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Abstract The formation of fibrils of the amyloid-b (Ab)
peptide is considered to be a key event in the pathology of

Alzheimer’s disease (AD). The determination of a high-

resolution structure of these fibrils is relevant for the

understanding of the molecular basis of AD. In this work,

we present the sequential resonance assignment of one of

the polymorphs of Ab(1–42) fibrils. We show that most of

the protein is rigid, while a stretch of 4 residues (11–14) is

not visible by solid-state NMR spectroscopy due to

dynamics.
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Biological context

AD is a neurodegenerative disorder accompanied by

accumulation and aggregation of Ab leading to extracel-

lular plaques in the brain that, according to the amyloid

hypothesis, is considered a key event in the disease (Selkoe

1991; Hardy and Selkoe 2002). Ab is a peptide of 39–43

amino-acid residues, which is produced in neurons from

the b-amyloid precursor protein (APP) via sequential

cleavage by b- and c-secretases (Masters et al. 1985; Kang

et al. 1987). From the various species, Ab(1–40) and

Ab(1–42) are the most abundant fragments present in

human brain and Ab(1–42) is considered to be more neu-

rotoxic and tends to aggregate faster than Ab(1–40)
(Masters et al. 1985; Ovchinnikova et al. 2011; Selkoe

1994). The characterization of the structure of these

Ab(1–42) fibrils is crucial for a profound understanding of

AD, as well as for devising strategies for the development

of interacting compounds. Solid-state NMR can deliver

atomic-resolution structural models. (Lu et al. 2013; Schütz

et al. 2015; Xiao et al. 2015) A major challenge in the

study of amyloids is their appearance in a variety of 3D

structures, the so-called polymorphs.(Meier and Böckmann

2015). This is, the 3D structure is not only defined by the

amino-acid sequence, but also by the conditions used for

the fibrillization. Here we characterous a virtually homo-

geneous sample of Ab(1–42) fibrils, leading to single set of

peaks in the 20 ms DARR spectrum (Fig. 1).
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Methods and experiments

Sample preparation of [U-13C,15N] Ab(1–42) fibrils

Expression and purification

The production of recombinant Ab(1–42) has been

described previously. (Wälti et al. 2015) Briefly, the

expression was performed in Escherichia coli

(BL21(DE3)) in standard 15N and 13C isotope labeled

minimal media. The cells were induced at an OD600 *1.3

at 37 �C for 12 h. The protein containing a N-terminal

hexahistidine tag was purified by a Nickel-NTA agarose

column and further by reversed-phase chromatography

(RPC). The cleavage was subsequently performed with

tobacco etch virus (TEV) protease in order to obtain the

correct sequence of Ab(1–42). Furthermore, the peptide

was purified with a second RPC and finally lyophilized.

The high purity of the peptide was affirmed by silver-

stained SDS-polyacrylamide gels and mass spectrometry.

Fibrillization

The purified Ab(1–42) peptide was dissolved in 10 mM

sodium hydroxide (NaOH) after some minutes of incuba-

tion time, a sonication bath was used to increase the soluble

fraction (3 times 30 s sonication with 50–60 % power,

interrupted by 1 min cooling on ice). In order to remove

large aggregates the sample was centrifuged for 1 h at

126,000g at room temperature with an airfuge. If required

the sample was further diluted with 10 mM NaOH in order

to reach a final concentration of 60 lM peptide. The

phosphate buffer including the respective additives was

added in order to reach a final concentration of 30 lM

Ab(1–42) in 100 mM H3PO4–NaOH pH 7.4, 100 mM

NaCl, and 100 lM ZnCl2. The fibrillization was induced

with the addition of 10 % preformed Ab(1–42) seeds at

350 revolutions pre minute (rpm) at 37 �C and incubated

for 2 weeks. The seeding was done for 3 generations, 10 %

of the grandparent generation were used as seeds for the

parent generation, and again 10 % for the daughter gen-

eration; whereas the formation of each generation was

lasting one week. An elecromicrograph sowing the fibril

morphology is shown in Fig. 1.

Sample preparation for solid-state NMR measurements

The obtained fibrils with a quantity of 15–20 mg peptide

were centrifuged at 30,000g over night (SW41-TI swinging

bucket, optima L90-K, Beckmann) and resuspended in

MilliQ water. The fibrils were washed for 3 days by gently

shaking. The pellet was again centrifuged at 30,000g over

night, the supernatant was discarded and the fibrils were

packed into a 3.2 mm Bruker rotor by ultrazentrifugation

using a filling device. (Böckmann et al. 2009) The drive tip

was sealed with epoxy glue (Araldit� blue) in order to

prevent the dehydration of the fibrils during the

experiment.

NMR spectroscopy

Solid-state NMR spectroscopy

All spectra for the sequential assignment were measured on

a Bruker Avance II? 850 MHz with magic-angle spinning

(MAS) at 19 kHz using a Bruker 3.2 mm triple-resonance

probe. The sample temperature was determined, using the

water resonance frequency, to be around 4 �C. All spectra
were apodized with a Shifted Sine Bell window function

(SSB of 2.2–2.7). The processing was done by PROSA

(Güntert et al. 1992) and TopSpin 3.1 (Bruker Biospin) and

the analysis was performed with CcpNMR analysis 2.3

(Vranken et al. 2005; Stevens et al. 2011). We performed

the standard set of 3D assignment spectra, namely

NCOCX, NCACX, NCACB, CCC and CANCO (Schuetz

et al. 2010), and in addition 2D DARR, NCO and NCA. All

experimental parameters are displayed in Table 1.

Assignment and data deposition

The fibrils of Ab(1–42) analyzed in this work show in

average a linewidth of 0.5 ppm in 13C-13C correlation

spectra (Fig. 2a, b). A single set of resonances can be

identified in the DARR and NCA of Fig. 2 with, a few

additional resonances, which were visible in 2D spectra,

but not be detected in 3D spectra. We believe that these

resonances represent a minor polymorph. The intensity of

Fig. 1 Transmissionelectromicrograph of the negatively stained

fibrils of the form used in this study
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the intra-residue cross peaks of those resonances is less

than 5 % of the main form.

NCOCX, NCACX, NCACB, and CANCO spectra

allowed the sequential assignment of the backbone atoms

of the protein (excluding residues 11–14, which were not

visible in any of the spectra). 3D CCC and 2D DARR

spectra were recorded to complete the assignment of the

side-chains. (Schuetz et al. 2010; Habenstein et al. 2011).

Table 1 Experimental parameters used for the solid-state NMR experiments for the assignment of the Ab(1–42) peptide resonances in the fibrils

Experiment NCACX NCOCX NCACB CANCO CCC NCA NCO DARR 20 ms

MAS frequency [kHz] 19 19 19 19 19 19 19 19

Transfer 1 HN-CP HN-CP HN-CP HC-CP HC-CP HN-CP HN-CP HC-CP

Field [dB] -1H 3 3 3 2 3 3 3 3

Field [kHz] -1H 80.3 80.3 80.3 90.1 80.3 80.3 80.3 74.9

Field [dB] -X -2 -2 -2 -1.5 -1.3 -2 -2 0.1

Field [kHz] -X 57.4 57.4 57.4 70.2 67.8 57.4 57.4 57.6

Shape tangent tangent tangent tangent tangent tangent tangent tangent

Carrier [ppm] – – – CA – – – –

Time [ms] 1.4 1.4 1.4 0.38 0.35 1.4 1.4 0.9

Transfer 2 NC-CP NC-CP NC-CP CN-CP DREAM NC-CP NC-CP DARR

Field [dB] -1H – – – – 2 – – 15

Field [kHz] -1H – – – – 90.1 – – 18.7

Field [dB] -13C 21 21 21 21 16 21 21 –

Field [kHz] -13C 5.2 5.2 5.2 5.2 9.2 5.2 5.2 –

Field [dB] -15N 6.1 6.2 6.1 6 – 6.1 6.2 –

Field [kHz] -15N 22.5 22.3 22.5 22.8 – 22.5 22.3 –

Shape tangent tangent tangent tangent tangent tangent tangent –

Carrier [ppm] CA CO CA CA 52 CA CO –

Time [ms] 7 7 7 7 4 7 7 20

Transfer 3 DARR DARR DREAM NC-CP DARR – – –

Field [dB] -1H 15 15 2.1 – 15 – – –

Field [kHz] -1H 20.1 20.1 89.1 – 20.1 – – –

Field [dB] -13C – – 16.2 21 – – – –

Field [kHz] -13C – – 9.1 5.2 – – – –

Field [dB] -15N – – – 6.2 – – – –

Field [kHz] -15N – – – 22.3 – – – –

Shape – – tangent tangent – – – –

Carrier [ppm] – – 52 CO – – – –

Time [ms] 80 65 4 7 80 – – –

t1 increments 96 112 100 92 200 768 768 2560

Sweep width (t1) [kHz] 6 7 7 8 20 40 40 100

Max. acq time (t1) [ms] 8.00 8.00 7.14 5.75 5.00 9.60 9.60 12.80

t2 increments 100 76 108 108 200 1536 1536 3968

Sweep width (t2) [kHz] 8 6 9 7 20 50 50 100

Max. acq time (t2) [ms] 6.25 6.33 6.00 7.71 5.00 15.36 15.36 19.84

t3 increments 2560 2560 2048 2560 2560 – – –

Sweep width (t3) [kHz] 100 100 100 100 100 – – –

Max. acq time (t3) [ms] 12.8 12.8 10.24 12.8 12.8 – – –
1H Spinal64 Decoupling power [kHz] 90 90 90 90 90 90 90 90

Interscan delay [s] 2.5 2.5 2 2.9 2.1 2.5 2.5 3

Number of scans 8 8 8 8 4 16 16 8

Total measurement time [h] 53.7 47.6 48.4 64.3 93.7 8.6 8.6 17.3
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Using these 3D and 2D spectra, we were able to assign

90.5 % of the backbone and 77 % of the side-chains atoms

(90.5 % of nitrogen, and 80.5 % of all carbon atoms,

respectively) as demonstrated in Fig. 2, which shows the

assigned 2D DARR and 2D NCA spectra, respectively. A

representative sequential walk using the NCACX,

NCOCX, and CANCO spectra is depicted in Fig. 3.

Furthermore, the sequential assignment graph reflecting the

completeness of the assignments on a residue-per-residue

basis is shown in Fig. 4.

The chemical shifts have been deposited in the BMRB

under the accession number 26692.

In order to assess whether the resonances for residues

11–14 are missing due to fast dynamics, we performed a
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Fig. 2 2D solid-state NMR spectra of uniformly 13C,15N-labeled

Ab(1–42) fibrils measured at a magnetic field of 20.0 T and 17 kHz

MAS. a 2D 13C–13C DARR spectrum with a mixing time of 20 ms.

b 2D NCA spectrum.The signal with the red label corresponds to a

N-Cb relayed peak, the two weak signals with cyan croses to a minor

polymorph
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Fig. 3 3D solid-state NMR

spectra of Ab(1–42) fibrils
(19 kHz MAS, 20 T B0) for the

sequential assignment. Extracts

of NCACX (red), CANCO

(blue), and NCOCX (green)

spectra are shown,

demonstrating a sequential walk

starting from the N-terminus.

The connection of residues D1–

A2 and further to E3 are

illustrated by vertical lines

Fig. 4 Sequential assignment graph showing all carbon and nitrogen

atoms of Ab(1–42) by circles. The assigned atoms are shown in black,

whereas the unassigned ones are shown in grey. The graph was

designed with the software CcpNMR 2.3 (Stevens et al. 2011;

Vranken et al. 2005)
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Fig. 5 Top: Secondary structural elements in red as predicted from

secondary shifts (see below) and in blue as prediced by TALOS?.

The line is interrupted where data are missing. Bottom: Ca and Cb

chemical shift differences in respect to the corresponding random coil

values are displayed below. Red b-strands are assumed where the

secondary chemical shifts (Wishart and Sykes 1994) are lower than

-1.4 ppm for three residues in a row. Blue b-strands are assumed

when TALOS predics b-conformation for at least three residues in a

row. In addition possible light blue strands are marked in light blue of

two residues in a row are predicted beta-strand by TALOS. An

additional putative beta strand with three negative values in a row but

not reaching the -1.4 ppm limit is indicated in light red. For the

glycines, the DdCa shifts are displayed in grey
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Fig. 6 Left: differences between chemical shifts of the Ab(1–42)
fibrils of this study with previously published Ab fibrils (Ab(1–42)
fibrils (Xiao et al. 2015; Colvin et al. 2015), Ab(1–40) fibrils (Bertini
et al. 2011; Paravastu et al. 2008) and Ab(1–40) E22D fibrils (Schütz

et al. 2015). The first bar of each residue shows the chemical shift

difference of 13Ca, the second 13Cb, and the third 13C
0
, respectively.

For readability of the graphs the bars of the even residues are color

coded in cyan and the odd ones in black, respectively. Right: residue-

resolved average absolute values of the 13Ca, 13Cb, and 13C0 chemical

shift differences between chemical shifts of the Ab(1–42) fibrils of

this study with previously published Ab fibrils with
P

|Dd|/
3 = (|dCaprevious–dCathis study | ? |dCbprevious–dCbthis study

| ? |dC0previous–dC0this study |)/3. Bars with differences larger than
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1H–15N INEPT-based 2D correlation experiment to check

for the presence of highly flexible residues in the fibrils.

However, this spectrum was devoid of any peaks (data not

shown). We therefore think that the missing 4-residues

stretch presents an intermediate range (ls correlation

times) of motion, rendering it ‘‘invisible’’ in CP as well as

INEPT-based experiments. A similar behaviour was

observed in (Colvin et al. 2015).

From the chemical-shift information, secondary struc-

ture elements can be identified, analyzing the differences of

the 13Ca and 13Cb shifts of each amino-acid residue to the

shifts found in a random-coil state.(Wishart and Sykes

1994) In this study, the random-coil shifts were taken from

Wang and Jardetzky 2002. The resulting secondary

chemical shifts show that the fibrils studied here are

composed of five short b-strands distributed along the

sequence: residues 2–6 (b1), 15–18 (b2), 26–28 (b3),
30–32 (b4), 39–42 (b5) (Fig. 5). In this conservative sec-

ondary structure determination we define a beta strand by

at least three consequtive resonances with a value the

secondary shifts difference DdCa–DdCb\-1.4 ppm

(Wishart and Sykes. 1994). Just requesting that DdCa–
DdCb is negative would add another beta strand at residues

20–22 (light red in Fig. 5). For comparison, b-strand
positions as obtained by TALOS are also indicated in

Fig. 4.

Figure 6 shows a comparison of chemical shifts of the

present study with previously published sequential

assignments of both Ab(1–42) and Ab(1–40) fibrils.

Interestingly, the chemical shifts of the Ab(1–42) fibrils

described by both the Griffin (Colvin et al. 2015) and Ishii

(Xiao et al. 2015) groups are largely coincident with the

presented assignment for residues 16–42, with somewhat

larger differences for residues 39 and 42. In contrast, sig-

nificant differences of up to 4 ppm are found in the

N-terminal 10 residues. Furthermore, while in the present

study the N-terminal residues (D1–Y10) show peaks in the

20 ms DARR spectrum, they are absent in the study by

Colvin et al. These findings indicate that in the various

Ab(1–42) fibrils characterized so far, the core structure of

residues 16–42 is similar, while the N-terminal segment

comprising residues 1–15 might be structurally distinct.

The influence of Zn2? on fibrillization was investigated

by (Mithu et al. 2011). They reported no complete

assignments but for the residues characterized the values

for all conformers obtained in the presence or absence of

Zn2? differ considerably from the ones for the polymorph

investigated in this assignment note.

In a comparison of the presented Ab(1–42) assignment

with those obtained from different fibril preparations of

Ab(1–40) (Paravastu et al. 2008); (Bertini et al. 2011)

including the Ab(1–40) Osaka mutant (Huber et al. 2015),

significant chemical-shift differences are observed

throughout the entire amino-acid sequence. These findings

indicate that the structures of the fibrils of these poly-

morphs of Ab(1–42) and Ab(1–40) are structurally distinct.
We conclude that the three preparations of Ab(1–42) dis-
cussed comprise essentially the same conformatiom for

residues 17–42, while the N-terminal residues 1–16 are

partially or fully disordered and might be different from

preparation to preparation. In contrast, the Ab(1–42) fibrils
are structurally distinct from known Ab(1–40) fibrils along
the entire sequence.
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