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lysozyme via negatively charged surfaces. Based on the 
assigned chemical shifts, the presence of lysozyme has a 
limited influence on the secondary structure of SOD1. We 
anticipate that our assignments will provide an important 
basis for elucidation of the crowding-induced folding desta-
bilization of SOD1.
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Biological context

Cu/Zn-superoxide dismutase 1 (SOD1) is a cytoplasmic 
radical scavenger that catalyzes the dismutation of super-
oxide to dioxygen and hydrogen peroxide. In the cytosol, 
SOD1 forms an enzymatically active homodimer. Each 
monomeric subunit in a dimer coordinates one catalytic 
Cu+/2+ ion and one structural Zn+ ion; in addition, one 
intra-subunit disulfide bond is formed. Loss of both metal 
binding and disulfide bridge causes dissociation of the 
dimer into monomeric apoSOD1 that has a high aggre-
gation propensity (Stathopulos et  al. 2006). Intracellular 
aggregates of SOD1 have often been observed in patients 
of amyotrophic lateral sclerosis (ALS) and the SOD1-
mediated degeneration of motor neurons causes progressive 
weakness of muscle strength, which leads to difficulties in 
speaking, swallowing, and breathing within 3 to 5 years 
after disease onset (Armon 1994). Although 90% of ALS 
cases are sporadic (sALS), the remaining 10% are familial 
(fALS). Approximately 20% of fALS are associated with 
genetic mutations in the SOD1 gene (Rosen et al. 1993) and 
most of these mutations are thought to increase dimer dis-
sociation (Broom et al. 2015). To reveal the mechanism of 
formation of the pathological aggregates in ALS patients, it 
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is thus important to analyze the folding stability of mono-
meric apoSOD1.

To simplify the investigation of the folding stabil-
ity of monomeric apoSOD1, a loop-truncated form, in 
which all cysteine residues are mutated to serine residues 
(SOD1ΔIV,ΔVII), has been established previously (Daniels-
son et  al. 2011). Since SOD1ΔIV,ΔVII lacks the ability to 
bind metals and to form disulfide bonds, it exists as a mon-
omer and its folded state is in equilibrium only with the 
unfolded state that is a possible precursor of pathological 
aggregation. The in  vitro dynamic exchange between the 
folded and unfolded states has been quantitatively analyzed 
by relaxation dispersion NMR spectroscopy (Danielsson 
et al. 2013). Furthermore, crowded environments affect the 
folding equilibrium of SOD1ΔIV,ΔVII and the equilibrium is 
shifted toward the unfolded state in mammalian and bac-
terial cells (Danielsson et al. 2015). Remarkably, the pres-
ence of lysozyme exerts a similar effect on the stability of 
SOD1ΔIV,ΔVII as the intracellular environment (Danielsson 
et al. 2015). As a result, it would be intriguing to examine 
the crowding effect of lysozyme on SOD1ΔIV,ΔVII in more 
detail.

In this study, we present the 1H, 13C, 15N backbone res-
onance assignments of SOD1ΔIV,ΔVII in the absence and 
presence of the protein crowder lysozyme. These assign-
ments will be valuable for identification of the interface 
between SOD1ΔIV,ΔVII and lysozyme and for further struc-
tural analyses.

Methods and experiments

Expression and purification

A pET3a vector encoding the H46W mutant of the loop-
truncated human SOD1ΔIV,ΔVII (hereafter: SOD1) was 
transformed into Escherichia coli strain BL21(DE3). 
Cells were cultured in M9 minimum media containing 
2  g/L U-13C glucose (Cambridge Isotope Laboratory), 
0.5  g/L U-15N ammonium chloride (Cambridge Isotope 
Laboratory) and 50  mg/L ampicillin (Wako). Protein 
expression was induced with 0.5  mM isopropyl 1-thio-
β-d-galactopyranoside (Nacalai Tesque) overnight at 
23 °C. All protein purification steps were performed at 
4 °C. Harvested cells were resuspended and sonicated in 
50 mM Tris–HCl (pH 7.5 at 25 °C). The cell lysate was 
centrifuged at 38,750×g for 25  min and the supernatant 
was purified using a two-step ammonium sulfate precipi-
tation. The supernatant was first subjected to a 50% w/v 
ammonium sulfate precipitation, followed by centrifuga-
tion at 38,750×g for 25  min. After a second precipita-
tion at 90% w/v saturation, the pellet was resuspended in 
10 mM Tris-HCl (pH 7.5 at 25 °C) and then the solution 

was dialyzed against 10 mM Tris-HCl (pH 7.5 at 25 °C) 
to remove residual ammonium sulfate. The dialyzed sam-
ple was loaded on a HiTrap Q column (GE Healthcare) 
and the protein was eluted by a 0 to 300  mM sodium 
chloride gradient. Fractions containing SOD1 were 
loaded on a Superdex 75 16/60 gel filtration column (GE 
Healthcare). The final fractions containing purified SOD1 
were concentrated to 1 mM and stored at −80 °C. Protein 
purity was checked by SDS–PAGE.

Fig. 1   1H-15N HSQC spectra of SOD1 in the presence and absence 
of a macromolecular crowding agent. The spectra of 1 mM 13C/15N-
labeled SOD1 without (a) and with (b) 50  mg/mL lysozyme. The 
dashed inset displays an enlarged view of the middle region of the 
full spectrum
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NMR measurements and data analysis

All NMR spectra were obtained at 25 °C on a 600 MHz 
Bruker Avance DRX spectrometer equipped with a 
5-mm TXI triple resonance cryoprobe (Bruker BioSpin). 
The uniformly 13C, 15N-labeled samples in 10  mM Bis-
Tris HCl pH 6.3, 5% D2O with and without 50  mg/mL 
(3.5  mM) hen egg white lysozyme (Nacalai Tesque) 
were used for the NMR experiments. The samples were 

prepared at a protein concentration of 1  mM. Protein 
concentration was determined by absorbance at 280  nm 
using NanoDrop 2000c (Thermo Fisher Scientific). For 
the sequential backbone assignments, 1H-15N HSQC, 
HNCO, HN(CA)CO, HN(CO)CA, HNCA, CBCA(CO)
NH, HNCACB, and CC(CO)NH spectra were acquired. 
1H chemical shifts were calibrated with sodium 2,2-dime-
thyl-2-silapentane-5-sulfonate (DSS: Tokyo Chemi-
cal Industry) and both 13C and 15N chemical shifts 

Fig. 2   Backbone chemical shift 
differences induced by addition 
of lysozyme. a Mean-weighted 
chemical shift differences calcu-
lated according to the equation 
Δδ = {(ΔδH)2 + (0.15ΔδN)2}1/2 
where ΔδH and ΔδN are the 
differences between 1H and 
15N backbone chemical shifts 
in the absence and presence 
of lysozyme, respectively. 
Magenta and purple lines rep-
resent the average Δδav of the 
chemical shift differences and 
one standard deviation above 
the average (Δδav + 1σ), respec-
tively. The residues exhibiting 
Δδ > (Δδav + 1σ) are colored 
purple and those exhibiting 
Δδav ≤ Δδ ≤ (Δδav + 1σ) are 
colored magenta. b Structural 
mapping of the residues exhibit-
ing Δδ ≥ Δδav (upper). Electro-
static potential surface (lower). 
PDB database accession code: 
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Fig. 3   Secondary structure pro-
pensities. Secondary structure 
propensities of SOD1 without 
(black) and with (red) lysozyme 
were estimated using the pro-
gram SSP (Marsh et al. 2006)
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were calibrated indirectly (Markley et  al. 1998). Data 
were processed by NMRPipe (Delaglio et  al. 1995) and 
sequential assignments were performed manually using 
MagRO NMRView (Johnson and Blevins 1994; Kob-
ayashi et al. 2007).

Assignments and data deposition

We assigned 98% of the backbone HN, N, Cα, Cβ, and CO 
resonances for SOD1 in the absence of lysozyme (Fig. 1a). 
The resonances of the residues Lys92 and Gly96 were 
missing because of severe line broadening. For SOD1 in 
the presence of lysozyme, 100% of the backbone HN, N, 
Cα, Cβ, and CO resonances were assigned (Fig. 1b). These 
resonance assignments have been deposited in BioMagRes-
Bank (BMRB, http://www.bmrb.wisc.edu) under the acces-
sion numbers 26893 and 26894 in the absence and presence 
of lysozyme, respectively. The mean-weighted chemical 
shift differences of the HN and N resonances indicate that 
SOD1 interacts with lysozyme via its negatively charged 
surfaces centered around Asp53 and Asp71 (Fig. 2b). Note 
that lysozyme is positively charged at neutral pH. Further-
more, we estimated the secondary structure propensities 
of SOD1 in the absence and presence of lysozyme based 
on the respective backbone chemical shifts of HN, N, Cα, 
Cβ, and CO (Marsh et al. 2006). As a result, there was no 
significant change of the secondary structure propensities 
of SOD1 due to the addition of lysozyme (Fig. 3). Taken 
together, these results argue that lysozyme associates with 
SOD1 through formation of electrostatic interactions; 
however, it induces little conformational changes in the 
backbone of SOD1. Our assignments will contribute to 
elucidating the folding destabilization of SOD1 in macro-
molecular-crowded environments.
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