProgC®°A, PreLamC®* and ProgC pep-
tides in 20 mM phosphate buffer pH 6.5, 150 mM NaCl,
2 mM dithiothreitol, 90%: 10% H,0:D,0. Only the 'H— >N
nOe experiments were recorded on a '°N labelled sample of
ProgC. In the case of PreLamC, a I5N labelled sample was
produced and an '"H— >N HSQC spectrum was recorded.
All the NMR experiments were recorded at 283 K on a
600 MHz Bruker Advance II spectrometer equipped with a
triple resonance cryogenic probe. 'H, 13C and >N resonance
frequencies were assigned using 3D HNCACB, CBCA(CO)
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Fig.2 Superimposition of the 'H-'>N HSQC spectra of the differ-
ent lamin fragments analyzed in this study. All these spectra were
recorded at 283 K and 600 MHz. a The ProgC°* spectrum (in red)
is displayed onto the PreLamC®°* spectrum (in black). The peaks
from ProgC®* that do not overlap with peaks from PreLamC®®* are
labeled in purple. b The ProgC spectrum (in blue) is displayed onto
the ProgCcA spectrum (in red). b The PreLamC spectrum (in green)

NH, HNCO, HN(CA)CO and HN(CO)(CA)NH experi-
ments. The data were processed using Topspin3.1 (Bruker)
and analyzed with CCPNMR (Vranken et al. 2005).

1H chemical shifts

is displayed onto the PreLamC®"°* spectrum (in black). Peaks corre-
sponding to PreLamC and PreLamC®°* minor conformations due to
proline isomerization are labeled in purple. Indeed, based on their Cf
chemical shifts, proline residues exhibit a trans conformation in the
most populated PreLamC®®* conformation. However, proline resi-
dues P576 and P594 clearly show a minor cis conformation that give
rise to peaks corresponding to their neighboring residues

Extent of assignments and data deposition

First, NMR assignment was carried out by analyzing spec-
tra recorded on ProgC®"°* and PreLamC“"°A, which did not
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Fig.3 Analysis of the '*C chemical shifts of ProgC®"°%, ProgC and
PreLamC®°A. a Superimposition of the differences between the Ca
and CP secondary chemical shifts of both ProgC°* (in red) and

oxidize with time. Superimposition of the "H-'>N HSQC
NMR spectra of ProgC® (red) and PreLamC®°* (black) is
displayed in Fig. 2a. It revealed that the peaks corresponding
to the common lamin fragment, i.e. aa 568 to aa 606 and aa
657 to aa 664, nicely overlap. Only peaks corresponding to
residues close to the deletion (Ala605, GIn606 and Ser 657)
have different positions in the two spectra. In the case of
peptides ProgC®°A and PreLam®™, 100 and 91% (84 out
of 92) of '"H-'°N pairs, 100 and 93% (90 out of 97) of '*Ca,
100 and 93% (76 out of 82) of '3Cp and 100 and 91% (88
of out 97) of '*CO resonances were assigned, respectively.
The only unassigned PreLam“°* fragment of more than 3
residues corresponds to Ser645-Tyr646-Leu647-Leu648, i.e.
the cleavage site of the last maturation step. Further super-
imposition of the '"H-'>N HSQC NMR spectra of ProgCc°A
(red) and ProgC (blue) is displayed in Fig. 2b. Assignment
of most ProgC®°* NMR signals could be easily transferred
to ProgC signals. Analysis of the 'H, *C and '’N NMR
3D experiments recorded on ProgC was performed in order
to confirm the assignment. Thus, the chemical shifts of all
"H-15N pairs, *Ca, *Cp and '3CO resonances of ProgC
could be unambiguously assigned. Finally, superimposition
of the 'H-'>N HSQC NMR spectra of PreLamC®°* (black)
and PreLamC (green) is displayed in Fig. 2c. Here again
most 'H-">N HSQC peaks (82%, 75 out of 92) of PreLamC
could be assigned from the comparison with PreLamC4,
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ProgC (in blue), and in the boxed panel 'H— '>N heteronuclear nOes
recorded on a PN labelled ProgC sample. b Differences between the
Ca and Cp secondary chemical shifts of PreLamC®°A

Judging by the narrow range of backbone amide 'H chemical
shifts (between 7.8 and 8.6 ppm) and the distribution of the
AS8Co—ASCP values in ProgCc°A, ProgC and PreLamCA
(Fig. 3), all the peptides are intrinsically disordered. How-
ever, a partially populated a-helix is present going from aa
576 to aa 585 of ProgC°A, ProgC and PreLamC®°*. Con-
sistently, positive nOe values were measured at 600 MHz
for aa 575 to aa 586 of ProgC (Fig. 3, boxed panel). Inter-
estingly, this partially populated a-helix is located in the
most conserved region of ProgC and PreLamC (Fig. 1). We
propose that lamin A region from aa 576 to aa 585 is a con-
served binding site for a yet unidentified partner. This region
contains Arg582, a residue mutated into His in patients with
a Dunnigan type familial partial lipodystrophy (Speckman
et al. 2000). Mutation could impair binding to a lamin part-
ner. More work is now needed in order to identify how the
C-terminal region specific to lamin A recognizes its partners
at the nuclear envelope. The chemical shift data have been
deposited in the BioMagResBank (http://www.bmrb.wisc.
edu/) under accession numbers 27375 for ProgCC‘OA, 27374
for ProgC and 27376 for PreLamC4,
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