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Abstract
Fibrils of the protein α-synuclein (α-syn) are implicated in the pathogenesis of Parkinson’s disease and related neurode-
generative disorders. We have reported a high-resolution structure (PDB 2N0A) of an α-syn fibril form prepared by in vitro 
incubation of monomeric protein in 50 mM sodium phosphate buffer pH 7.4 with 0.1 mM EDTA and 0.01% sodium azide. 
In parallel with this structure determination, ongoing studies of small molecule ligands binding to α-syn fibrils, prepared in 
2-amino-2-(hydroxymethyl)-1,3-propanediol (Tris) buffer, have been in progress, and it is therefore of interest to determine 
the structural similarity of these forms. Here we report the 13C and 15N resonance assignments for α-syn fibrils prepared with 
Tris–HCl buffer (pH 7.7 at 37 °C) and 100 mM NaCl. These fibrillization conditions yield a form with fibril core chemical 
shifts highly similar to those we reported (BMRB 16939) in the course of determining the high-resolution 2N0A structure, 
with the exception of some small perturbations from T44 to V55, including two sets of peaks observed for residues T44–V48. 
Additional differences occur in the patterns of observed residues in the primarily unstructured N-terminus. These results 
demonstrate a common fold of the fibril core for α-syn fibrils prepared in phosphate or Tris–HCl buffer at moderate ionic 
strength.
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Biological context

The protein α-synuclein (α-syn) aggregates to form fibrils 
that define the pathology of several neurodegenerative dis-
orders including Parkinson’s disease (PD) and dementia 
with Lewy bodies (DLB) (Spillantini et al. 1997, 1998). 
One highly ordered form of α-syn fibrils is generated when 

purified, monomeric α-syn is incubated at 37  °C with 
200 rpm shaking at a concentration of 15 mg/mL in 50 mM 
sodium phosphate buffer pH 7.4 with 0.1 mM EDTA, and 
0.01% sodium azide (Kloepper et al. 2006). We previously 
performed a detailed assignment (Comellas et al. 2011a) and 
structure determination (2N0A, Tuttle et al. 2016a) of this 
fibril form. Meanwhile, we and others have studied a variety 
of α-syn fibril forms by SSNMR and found that the condi-
tions of incubation can yield different structural fingerprints 
(Heise et al. 2005; Gath et al. 2012, 2014; Comellas et al. 
2012), as evidenced by the SSNMR spectra, although only 
one high-resolution structure so far has been determined. 
Better understanding the range of stable α-syn fibril forms is 
significant in order to shed light on strain-dependent pathol-
ogies and toxicities, a phenomenon observed in cell cultures 
(Bousset et al. 2013; Guo et al. 2013) and rats (Peelaerts 
et al. 2015).

Here, we report the 15N and 13C chemical shift assign-
ments for an α-syn fibril sample prepared in Tris–HCl buffer 
at moderate ionic strength. These conditions were chosen to 
provide structural data on the fibril form previously utilized 
for the development of the synuclein imaging ligand (SIL) 
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series of small molecules for quantification of α-syn fibril 
accumulation by positron emission tomography (PET) imag-
ing (Yu et al. 2012; Bagchi et al. 2013; Chu et al. 2015). 
Compounds from the SIL series display binding affinity for 
this α-syn fibril form that is similar to the binding affinity 
measured in assays with insoluble fractions from postmor-
tem PD brain tissue (Bagchi et al. 2013). Therefore we chose 
to perform the present NMR study to evaluate structural 
similarity and establish whether the previously determined 
structure is a valid basis for structure-based design. We find, 
based on a comparison of the NMR chemical shifts, that the 
α-syn fibril prepared in Tris–HCl at moderate ionic strength 
exhibits a similar core structure to fibrils prepared in phos-
phate buffer.

Methods and experiments

Protein expression and purification

Uniformly 13C, 15N-labeled wild-type α-syn was expressed 
in E. coli BL21(DE3)/pET28a-AS grown in Studier medium 
M containing 2 g/L  [13C]glucose, 3 g/L  [15N]ammonium 
chloride, and 10 mL/L  [13C, 15N]Bioexpress (Cambridge Iso-
tope Laboratories, Inc., Tewksbury, MA). Cells were grown 
at 37 °C to an  OD600 of 1.2, protein expression induced 
with 0.5 mM isopropyl β-d-1-thiogalactopyranoside, and 
grown at 25 °C for 15 h prior to harvest. The cell lysis, 
heat denaturation, and ammonium sulfate precipitation was 
performed as described (Kloepper et al. 2006). The precip-
itated α-syn protein was solubilized in 20 mM Tris–HCl 
pH 8 and loaded onto a QFF anion exchange column (GE 
Healthcare Life Sciences, Marlborough, MA). Elution was 
carried out with a linear gradient of 0.2–0.6 M NaCl. The 
α-syn monomer eluted around 0.3 M. Fractions containing 
α-syn were pooled, concentrated, and applied to a 26/60 
Sephacryl S-200 HR gel filtration column (GE Healthcare 
Life Sciences) equilibrated in 50 mM Tris–HCl pH 8 buffer 
with 100 mM NaCl and 0.01% sodium azide. Fractions con-
taining α-syn were pooled and stored at a concentration of 
about 1 mg/mL at 4 °C until use. Purity was determined 
to be > 95% by sodium dodecyl sulfate polyacrylamide gel 
electrophoresis and molecular weight was confirmed by 
matrix-assisted laser desorption/ionization time-of-flight 
mass spectrometry.

Generation of α‑syn fibrils

Protein was concentrated to 15 mg/mL using an Amicon 
stirred cell concentrator (EMD Millipore, Darmstadt, Ger-
many) and stored quiescent at 4 °C during the course of each 
addition described here. Prior to each addition, the mono-
mer was filtered using an Amicon Ultra centrifugal filter 

unit with a 50 kDa nominal molecular weight limit (EMD 
Millipore). Fibrillization was performed using a method 
similar to protein-misfolding cyclic amplification used to 
amplify prion protein (Saborio et al. 2001). The seed fibrils 
were produced using natural-abundance α-syn monomer as 
described (Bagchi et al. 2013). The fibrils were separated 
from monomer by centrifugation at 15,000×g for 15 min 
in 1.5 mL ultracentrifuge tubes (Beckman Coulter, Brea, 
CA). The fibrils were amplified by addition of uniformly 
13C, 15N-labeled α-syn monomer in a 1:1 ratio by volume. 
The volume of pellet was estimated to be 25 µL. The tubes 
were then vortexed and incubated for 24 h at 37 °C with 
200 rpm shaking. This process of adding fresh monomer, 
vortexing, and incubating was repeated a total of eight times. 
Following the final addition, the samples were incubated for 
3 weeks. The seeds were prepared in 20 mM Tris–HCl and 
the amplification was performed in 50 mM Tris–HCl. After 
incubation, the fibrils were harvested by ultracentrifugation, 
washed with ultrapure water, dried under a gentle stream of 
nitrogen gas, packed in a 3.2 mm limited speed rotor (Agi-
lent Technologies, Santa Clara, CA), and rehydrated with 
water, as described (Tuttle et al. 2016b).

Solid‑state NMR spectroscopy

NMR spectra were collected using an Infinity Plus spec-
trometer, manufactured in 2003 by Varian (Palo Alto, CA, 
Walnut Creek, CA and Fort Collins, CO) and an Oxford 
Instruments (Oxford, UK) wide-bore (89 mm) superconduct-
ing magnet operating at a static magnetic field of 14.1 T 
(600 MHz 1H frequency) equipped with a Balun 3.2-mm 
triple-resonance (1H, 13C, 15N) probe (Varian, Fort Collins, 
CO). Spinning was controlled using a Varian magic-angle 
spinning (MAS) controller to 13,333 ± 5 Hz and a variable-
temperature (VT) air-flow setting of − 10 °C, resulting in an 
actual sample temperature of − 3 ± 3 °C as determined by 
calibration with ethylene glycol. Sequential backbone and 
side-chain chemical shift assignments were made using a 
combination of CC, NCA, and CA(NCO)CX 2D spectra as 
well as NCACX, NCOCX, CANCO, and CAN(CO)CX 3D 
spectra (Comellas and Rienstra 2013). All experiments used 
1H–13C or 1H–15N tangent ramped cross-polarization (CP) 
(Metz et al. 1994) and ~ 75 kHz SPINAL-64 decoupling 
during evolution and acquisition periods (Fung et al. 2000), 
optimized as described (Comellas et al. 2011b). Where uti-
lized, CC mixing was performed with 50 ms DARR (Takeg-
oshi et al. 2001). The 15N 1D CP-MAS spectrum used to 
investigate the H50 Nδ1/Nε2 shifts was collected on a Var-
ian VNMRS spectrometer and wide-bore magnet operat-
ing at 11.7 T (500 MHz 1H frequency) with a MAS rate of 
11,737 ± 8 Hz and VT setting of 10 °C, corresponding to 
an actual sample temperature of 14 ± 3 °C. Details on the 
SSNMR experiments are located in Supplementary Table 1. 
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Chemical shifts were referenced externally to the downfield 
peak of adamantane at 40.48 ppm (Morcombe and Zilm 
2003). Data were converted and processed with NMRPipe 
(Delaglio et al. 1995). In the direct dimensions, back-linear 
prediction and polynomial baseline correction was used. 
Time domain data was zero-filled, Fourier transformed, and 
apodized using Lorentzian-to-Gaussian line broadening and/
or sine bells to optimize line shapes and resolution. Peak 
picking was performed using Sparky (Goddard and Kneller 
2006).

Assignments and data deposition

The SSNMR experiments and chemical shift assignments 
reported here were performed using a single U–13C, 15N 
labeled α-syn fibril sample. The MAS rotor contained 
17 mg of fibrils hydrated to 40 ± 10% (w/w) with water 
as determined by 1H NMR. A CC 2D spectrum collected 
with 50 ms DARR mixing, 20 ms indirect evolution, and 
20 ms direct acquisition is shown in Fig. 1. For clarity, 
only unique and well-resolved assignments are labeled on 
the spectrum. Residues that have fully resolved spin sys-
tems in the 2D, with signal-to-noise (S/N) of individual 
peaks > 20, include A30, G51, T54, N65, T75, A85, I88, 
A89, T92, and G93. Backbone walk assignments were per-
formed using a suite of 3D spectra (NCACX, NCOCX, and 
CANcoCX). Typical line widths in the 3Ds were 0.5 ppm 
for 15N, 0.4 ppm for the indirect 13C dimensions, and 
0.5–0.8 ppm for the direct 13C dimension. We assigned 
a continuous backbone stretch and most side chains for 

residues V63 to D98, which comprise most of the rigid 
fibril core. In addition, we assigned the backbone and most 
side chain atoms for the stretch from T44 to V55, as well 
as a three-residue stretch from A29 to G31 (Fig. 2). Resi-
dues T44–V48 exhibit two sets of peaks, which we refer 
to as state A and state B. The assignments are deposited in 
the BMRB under accession number 26890. The majority 
of resonances exhibit secondary chemical shifts consistent 
with β-strand structure.

We compared the chemical shifts with the assignments 
corresponding to Comellas et al. (2011a) (BMRB 16939). 
The chemical shift perturbations are localized primarily 
at the most N-terminal β-strand (residues T44–V55), with 
larger perturbations observed for G31 and H50 (Fig. 3). 
In addition, the H50 Cδ2 and Cε1 signals are assigned 
and the H50 Nδ1/Nε2 signals appear as sharp peaks at 
166.3 and 255.3 ppm in the 15N 1D CP spectrum, which 
were not observed previously. Residues T44–V48 exhibit 
large perturbations for state A, but perturbations are only 
observed for K45 for state B, relative to BMRB 16939. 
Additional individual perturbations are observed for resi-
dues (such as V63, V82 and E83) located on the periphery 
of the structure. The assignments for the fibril core are 
highly similar between these two forms, suggesting that 
the fold is conserved despite the differences in incubation 
conditions. Thus, the fibril form produced under the incu-
bation conditions used here—i.e., similar to those used for 
development of α-syn imaging agents—appears to exhibit 
the same fibril core arrangements as the recently reported 
structure (2N0A, Tuttle et al. 2016a).

Fig. 1  13C–13C correlation spec-
trum of U–13C, 15N α-synuclein 
fibril sample showing the 
carbonyl and aliphatic regions. 
Data was acquired with 50 ms 
DARR mixing, 20.48 ms acqui-
sition, and 20.48 ms  t1 evolution 
and processed with 30 Hz 
net Lorenzian-to-Gaussian 
line broadening and a second 
order 50° shifted sine bell. The 
first contour is cut at 13 times 
the root-mean-square noise. 
Residues T44–V48 exist in two 
states, labeled A and B A30
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Fig. 2  Assigned atoms showing residues K21 to L100 out of 140 total 
amino acids in the α-synuclein primary sequence. Atoms with assign-
ments are represented as filled black circles, filled gray circles are 
oxygen, and empty circles are unassigned or left empty due to uncer-

tainty in the assignment. Atoms from residues T44–V48 have two 
sets of peaks referred to here as states A and B. The atoms for state B 
are filled red for clarity
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Fig. 3  Plot of weighted average chemical shift perturbations for 
all assignments common between the sample studied here and 
Comellas et  al. (2011a) (BMRB 16939) for which we solved the 
structure [PDB code 2N0A, BMRB 25518, (Tuttle et  al. 2016a)]. 

The inset with red bars shows the chemical shift perturbations 
for state B of residues T44–V48. RMS Δδ was calculated as {Σi 
[(ΔδCi)2 + (0.4 × ΔδN)2]/n}1/2, where i refers to α, β, γ, δ, and ε and n 
is the number of assignments used to perform the calculation
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Accession number

Chemical shift assignments for α-syn fibrils prepared in Tris 
buffer at moderate ionic strength can be accessed on the 
BioMagResBank (BMRB) under entry number 26890.
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